
47

Chapter 3

Searching Sound Synthesis Space

This chapter presents the results of applying various optimisation techniques to the prob-

lem of searching the sound synthesis space of various sound synthesis algorithms, including

a discussion of error surfaces along the way. The main aim of this chapter is to compare

several techniques for automated sound synthesizer programming in their ability to search

sound synthesis timbre space. The techniques are a feed forward neural network, a simple

hill climber, a genetic algorithm and a data driven approach. Five sound synthesis algo-

rithms are used in the comparison and they are described in detail. They are simple and

complex forms of frequency modulation and subtractive synthesis and a variable architec-

ture form of frequency modulation synthesis. A data driven approach is used to examine

the effect of parametric variation in each of the fixed architecture synthesis algorithms

upon the audio feature vectors they generate. The results are presented in the form of

error surfaces, which illustrate the size of movements in feature space from a reference

point induced by changes in parameter settings. Parameters with different behaviours

such as quantised and continuous variation are compared. Having described the nature

of the environment in which the automatic synthesizer programming techniques will op-

erate, the main study is described. Firstly, each technique is used to re-program sounds

which were generated by the same synthesis algorithm that is being programmed. These

sounds can be produced by the synthesizer given appropriate parameter settings, so this

provides an effective assessment of the general abilities of the automated programming

techniques in each domain. The second test involves the programming of sounds which

are similar to real instrument sounds. This test aims to establish the versatility of the

synthesis algorithms as well as the automated programming techniques. The results are

presented and it is shown that the genetic algorithm has the best search performance in

terms of sound matching. The hill climber and the data driven approach also show decent

48

performance but the neural network performed rather poorly. The complex FM synthesis

algorithm is shown to be the best real instrument tone matcher overall but subtractive

synthesis offered better matches for some sounds. The speed of the techniques is discussed

and hybrid technique is proposed where the genetic algorithm is combined with the data

driven approach, showing marginally better performance.

3.1 The Sound Synthesis Algorithms

The sound synthesis algorithms have been designed to be somewhat similar to the algo-

rithms found in typical hardware synthesizers not only in terms of the basic algorithm but

also in terms of the behaviour of the parameters throughout their range. For example, the

FM synthesis algorithms have parameters with continuous and quantised values, modelled

after the Ysmaha DX7 and the subtractive synthesis algorithms have parameters control-

ling the mode for switchable mode oscillators. The choice of parameter behaviour has a

marked effect on the search space, an effect which is discussed in detail in subsection 3.2.

One thing that has been omitted from the algorithms which would be found in all real

world synthesis algorithms is any kind of envelope generator. Effectively this means the

synthesizers have mostly static timbres (except for cases where the oscillators happen to

be set up in such a way as to create low speed variations e.g. FM synthesis with two os-

cillators with very close frequencies). The motivation for this omission centres around the

need to create large data sets showing maximal variation in parameter and feature space

in order to support error surface analysis. Without envelope generators, it is possible to

represent the output generated from a given set of parameter settings using a single frame

feature vector since the timbre does not change over time. By contrast to this, synthesiz-

ers with envelope generators would need their output to be measured over many frames

in order to accurately represent the effects of the envelope generator(s). In the following

subsections, the individual sound synthesis algorithms are described in detail.

3.1.1 FM Synthesis

The fixed architecture FM synthesis algorithms are based around the FM7 UGen for

SuperCollider which aims to emulate the six oscillator (or in Yamaha-speak, operator)

sound synthesis engine found in the Yamaha DX7 synthesizer [64]. The FM7 UGen is

controlled via two matrices; the first defines the frequency, phase and amplitude for each

oscillator using a three by six grid; the second defines the modulation indices from each

oscillator to itself and all other oscillators using a six by six grid. The UGen implements

49

f1 p1 a1

f2 p2 a1

f3 p3 a1

f4 p4 a1

f5 p5 a1

f6 p6 a1

m1 m7 m13 m19 m25 m31

m2 m8 m14 m20 m26 m32

m3 m9 m15 m21 m27 m33

m4 m10 m16 m22 m28 m34

m5 m11 m17 m23 m29 m35

m6 m12 m18 m24 m30 m36

Table 3.1: The table on the left shows the FM7 oscillator parameter matrix which defines frequency, phase

and amplitude for the six sine oscillators. The table on the right shows the parameters from the

FM7 phase modulation matrix which defines modulation indices from every oscillator to itself

and all other oscillators. E.g. m1..6 define the modulation from oscillators 1-6 to oscillator 1.

phase modulation synthesis as opposed to frequency modulation synthesis, as does the DX7

[3]. Using the parameter names defined in table 3.1, the output y1 of the first oscillator in

the FM7 UGen at sample t in relation to the output of the other oscillators y1..6 is shown

in equation 3.1. The summed output of all oscillators is shown in equation 3.2.

y1[t] = sin(f1(
6

∑

x=1

yx[t− 1]mx2π) + p1)a1 (3.1)

y[t] =
6

∑

n=1

sin(fn(
6

∑

x=1

yx[t− 1]mx+n−12π) + pn)an (3.2)

The basic algorithm does not use all six oscillators; instead is uses two oscillators

arranged as a modulator-carrier pair controlled by two parameters. This is akin to a

phase modulation version of Chowning’s ‘Simple FM’ synthesis [20]. This algorithm is

shown in equation 3.3, where f1 and f2 are fixed to the base frequency and m2 and r1 are

the two adjustable parameters for the algorithm: modulation index and a multiplier on

the base frequency. r1 is quantised to one of 36 possible values: [0.5, 0.6...1, 2...31]. This

is the same as the ‘Frequency Coarse’ parameter described in the Yamaha DX7 Manual,

[140, p7]. The frequency ratio is biased towards the lower values by using a simple sinh

function to map from parameter value to ratio array index. This is musically motivated

since higher frequency ratios produce less useful timbres with too many high partials so it

was considered desirable to weight the feature space away from such timbres.

y[t] = sin(f1(m2sin(f2r1)2π) (3.3)

The complex algorithm uses three oscillators and is controlled by 22 parameters. Mod-

ulation from oscillator to oscillator is controlled by a single parameter per oscillator which

50

decides which of several available modulation routings from that oscillator to other oscilla-

tors are chosen. The available routings for each of the three oscillators are [0, 0, 0], [1, 0, 0],

[0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1] and [0, 1, 1], or ‘no modulation’, ‘modulate oscillator one’,

‘modulate oscillator two’, ‘modulate oscillators one and two’, ‘modulate oscillator three’,

‘modulate oscillators one and three’ and ‘modulate oscillators two and three’, respectively.

This is similar to the feature found on the DX7 which allows the user to choose different

algorithms, [140, p24]. A further three parameters per oscillator define the modulation

indices to the three other oscillators, the m1,2,3,7,8,9,13,14,15 values from table 3.1. Finally,

the oscillators are tuned using another three parameters per oscillator: coarse tuning, fine

tuning and detune. Coarse tuning is the same as for the basic synthesizer, fine tuning

adds up to 1 to the coarse tuning ratio and is continuous, detuning adds or subtracts up

to 10% from the final scaled frequency and is continuous. For example, let us consider the

case where the coarse tuning parameter is set to 0.5, the fine tuning 0.25 and the detune

is 0.75. Within the synthesizer, the coarse ratio r1 will be 3 (the 8th element from the list

of 36, noting the biasing toward the lower end ratios); the fine ratio r2 will be 0.25; the

detune d will be +5%. Using equation 3.4 to calculate the resulting frequency f for this

oscillator with a base frequency F of 440Hz yields the result 1440.725Hz.

f = F (r1 + r2)(1 +
d

100
) (3.4)

A final parameter is used to choose from a set of available settings for switches which

will allow one or more oscillators to be routed to the audio out. For example, switch

settings of [1,0,1] would allow oscillators 1 and 3 to be heard. The parameters are further

described in table 3.2.

3.1.2 Subtractive Synthesis

The basic subtractive synthesis algorithm takes the three parameters listed in table 3.3.

The cut off and reciprocal of Q are standard filter parameters but the oscillator mix

parameter requires further explanation. The oscillator mix is the amount of each of the four

oscillators sent to the audio output, where the available oscillators generate sin, sawtooth,

pulse and white noise waveforms. In order to specify the mix using a single parameter,

the parameter is used to select from one of many sets of levels for the oscillators, The

available levels are restricted so that only two oscillators can be active at a time. For

example, [0.1, 0.5, 0, 0] would set the amplitude of noise to 0.1, sawtooth to 0.5, pulse to 0,

and sine to 0. Each oscillator’s level can take on any value in the range 0-1 in steps of 0.1.

51

Parameter Range Description

Modulation routing (x3) [0,0,0],[0,0,1],[0,1,0],[0,1,1], Switches defnining which

[1,0,0],[1,0,1],[1,1,0] oscillators this one modulates

Modulation of oscillator 0-1 Modulation index

one (x3)

Modulation of oscillator 0-1

two (x3)

Modulation of oscillator 0-1

three (x3)

Frequency coarse tune(x3) 0.5,0.6 ... 1, 2 ... 31 Chosen from one of 36 values, used

to scale from base frequency

Frequency fine tune(x3) 0-1 Added to the coarse tune

Frequency detune(x3) -10% - 10% of scaled frequency Added to the scaled frequency

Audio mix [1,0,0],[0,1,0],[1,1,0], [0,0,1], Switches defining which oscillators

[1,0,1], [0,1,1], [1,1,1] are routed to the audio out

Table 3.2: This table lists the parameters for the complex FM synthesis algorithm. The first six param-

eters are duplicated for each of the three active oscillators.

With the limitation that only two are active, this makes a total of 522 different options. It

should be noted that it would be very unusual to find a parameter which behaves in such a

way in a real synthesizer, rather the mix would be controlled by four separate parameters.

The complex subtractive synthesis algorithm is controlled with the 17 parameters

listed in table 3.4. This algorithm is typical of the sort to be found in a middle of the

range analog-type synthesizer, with 2 switchable mode periodic oscillators, a white noise

oscillator and 3 resonant filters.

Parameter Range Description

Oscillator mix Select one of 522 arrays Defines the amplitude level

of the form [a1, a2, a3, a4], with for each of the four

a1...4 in the range 0-1 oscillators

quantised to 0.1

Filter cut off Base frequency x 0.01 - base Defines the cut off for the

frequenccy x 5 resonany low pass filter

Filter rQ 0.2 - 1.0 The reciprocal of Q, bandwidth

/ cut off frequency

Table 3.3: This table lists the parameters for the basic subtractive synthesis algorithm.

52

Parameter Range Description

Oscillator 1 waveform 0-3: sawtooth, pulse or sine 4 state switch to select the

waveform for oscillator 1

Oscillator 2 tuning ratio 0.25, 0.5, 1, 1.5, 1, 2, 3, 4 Used to scale the frequency of

oscillator 2relative to the

base frequency

Oscillator 2 waveform 0-3: sawtooth, pulse or sine 4 state switch to select the

waveform for oscillator 2

Noise oscillator level 0-1 Amplitude of the noise

oscillator

Low pass filter cut off f/100 to f/100 + (f x 5)

Low pass filter rQ 0.1 - 1

Low pass filter level 0-1 Amount of the low pass filter

sent to the audio out

High pass filter cut off f/100 to f/100 + (f x 5)

High pass filter rQ 0.1 - 1

High pass filter level 0 - 2

Band pass filter centre f/100 to f/100 + (f x 5)

frequency

Band pass filter rQ 0.1 - 1

Band pass filter level 0 - 2

Oscillator 2 detune +/- 5% f

Ring modulation 0 - 1 Ring modulation from

oscillator 1 to oscillator 2

OScillator 1 level 0 - 1

Oscillator 2 level 0 - 1

Table 3.4: This table lists the parameters for the complex subtractive synthesis algorithm. Note that f

is the base frequency.

53

Parameter Range Description

FM index 0-(f/5) Scales the modulation

FM input bus 32-37 FM is read from thie bus

Frequency ratio one of 0.0625.0.125, Scales the base

0.25, 0.5, 1,2 ...6 frequency

Audio output 0-1 Scales the audible

level output of this module

FM output bus 32-37 Write output to this bus

Detune ratio -0.025-0.025 Added to the frequency

ratio

Table 3.5: This table shows the parameters for the variable architecture synthesis algorithm. f is the

base frequency.

3.1.3 Variable Architecture Synthesis

The variable architecture synthesizer was initially modelled after an old fashioned analog

modular synthesizer, where a variable number of parameterised modules are connected

together. However, it was found that the SuperCollider non real time synthesis engine

was not suitable for the attempted implementation as it was found to render certain

types of sounds inconsistently or not at all. In addition, a non-functional sound would

sometimes prevent all subsequent sounds in that batch from rendering correctly. Whilst

such a constraint could be viewed as simply another part of the challenge to the optimisers,

i.e. to find sounds that SuperCollider can render consistently as well as being close to the

target sounds, in practise it slowed down the optimisers to the point of being unusable

for the large test sets. This is not to say that the SuperCollider system cannot model a

modular synthesizer, but that the modular system designed for this work was not suitable

for SuperCollider. It is hoped that in future work, it will be possible to implement an

optimisable analog-style modular synthesizer.

The eventual variable architecture synthesizer was therefore made from a single type of

module, implementing frequency modulation synthesis using a single sine wave oscillator

per module. The synthesizer uses 6 buses to share modulation data between the modules

and for the purposes of this experiment has between 5 and 50 modules. The parameters

for the module are described in table 3.5. This synthesis architecture can generate a wide

range of sounds and provides a highly complex search space.

54

3.2 Synthesis Feature Space Analysis

During the development and testing of the optimisation algorithms, it became obvious

that an analysis of the feature space of the synthesizers would be interesting and that

it might feed into the design of the optimisers. For example, the data driven nearest

neighbour algorithm (3.3.4) depends on a large data set sampled from feature space; but

how should this data set best be sampled? The neural networks depend on training sets

and test sets, but what should be in these sets? In the following subsection, the idea of an

error surface is introduced and the error surfaces of the various sound synthesis algorithms

are examined in detail.

3.2.1 Error Surface Analysis

The error surface is loosely defined here as the variation in the distance from a reference

point in feature space as one or more synthesis parameters are adjusted. In this case,

the distance metric is the square root of the sum squared Euclidean distance between the

reference vector t and the error surface ‘reading’ e (see equation 3.5). The error surface

is similar to the fitness landscape often discussed in genetic algorithm research where the

reference point would be taken as the target for the GA and the fitness would be some

inverse manipulation of the distance.

d =
√

(
42
∑

n=1

(t[n]− e[n])2) (3.5)

Euclidean distances and error surfaces are precise ways to compare sounds, but what

is the perceptual significance of an error of 1.5 vs an error of 2.7, for example? Since the

difference between a cello and a French horn is most likely more familiar to the reader

than the difference between a mathematically described FM synthesis algorithm with a

modulation index of 0.5 or 1.5, that question can be loosely answered by considering the

error between the different instruments used in the optimisation task that is the main focus

of this chapter. Figure 3.1 shows distance matrices between the ten instruments used to

test the optimisers. (The instrument samples were taken from [38]). The value being

plotted is the error in MFCC feature space between the different instruments. This value

is calculated by taking the 42 dimensional mean of 25 consecutive MFCC feature vectors

starting at frame 0 and frame 50 into the sound, for the attack and sustain plots, and

generating the error from the other instruments using equation 3.5. Since the instruments

are sampled at 44100Hz and the hop size on the feature vector is 512 frames, the time being

considered here is about 0.3s. Comparing the error observed between instruments to figure

55

Instrument Dissimilarity Matrix: attack

Flute
Cello
Piano
Sax
Horn
Trumpet
Bassoon
Oboe
Violin
Clarinet

Fl
ut

e

C
el

lo

Pi
an

o

Sa
x

H
or

n

Tr
um

pe
t

Ba
ss

oo
n

O
bo

e

Vi
ol

in

C
la

rin
et

 0

 1

 2

 3

 4

 5
Instrument Dissimilarity Matrix: sustain

Flute
Cello
Piano
Sax
Horn
Trumpet
Bassoon
Oboe
Violin
Clarinet

Fl
ut

e

C
el

lo

Pi
an

o

Sa
x

H
or

n

Tr
um

pe
t

Ba
ss

oo
n

O
bo

e

Vi
ol

in

C
la

rin
et

 0

 1

 2

 3

 4

 5

Figure 3.1: This image shows the distances in MFCC feature space between the ten instrument samples

used as targets for the optimisers. The higher the value, the greater the distance and therefore

the dissimilarity. The left matrix compares the attack portions of the instruments, the right

compares the sustain periods, defined as the first 25 feature vectors and feature vectors 50-75,

respectively.

3.3 which shows the error observed when a synthesis parameter is varied, it is possible to

say that a variation from 0.5 to 0.45 in parameter space causes that synthesizer’s output

sound to change as much as the difference between the steady state portions of an oboe

and a trumpet.

In the following subsections, the error surfaces of the different synthesizers are exam-

ined, firstly to establish the resolution required to represent them accurately and then to

describe the variation of the terrain observed as parameters are changed.

3.2.2 Error Surface Analysis: FM Synthesis

In figure 3.2, the error surface is plotted with increasing resolution for the basic two

parameter FM synthesizer. The figure consists of eight graphs, the four on the left showing

the error surface as the first synthesis parameter is varied from 0-1, the four on the right

showing the same for the second parameter. The error is the distance in feature space from

a reference point which is the feature vector generated with the synthesis parameters both

set to 0.5. The distance is calculated using equation 3.5. It is clear that the two parameters

have differently shaped error surfaces. The former (in the left column) has a ‘Manhattan

skyline’ surface caused by the parameter being quantised to 36 discrete values within the

synthesizer. The latter has a smooth surface caused by it being pseudo continuous within

the limits of the 32 bit float with which this value is represented in the synthesis engine (23

bits of precision, [14]). Based on the evidence in the graphs, the former surface seems to

take shape at a resolution of 0.001 or 1000 steps in the range 0-1, despite there only being

56

0

2

4

6

8

10

12

14

0 0.5 1

error

p 1 value (0.1 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 2 value (0.1 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 1 value (0.01 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 2 value (0.01 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 1 value (0.001 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 2 value (0.001 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 1 value (0.0001 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 2 value (0.0001 resolution)

Figure 3.2: The error surface measured from a reference setting of [0.5, 0.5] for the basic two parameter

FM synthesis algorithm.

57

0

0.5

1

1.5

2

2.5

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

error

p 2 value (0.00001 resolution)

Figure 3.3: Zoomed plot of the error surface in the region between 0.4 and 0.6 for parameter two of the

basic FM synthesizer.

36 possible values for this parameter. The graph is more blocky in the lower end of the x

axis since the parameter changes more slowly in this range. Closer inspection reveals that

in fact the smallest gap that can elicit a change at the high end of the parameter range is

0.01, so this resolution should suffice. The surface for parameter 2 maintains shape after

a resolution of 0.001, an assertion further supported by figure 3.3 which shows the error

surface for parameter 2 in the region 0.4-0.6 with a sampling resolution of 5×10−5; no new

detail emerges with the increased resolution.

Since the synthesizer has only two parameters, it is possible to map the complete error

surface using a heat plot with error represented by colour and the two parameters on the

x and y axes. Informed by the earlier observations from figure 3.2 regarding the necessary

resolution, parameters one and two are sampled in the range 0-1 at intervals of 0.01 and

0.001, respectively. The results are shown in figure 3.4. In the following text, the variable

names from equation 3.3 are used, namely f1 for parameter 1 and m2 for parameter 2 i.e.

the frequency ratio and modulation index.

The image shows that there is some interdependence between the parameters: at the

edges of the strips caused by the quantisation of f1, a small change in f1 causes a move to

a very differently shaped part of the surface; the shape of the surface of m2 changes as f1

is varied but it does retain its two peak structure in many of the strips though the peaks

tend to move around. In terms of the timbre, m2 tends to increase the brightness of the

tone by adding additional side bands either side of the base frequency and it continues to

do so regardless of f1’s value, in other words f1 does not inhibit m2’s effect in the feature

space. The placement of these side bands will change in response to variation in f1. In

terms of the technicalities of FM synthesis and given that the MFCC provides information

about periodicities in the spectrum, in can be said that m2 increases the number of partials

regardless of f1 and f1 changes the spacing of the partials, regardless of m2, as long as m2

is providing some partials (i.e. is greater than zero). The MFCC will effectively detect

58

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pa
ra

m
et

er
 2

parameter 1

Er
ro

r

’../BasicFMOS_p0_at_0.01_vs_p1_at_0.001_ref_0.5.txt’

 0

 2

 4

 6

 8

 10

 12

 14

Figure 3.4: The error surface for the basic FM synthesizer. The colour indicates the distance in feature

space from audio generated with that parameter setting to a reference feature generated with

parameter settings 0.5, 0.5, hence the global minimum error at 0.5,0.5.

such changes. The challenge for the optimisation algorithm here will be not to get stuck

in the wrong strip, from whence it might require a highly fortuitous jump to escape.

If we consider the complex FM synthesis algorithm, how does the shape of the error

surface change? There are three changes in the algorithms to note here: switching pa-

rameters are introduced meaning there are now three types of parameter (more on that

below), the frequency is now specified by three parameters instead of one and the overall

dimensionality has increased significantly.

Figure 3.5 illustrates the character of the three distinct types of parameter now in

operation: the angular surface of the switching parameter, the smooth surface of the

continuous parameter and the rocky surface of the quantised parameter. Note that the

quantised parameter is the frequency ratio and is therefore not evenly quantised, being

weighted toward the lower ratios by the use of a sinh function. Figure 3.6 shows the kind

of surfaces that are generated when two different types of parameter are varied at the

same time. This probably provides the best visual insight into the error surface that will

be explored by the optimisers. The three changes from the basic algorithm mentioned

above will now be discussed.

How do the switching parameters affect the error surface and at what resolution do

they need to be sampled? Looking at the left panel of figure 3.5, the surface takes shape

at a resolution of 0.01. Since this parameter can have only seven settings within the

synthesizer, it could take shape at 0.1 resolution, but does not since the ten sampled

59

0

2

4

6

8

10

12

14

0 0.5 1

error

p 1 value (0.1 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 4 value (0.1 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 16 value (0.1 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 1 value (0.01 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 4 value (0.01 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 16 value (0.01 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 1 value (0.001 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 4 value (0.001 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 16 value (0.001 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 1 value (0.0001 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 4 value (0.0001 resolution)

0

2

4

6

8

10

12

14

0 0.5 1

error

p 16 value (0.0001 resolution)

Figure 3.5: The error surface measured from a reference setting of 0.5 for the 22 parameter, complex FM

synthesis algorithm. In the left column, a switched-type parameter, modulation routing for

oscillator 1; in the centre, a continuous parameter, modulation index from oscillator 1 to 2;

on the right, a quantised parameter, coarse frequency ratio for oscillator 1.

60

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pa
ra

m
et

er
 1

6

parameter 1

Er
ro

r

’../InterFMOS_p0_at_0.05_vs_p15_at_0.002_ref_0.5.txt’

 0

 2

 4

 6

 8

 10

 12

 14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pa
ra

m
et

er
 5

parameter 1

Er
ro

r

’../InterFMOS_p0_at_0.05_vs_p4_at_0.002_ref_0.5.txt’

 0

 2

 4

 6

 8

 10

 12

 14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pa
ra

m
et

er
 1

6

parameter 5

Er
ro

r

’../InterFMOS_p4_at_0.005_vs_p15_at_0.005_ref_0.5.txt’

 0

 2

 4

 6

 8

 10

 12

 14

Figure 3.6: Two-parameter error surfaces for the complex FM synthesizer: modulation routing vs fre-

quency ratio, modulation routing vs modulation index, modulation index vs modulation

routing.

61

parameter values do not coincide with the seven variations in the surface. So a suitable

resolution is probably 1/14 or about 0.07, to guarantee samples placed either side of every

variation in the surface. Not every change in the parameter value has an associated large

change in the error surface; this is caused by the interdependence of parameters, e.g. if

the oscillator mix switches dictate that oscillator 3 cannot be heard then modulating it

will not cause a change in the output sound, assuming oscillator 3 is not modulating an

audible oscillator, or indeed is not modulating an oscillator which is modulating an audible

oscillator. Clearly, introducing flexible modulation routing and switching parameters in

general increases the interdependence of parameters.

How can we measure the effect of the increased dimensionality, informed by the dis-

cussion of the new parameters and their required sampling resolution? It was established

that a resolution of 100 x 1000 was required to accurately map the error surface of the

basic two parameter FM synthesizer, a total of 100,000 points. A simplistic, conservative

estimate for the complex FM synthesizer would be 10022, if we sample all parameters at

intervals of 0.01. But what of synthesizer redundancy? Some might say that the Yamaha

DX7 is a redundant synthesizer, but is it true in terms of the space of possible sounds

it can produce, in other words, do different parameter settings produce the same sound?

The error surface heat plots show many places with the same error from the reference

sound but do these points sound the same or are they just the same distance away? These

questions will be explored a little more in the results section.

3.2.3 Error Surface Analysis: Subtractive Synthesis

The basic subtractive synthesizer described in 3.1.2 uses a quantised parameter and two

continuous parameters. In figure 3.7, the parameter error surfaces from the reference point

of [0.5,0.5,0.5] are plotted with increasing resolution. The first parameter shows smooth

stages with periodic jumps. The behaviour of this parameter is described in sub section

3.1.2 where it is stated that there are 522 different states for the oscillator mixes, with

either one or two oscillators active at any one time. Figure 3.8 shows what the mix for

the oscillators will be for any value of the oscillator mix parameter and it suggests four

noticeable stages for the parameter. There seem to be three stages in figure 3.7 but this

is caused by the final stage offering an increase of the sine oscillator, which can only add

a single partial to the sound, which does not appear to register in the error. Since this

parameter can take on 522 distinct states within the synthesizers, a resolution of 0.002

should be sufficient to map this parameter’s range of features. The continuous parameters

62

0

2

4

0 0.5 1

error

p 1 value (0.1 resolution)

0

2

4

0 0.5 1

error

p 2 value (0.1 resolution)

0

2

4

0 0.5 1

error

p 3 value (0.1 resolution)

0

2

4

0 0.5 1

error

p 1 value (0.01 resolution)

0

2

4

0 0.5 1

error

p 2 value (0.01 resolution)

0

2

4

0 0.5 1

error

p 3 value (0.01 resolution)

0

2

4

0 0.5 1

error

p 1 value (0.001 resolution)

0

2

4

0 0.5 1

error

p 2 value (0.001 resolution)

0

2

4

0 0.5 1

error

p 3 value (0.001 resolution)

0

2

4

0 0.5 1

error

p 1 value (0.0001 resolution)

0

2

4

0 0.5 1

error

p 2 value (0.0001 resolution)

0

2

4

0 0.5 1

error

p 3 value (0.0001 resolution)

Figure 3.7: The error surface measured from a reference setting of [0.5, 0.5, 0.5] for the basic three

parameter subtractive synthesis algorithm.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Oscillator mix parameter value

Oscillator Levels

noise
saw

pulse
sin

Figure 3.8: The mix levels of each oscillator in the basic subtractive synthesizer as the oscillator mix

parameter is varied. Each oscillator can take on one of 10 mix levels.

63

seem to require a fairly low resolution, taking shape at a resolution of 0.01.

Figure 3.9 contains heat plots showing how the three possible combinations of param-

eters affect each other. The quantised mix parameter only seems to have a large effect

from strip to strip, not within strips. This is because within a strip the oscillators are

being faded up, gradually varying the sound whereas between strips, the combination of

two oscillators is changed abruptly. It is anticipated that it will be challenging for simpler

optimisation algorithms to traverse these strips to find a global minimum, depending on

the hop size (in parameter space) of the optimiser, i.e. if the hop size is too low, the

optimiser is unlikely to escape a strip. The continuous parameters, i.e. the filter cut off

and rQ, show a smooth error surface which should be fairly trivial to search due to its

large, single valley of low error. If an optimiser finds itself stuck in a strip a long way

off from the target, it will be necessary to traverse several high error strips to reach the

target.

The error surface of the complex subtractive synthesizer is expected to be similar to

that for the basic synthesizer. The filter parameters behave in the same way and there

are switchable mode oscillators. The difference is that the oscillator volume controls have

been changed from a single quantised parameter to several continuous parameters.

The error surface for the variable architecture synthesizer is difficult to plot since it is

not clear what should be used as a reference point and what should be varied to create the

surface. It can be said that the parameters within a single module will behave similarly to

their equivalents in the basic and complex FM synthesizers but that a growth operation

which adds a module could cause a large movement in feature space as the new module

might modulate the existing modules as well as sending its signal to the audio out.

64

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pa
ra

m
et

er
 2

parameter 1

Er
ro

r

’..//BasicSubOS_p0_at_0.002_vs_p1_at_0.01_ref_0.5.txt’

 0

 1

 2

 3

 4

 5

 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pa
ra

m
et

er
 2

parameter 1

Er
ro

r

’..//BasicSubOS_p0_at_0.002_vs_p2_at_0.01_ref_0.5.txt’

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pa
ra

m
et

er
 2

parameter 1

Er
ro

r

’..//BasicSubOS_p1_at_0.01_vs_p2_at_0.01_ref_0.5.txt’

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Figure 3.9: Two-parameter error surfaces for the basic subtractive synthesizer: oscillator mix vs cut off,

oscillator mix vs rQ, and cut off vs rQ

65

3.3 The Optimisation Techniques

The optimisation problem is: ‘The elucidation of appropriate parameter settings for each

sound synthesis algorithm to enable resynthesis of 50 sounds generated by each synthe-

sis algorithm and of 10 real instrument samples, respectively.’. These two test sets are

chosen to enable maximum flexibility when comparing different optimisers and different

synthesizers. The first set consists of 50 pairs of randomly generated parameter settings

and resultant single frame feature vectors, per synthesizer. Since the test set is generated

with the same synthesizer that the optimiser is working with in each case, it is possible

to gain an error of zero, given a perfect optimiser. This test set enables the comparison

of different optimisers and different optimiser settings for a given synthesizer. The second

test set consists of two feature vector frames per instrument for the following instruments:

Alto Flute, Alto Sax, Bassoon, B♭ Clarinet, Cello, French Horn, Oboe, Piano, Trumpet

and Violin. The selection of instruments was chosen based on its coverage of a range of

different sound production methods and its successful use in previous research, e.g.: [35]

used the same selection, [44] used eight of the ten, having found that musically trained

subjects found the sounds highly recognisable. The instrument samples were obtained

from the University of Iowa Electronic Music Studio collection [38]. All instruments were

playing vibrato-free C4 (middle C). The first frame is the 42 dimensional mean of 25

frames taken from the attack portion at the beginning of the sound; the second frame is

the 42 dimensional mean of 25 frames taken from approx 0.5s into the sound. It is unlikely

that a synthesizer will be able to perfectly replicate these sounds so the optimiser must

find the closest sound available. Since the synthesizers do not include envelope generators

to vary their sonic output over time, the optimiser must find the synthesis parameter

settings to generate each feature vector frame in turn. This test enables the comparison

of different synthesizers in their ability to resynthesize the samples. To summarise, each

of the 4 optimisers must find optimal parameter settings for 70 sounds for each of the 5

synthesizers, 50 that the synthesizer can match perfectly and 20 that it can probably only

approximate. This is a theoretical total of 1400 tests but only two of the optimisers are

appropriate for the variable architecture synthesizer, making the total 1260.

The optimisation techniques will now be described in detail.

3.3.1 Basic Hill Climbing

An introduction to hill climbing can be found in [70]. The hill climbing algorithm here is

implemented as follows:

66

Starting from a random population of 1000 sets of parameter settings, the output of

each set is rendered and features are extracted. The error between the target feature

and each of the 1000 candidate feature vectors is calculated using the Euclidean distance.

(equation 3.5). The score for each is calculated using equation 3.6. The candidate with

the highest score is used to seed the next population, which consists of mutated versions of

the seed. Mutating involves the addition of a value drawn from a uniform distribution in

the range -0.05 to +0.05 to a single parameter setting. A growth operation is also applied

if the candidate sound is to be generated with more than one module (e.g. the variable

architecture FM synthesizer.). The population is considered to have converged when the

mean change in top score over 20 generations is less than 0.01%.

3.3.2 Feed Forward Neural Network

A feed forward neural network is trained using a set of parameter settings and their

resultant feature vectors such that the network learns the mapping from feature vector

input to parameter setting output. Once trained, the network can be used to elicit the

parameter settings required to produce a given, previously unseen feature vector with a

particular synthesis algorithm. The implementation and elucidation of optimal properties

for the feed forward neural network is described in the following paragraphs.

A training set of data consisting of synthesis parameter settings and the resultant

feature vectors is created. The set consists of parameters and resultant features derived

by sampling parameter space randomly. A feed forward neural net with a single hidden

layer, based on code written by Collins and Kiefer [27], is created. The network has v

input nodes and p output nodes, where v is the size of the feature vector and p the number

of parameters provided by the synthesis algorithm. The network is trained using the back

propagation algorithm. There are several properties associated with this neural network

and the training procedure for which reasonable values must first be heuristically obtained.

They are learning rate, number of training epochs, number of hidden nodes and size of

the training set.These properties must be obtained for each synthesis method since the

number of parameters and the mapping varies significantly between them. The procedures

and results are summarised in figure 3.10 and discussed in the following subsections.

Learning Rate

The learning rate parameter determines the amount by which the neural network’s weights

are changed at each iteration of the back propagation algorithm. To establish the optimal

67

Learning rate Training epochs Training set size Hidden nodes

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 -1 sd
mean
+1 sd

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 500 1000 1500 2000 2500 3000 3500 4000

 -1 sd
mean
+1 sd

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140 160 180 200 220

 -1 sd
mean
+1 sd

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35 40 45 50

 -1 sd
mean
+1 sd

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 -1 sd
mean
+1 sd

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

 -1 sd
mean
+1 sd

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 20 40 60 80 100 120 140 160 180 200 220

 -1 sd
mean
+1 sd

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 5 10 15 20 25 30 35 40 45 50

 -1 sd
mean
+1 sd

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 -1 sd
mean
+1 sd

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 500 1000 1500 2000 2500 3000 3500 4000

 -1 sd
mean
+1 sd

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 20 40 60 80 100 120 140 160 180 200 220

 -1 sd
mean
+1 sd

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40 45 50

 -1 sd
mean
+1 sd

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 -1 sd
mean
+1 sd

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

 -1 sd
mean
+1 sd

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 20 40 60 80 100 120 140 160 180 200 220

 -1 sd
mean
+1 sd

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0 5 10 15 20 25 30 35 40 45 50

 -1 sd
mean
+1 sd

Figure 3.10: Neural network performance for the 4 synthesizers with varying network and training prop-

erties. Each row is for a different synthesizer: basic FM, complex FM, basic subtractive, and

complex subtractive. Each graph shows the mean and standard deviation either side ob-

served for 25 test runs. The test set error is plotted against each of the 4 network properties

apart from the learning rate, where the training set error is used.

Synthesizer Learning Training Training Hidden

rate epochs set size nodes

BasicFM 0.6 1000 1810 26

InterFM 0.2 2400 1810 10

BasicSub 0.9 1500 710 28

InterSub 0.1 2500 1810 6

Table 3.6: The best neural network settings found for each synthesizer.

68

learning rate, the network is trained with varying learning rates and the training set error

is calculated. This test is repeated 25 times with different, random training sets. The

learning rate which provides a good combination of low error over the training set and

lack of oscillation is selected. Oscillation is where the network learns some training sets

well and others not very well. In figure 3.10 column one, the results of this test for the

four synthesizers are shown. The values chosen for the synthesizers are shown in table 3.6

Training Epochs

The training epochs parameter is the number of iterations of training that are carried

out. To establish the appropriate number of training epochs, the test set error is graphed

against the number of training epochs. 25 runs are carried out for varying numbers of

epochs, each run with a different, random training set and test set. The expectation is

that the error will level out when sufficient epochs have been used. The results are graphed

in figure 3.10 and tabulated in 3.6. The error is seen to reduce to its lowest point then

to increase as over-fitting to the training set increases and generalisation to the test sets

decreases.

Hidden Nodes

The neural network has a single, fully connected hidden layer and this property defines

the number of nodes in that layer. In order to establish the optimal number of hidden

nodes, the test set error is measured against the number of hidden nodes. The expectation

is that the error will cease to decrease with increased node count when there are enough

nodes. The network is trained and tested with increasing numbers of hidden nodes. This

test is repeated 25 times with random test and training sets. The results are graphed in

figure 3.10 and tabulated in 3.6. The basic synthesizers behave as expected here, showing

a test error which levels once sufficient hidden nodes are in use. The complex synthesizers

show a more puzzling result, where the optimal number of hidden nodes seems to be very

low, considering the complexity of the synthesizer and therefore of the parameter setting

to feature mapping. The error also increases significantly with increasing numbers of

hidden nodes. In order to establish if the error would level out and maybe decrease with

increasing numbers of hidden nodes, extended tests were carried out with node counts

up to 1500 with these two synthesizers. The results are shown in figure 3.11. The error

levels out after around 600 nodes but shows no signs of decreasing. Since the mapping

for the simple synthesizers is learned with more nodes than 10 and that this low number

69

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

0 200 400 600 800 1000 1200 1400 1600

test set error

no. hidden nodes

Figure 3.11: This graph shows the results of increasing the number of hidden nodes for the complex FM

synthesizer to an unusually high level.

of nodes is therefore not sufficient to model the mapping for a more complex synthesizer,

this implies that this network architecture is not capable of modelling the mappings for

the complex FM and subtractive synthesizers. More on this in the results section.

Training Set Size

To establish the optimal training set size, the error over a large test set is calculated with

increasing training set size. This test is repeated 25 times with random test and training

sets. Once the error over the test set is seen to level out, the training set size is judged

as sufficient as increasing the size does not decrease the test set error. The results are

graphed in figure 3.10 and tabulated in 3.6.

3.3.3 Genetic Algorithm

The genetic algorithm used in this test is a standard model with the following features:

Single population

The genomes exist in a single population and can be bred freely.

Genetic operators

The genomes can undergo point mutation and crossover using two parents and variable

numbers of crossover points. The point mutation is controlled by two parameters, one

for the per-locus probability of mutation (mutation rate), the other for the size range of

the mutation (mutation size). Once a locus is chosen for mutation, the mutation size is

chosen from a Guassian distribution with the mean set to zero and the standard deviation

set to the value of this second mutation parameter. The mutation rate is set to 1/(synth

parameter count), so at least one parameter is mutated per genome, on average. The

mutation size is set to 0.1.

70

Elitism

The best genome each iteration is kept.

Roulette wheel selection

When generating a new population, each new genome is created from two parent genomes.

The parent genomes are selected with a probability that is proportional to their fitness

relative to the population mean. This is roulette wheel selection. Every member of the

population is on the roulette wheel but the fitter they are, they more ‘slots’ they take

up and thus the more probable it is that they will be chosen. Roulette wheel selection

maintains diversity in the population by preventing the fittest individuals from taking

over in the case where their fitness is only marginally higher than other members of the

population. Maintaining diversity is especially useful when it comes to avoiding getting

stuck on local maxima. Let us consider the error surface plot shown in 3.4. Maintaining

a diverse population makes it possible to search different parts of the error surface in

parallel. This is the multi plane sampling Whitley talks about. ([133]). It is possible

to further investigate the different properties of the GA and this has been done to a

certain extent in the other chapters. For example, in [133] Whitley recommends use of

rank based selection of breeding pairs as opposed to fitness proportional selection since it

maintains the selective pressure when the population begins to converge. The motivation

for the investigation of these finer points of GA implementation in order to produce a

more refined, optimised version should be taken from evidence of poor performance of the

basic implementation. The preliminary results indicated decent performance for the GA

so it was left in its basic state.

General Settings

For the tests, the algorithm was run with a population size of 1000 and a maximum of 500

iterations. The mutation rate was set to 1/(number of synthesis parameters) such that

there would on average be a single point mutation per genome. The mutation size range

was set to 0.1, i.e. the centre of the Guassian distribution was placed at 0.1.

3.3.4 Basic Data Driven ‘Nearest Neighbour’ Approach

In this approach, the space of possible parameter settings is randomly sampled to produce

a data set of parameter settings and resultant feature vectors. Upon being presented

with a target feature vector, the system finds the feature vector in the data set which is

71

the closest to the target and can then provide the associated synthesis parameters. For

effective performance, this system is dependent on the ability to store and search a high

resolution data set which covers the full timbral range of the synthesizer. The parameters

for this optimiser are the data set size and the distance measure. Let us consider the

construction of the data set in more detail.

The data set must be sampled at sufficient resolution such that the detail of feature

vector space is high enough to represent the timbral range of the synthesizer. Consider

3.2 which shows the error in feature space from a reference setting of 0.5 as a single

parameter is varied from 0 to 1 with different levels of resolution. Once the resolution

reaches a sufficient level, the graph does not change with further increases: the true shape

of the error surface has been ascertained. In the case of the basic FM synthesis algorithm

shown in figure 3.2, the graph stops changing at around the 0.005 point, meaning it is

necessary to sample this synthesizer at steps of 0.005 for this particular parameter. In

the SuperCollider system, the parameters are stored as 32 bit floats, which offer some

23 bits of precision, providing usable resolution in the 1
223 range; sampling at intervals of

0.005 is well within these limits. For a synthesizer with two parameters, assuming equal

sampling resolution for each, a data set of 40,000 items will be generated ((1/0.005)2).

If we consider the complex FM algorithm, it might initially seem that an impracticably

large data set of (1/0.005)19 or 5.24288e+43 items is required but this does not take into

account the quantised parameters or the redundancy of the synthesizer, where different

parameter settings generate the same sound.

3.4 Results

In this section, the results of applying the optimisation techniques to the problem defined

at the start of section 3.3 will be presented. The scope of the test is quite broad, so

the results are presented in summary. There are two main values used to quantify the

performance results in this section: the score and the error. The score is the reciprocal

of the normalised, sum, squared and rooted Euclidean distance from the target to the

candidate feature vector, as shown in equation 3.6. The figure of 42 used to normalise

the value is the size of the MFCC feature vector. The other value, the error, is simply

the sum, squared and rooted Euclidean distance betwixt target and candidate. The error

value is comparable with the values plotted in the graphs and heat plots from the error

surface analysis in subsection 3.2.1.

72

Best params Best MFCCs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Pa
ra

m
et

er
 V

al
ue

Parameter Number

Target
Found

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041

M
FC

C
 V

al
ue

MFCC Number

Target
Found

Worst params Worst MFCCs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Pa
ra

m
et

er
 V

al
ue

Parameter Number

Target
Found

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041

M
FC

C
 V

al
ue

MFCC Number

Target
Found

Figure 3.12: Best and worst results for the complex FM synthesizer. The target is in red and the found

result in green.

s =

1√
(
∑

42

n=1
(t[n]−e[n])2)

42
(3.6)

3.4.1 Optimiser Test Set Performance

Figure 3.12 provides an easily grasped visualisation of the sort of results that have been

achieved. It shows the best and worst matches achieved for the complex FM synthesizer

test set alongside the target features and parameters. The most important match here is

the feature match, since this defines how similar the sounds are.

In table 3.7, an overview of the performance of the 4 optimisers over the 50 test sounds

for each synthesizer is shown. The figures shown in the table are the mean score achieved

over the test set, the standard deviation over the test set, the more intelligible percentage

standard deviation and finally the error.

Noting that the synthesizer should be able to create a perfect rendition of the test

sounds as long as the correct parameters can be found, this test should show which op-

timisers can effectively search or map the space of possible sounds for the synthesizers.

The genetic algorithm performs best overall, followed by the hill climber, the data driven

73

Optimiser Synthesizer Mean Standard SD % error

deviation

GeneticAlgorithmSO InterFMOS 1.63e+13 7.97+13 490.16 1.96e-08

GeneticAlgorithmSO BasicFMOS 1171254.21 2975605.86 254.05 3.59e-05

GeneticAlgorithmSO BasicSubOS 294349.66 425419.75 144.53 0.0001

HillClimberBestOption BasicFMOS 157637.41 688455.7 436.73 0.0003

HillClimberBestOption BasicSubOS 53977.4 178831.26 331.31 0.0008

DataDrivenNearestNeighbour BasicFMOS 40842.15 41508.45 101.63 0.001

HillClimberBestOption InterFMOS 5090.84 20429.7 401.3 0.01

DataDrivenNearestNeighbour InterFMOS 3389.37 19505.18 575.48 0.01

DataDrivenNearestNeighbour BasicSubOS 885.78 1569.31 177.17 0.05

HillClimberBestOption GrowableOS 192.3 243.88 126.82 0.22

GeneticAlgorithmSO InterSubOS 98.76 113.81 115.24 0.43

GeneticAlgorithmSO GrowableOS 80.39 82.85 103.07 0.52

DataDrivenNearestNeighbour InterSubOS 57.56 30.68 53.31 0.73

HillClimberBestOption InterSubOS 44.43 15.7 35.34 0.95

FFNeuralNetSO BasicSubOS 22.87 15.63 68.32 1.84

FFNeuralNetSO InterSubOS 14.57 3.54 24.3 2.88

FFNeuralNetSO InterFMOS 7.13 2.92 41.03 5.89

FFNeuralNetSO BasicFMOS 5.04 2.09 41.35 8.33

Table 3.7: This table shows the mean performance per optimiser per synthesizer across the 50 sounds in

each synthesizer’s test set. The score is the reciprocal of the distance between the error and

the target normalised by the feature vector size. The SD% column is the standard deviation

as a percentage of the mean and the final column is the non-normalised error, comparable to

the values in the error surface plots.

74

search and the neural network. The genetic algorithm is the most effective optimiser

for all of the fixed architecture synthesizers but the hill climber out-performs it for the

variable architecture FM synthesizer (GrowableOS in the table). What do these figures

mean in terms of the observations from the error surface analysis (section 3.2) and the

real instrument distance matrix (figure 3.1)?

The worst score is a mean of 5.04 over the test set, gained by the neural net working

with the basic FM synthesizer. It is surprising that this combination has a worse score

than the complex FM synthesizer with the neural net, given the problems with finding

the right settings for the latter neural net. Still, the complex FM synthesizer score is not

far off, at 7.13. The final column in the results table shows the error surface figures which

can be used to relate the scores to the error surface analysis. The worst score equates

to a distance of 8.33 in the error surface analysis graphs. This is off the scale for the

instrument similarity matrix (figure 3.1), suggesting that this optimiser and synthesizer

combination is unlikely to work for real instrument sound matching. In terms of the

error surface plot for the basic FM synthesizer (figure 3.4) which shows the error observed

from a reference point as the parameters are varied, a similar error is generated when the

parameter settings are up to 0.5 away on the second parameter or almost impossibly far

off on the first parameter. Since the standard deviation is quite low, the performance is

consistently poor. If one accepts the methodology used to derive the settings for the neural

nets, it must be concluded that a feed forward, single hidden layer neural network trained

with back propagation is not an appropriate tool with which to automatically program

synthesizers.

Having illustrated ineffective performance, how large a score would constitute effective

performance? If effective performance is defined as consistently retrieving the correct

parameters or at least a close feature vector match from the space of possible sounds, a

very low error would be expected, given that this space contains the target sound and

the optimiser simply needs to find it. The top 5 mean results certainly show very low

errors, errors which equate to minimal changes in parameter space. The best performing

optimiser is the genetic algorithm, followed by the hill climber; the data driven search also

shows strong performance. But the top results also have very large standard deviations, an

observation which warrants a little explanation. Let us consider the results for the genetic

algorithm across the 50 target test set for the complex FM synthesizer. The standard

deviation is so large since there is a large variation in the scores across the test set.

Essentially, the top 15 out of the 50 scores have an almost negligible error (<0.001) and

75

1 2 3 4 5 6 7 8 9 10 Mean SD

Worst 5.3 2.91 4.09 1.35 3.97 4.92 5.28 2.64 4.8 4.09 3.94 1.29

Middle 1.06 0.6 0.91 0.7 0.43 0.07 0.06 0 0.86 1.04 0.57 0.41

Best 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.8: This table shows the errors achieved by repeated runs of the GA against the targets from the

test set for which it achieved the best, worst and middle results.

the others range from an error of 0.02 up to 5.26. To qualify the size of these errors, one can

refer back to the error surface analysis for the complex FM synthesizer, specifically column

1 of figure 3.5 which shows the error generated by changing a quantised parameter’s value.

This graph shows that changing this parameter setting enough to move it to a different

quantisation point causes a feature space error of between 0.1 and 1. Therefore, for this

quantised parameter at least, an error of less than 0.1 implies a close parametric match.

It is more difficult to convincingly concoct a figure for an acceptably low error for the

continuous parameters but the central column in figure 3.5 shows a maximum error of 2

when the parameter setting is as far off as it can be. Again, an error of less than 0.1 seems

reasonable. It is worth noting that typically a GA will be run several times against a given

problem to establish the variation in performance caused by the stochastic nature of the

algorithm. That would equate to running the GA several times against the same target

sound in this case. To satisfy this requirement, the best, middle and worst results from

the complex FM test set for the GA were selected (errors of < 0.000001, 0.68 and 5.28,

respectively) and the GA was run 10 times against each target. The results are shown in

table 3.8. Note that the error shown in the table for the best result is zero but the real

error was 42
419811201219720 which is not far from zero. The figures are reasonably consistent,

indicating that the GA is consistently searching feature space and that the non-repeated

results are reliable. It would be interesting to figure out what makes the target for the

worst result so hard to find but that is beyond the scope of this study.

3.4.2 Instrument Timbre Matching Performance

In table 3.9, an overview of the performance of the 4 optimisers and 5 synthesizers over

the 20 real instrument sounds is shown. The table is sorted by score so the synthesizer/

optimiser combination which achieved the highest average score over all 20 sounds is at

the top. The final column of the table, as before, shows an error comparable to the

metric used in the earlier error surface analysis (subsection 3.2.1). Table 3.10 shows the

best result achieved for each instrument sound along with the error. Again, the genetic

76

Optimiser Synthesizer Mean Standard SD% Error

deviation

GeneticAlgorithmSO InterFMOS 22.9702 6.2617 27.2601 1.828

GeneticAlgorithmSO InterSubOS 21.0570 4.4694 21.2255 1.995

DataDrivenNearestNeighbour BasicSubOS 20.9126 3.5917 17.1749 2.008

DataDrivenNearestNeighbour InterFMOS 20.7831 5.1740 24.8950 2.021

DataDrivenNearestNeighbour InterSubOS 20.0827 3.5742 17.7974 2.091

GeneticAlgorithmSO BasicSubOS 19.7633 3.6499 18.4679 2.125

HillClimberBestOption BasicSubOS 19.3550 3.6726 18.9750 2.170

HillClimberBestOption GrowableOS 15.1654 3.4224 22.5669 2.769

HillClimberBestOption InterSubOS 14.7632 3.4241 23.1937 2.845

GeneticAlgorithmSO GrowableOS 12.7828 2.1272 16.6414 3.286

HillClimberBestOption InterFMOS 12.4737 3.6924 29.6018 3.367

DataDrivenNearestNeighbour BasicFMOS 10.5969 1.7464 16.4808 3.963

GeneticAlgorithmSO BasicFMOS 10.5942 1.7434 16.4561 3.964

FFNeuralNetSO BasicSubOS 10.3134 2.1984 21.3157 4.072

FFNeuralNetSO InterSubOS 9.9958 1.7921 17.9287 4.202

HillClimberBestOption BasicFMOS 9.1044 2.0576 22.5998 4.613

FFNeuralNetSO InterFMOS 7.9552 1.8834 23.6752 5.280

FFNeuralNetSO BasicFMOS 6.0991 1.9064 31.2576 6.886

Table 3.9: This table shows the mean performance per optimiser, per synthesizer across the 20 real

instrument sounds. The data is sorted by score so the best performing synthesizer/ optimiser

combinations appear at the top.

77

Optimiser Synthesizer Target Score Error

GeneticAlgorithmSO InterFMOS AltoFlute.mf.C4.wav attack 40.9549 1.0255

GeneticAlgorithmSO InterFMOS AltoSax.NoVib.mf.C4.wav sustain 35.2891 1.1902

GeneticAlgorithmSO InterFMOS AltoSax.NoVib.mf.C4.wav attack 34.5376 1.2161

HillClimberBestOption BasicSubOS Cello.arco.mf.sulC.C4.wav attack 32.1244 1.3074

GeneticAlgorithmSO InterSubOS Horn.mf.C4.wav attack 27.0503 1.5527

DataDrivenNearestNeighbour BasicSubOS Piano.mf.C4.wav attack 25.5118 1.6463

GeneticAlgorithmSO InterFMOS Violin.arco.mf.sulG.C4.wav attack 25.0713 1.6752

DataDrivenNearestNeighbour BasicSubOS Cello.arco.mf.sulC.C4.wav sustain 24.2392 1.7327

DataDrivenNearestNeighbour BasicSubOS Piano.mf.C4.wav sustain 22.9333 1.8314

GeneticAlgorithmSO InterSubOS Horn.mf.C4.wav sustain 22.0686 1.9032

GeneticAlgorithmSO InterFMOS AltoFlute.mf.C4.wav sustain 22.0323 1.9063

GeneticAlgorithmSO InterFMOS BbClar.mf.C4.wav attack 21.9440 1.9140

DataDrivenNearestNeighbour BasicSubOS oboe.mf.C4.wav attack 21.0050 1.9995

HillClimberBestOption InterFMOS Bassoon.mf.C4.wav sustain 20.8823 2.0113

GeneticAlgorithmSO InterFMOS Violin.arco.mf.sulG.C4.wav sustain 19.7671 2.1247

DataDrivenNearestNeighbour BasicSubOS Trumpet.novib.mf.C4.wav attack 19.0931 2.1997

GeneticAlgorithmSO InterFMOS BbClar.mf.C4.wav sustain 19.0656 2.2029

DataDrivenNearestNeighbour BasicSubOS oboe.mf.C4.wav sustain 18.7581 2.2390

DataDrivenNearestNeighbour BasicSubOS Bassoon.mf.C4.wav attack 18.6131 2.2565

GeneticAlgorithmSO InterSubOS Trumpet.novib.mf.C4.wav sustain 18.0972 2.3208

Table 3.10: This table shows the best matches achieved for each of the 20 real instrument sounds.

78

algorithm shows the best performance, performance which is also consistent across the

instruments. The complex FM synthesizer does the best matching over the test set, but

not by a great margin, being closely followed by the complex subtractive synthesizer.

When the instruments were compared to each other in the instrument distance matrix

shown in figure 3.1, the closest match was between the French Horn and the Piano with

an error of 2.3157. The closest match achieved to an instrument was quite close indeed, an

error of 1.0255. The mean error achieved over the 20 instrument sounds in the best case

was significantly lower than the closest match between any of the instruments themselves,

an error of 1.828. In other words, on average the optimisers found sounds closer to the

real instruments that were significantly closer than any of the real instruments were to

each-other.

The data driven nearest neighbour optimiser achieves impressive performance in table

3.10, beating more sophisticated algorithms on many of the sounds. It seems to have

more consistent matching performance than the GA, with a smaller standard deviation.

The data driven search is also significantly faster than the marginally better performing

GA and hill climber, taking a consistent minute to search a database of 100,000 sounds

for the closest match. Since the ‘database’ is simply a text file containing feature data

which is not optimised or indexed in any way, this time could be cut down by orders

of magnitude through the implementation of a real database. The database could also

be increased in size significantly, which could increase the consistency and quality of its

matching performance. To investigate this suggestion, a further test was carried out

where the database was increased from 100,000 to 200,000 points for the best performing

synthesizer (the complex FM synthesizer) and the instrument matching tests were re-run.

Did the matching consistency and quality really increase?

In table 3.11, the results of the further study are presented. The original 100,000

point database was supplemented with a further 100,000 points and in over half of the real

instrument tests, the error decreased. In the discussion of the matching performance across

the test set earlier, an error figure of around 0.1 was said to be an acceptably low error

when matching sounds the synthesizer was capable of copying perfectly. The improvements

observed here are in the range 0.01 to 0.24, so are significant by this measure.

The data driven search was successful but the genetic algorithm was more so. How

might the genetic algorithm be improved? It typically converges after around 50-100

generations, which involves the extraction of 200,000 feature frames in 200 batches as

well as the machinations of the algorithm itself. This typically takes around 3 seconds

79

200K 200K 100k 100k Improvement

Target score error score error

AltoFlute.mf.C4.wav attack 35.30 1.19 34.03 1.23 0.04

AltoFlute.mf.C4.wav sustain 20.13 2.09 18.03 2.33 0.24

AltoSax.NoVib.mf.C4.wav attack 32.65 1.29 32.65 1.29 0

AltoSax.NoVib.mf.C4.wav sustain 29.53 1.42 29.53 1.42 0

Bassoon.mf.C4.wav attack 18.61 2.26 17.78 2.36 0.11

Bassoon.mf.C4.wav sustain 17.29 2.43 16.27 2.58 0.15

BbClar.mf.C4.wav attack 19.67 2.14 19.10 2.20 0.06

BbClar.mf.C4.wav sustain 18.03 2.33 18.03 2.33 0

Cello.arco.mf.sulC.C4.wav attack 19.74 2.13 19.74 2.13 0

Cello.arco.mf.sulC.C4.wav sustain 17.79 2.36 17.79 2.36 0

Horn.mf.C4.wav attack 22.96 1.83 22.35 1.88 0.05

Horn.mf.C4.wav sustain 20.29 2.07 19.80 2.12 0.05

oboe.mf.C4.wav attack 18.16 2.31 16.94 2.48 0.17

oboe.mf.C4.wav sustain 16.10 2.61 16.01 2.62 0.01

Piano.mf.C4.wav attack 18.87 2.23 18.74 2.24 0.02

Piano.mf.C4.wav sustain 20.40 2.06 20.40 2.06 0

Trumpet.novib.mf.C4.wav attack 17.00 2.47 16.40 2.56 0.09

Trumpet.novib.mf.C4.wav sustain 18.09 2.32 18.09 2.32 0

Violin.arco.mf.sulG.C4.wav attack 24.30 1.73 24.30 1.73 0

Violin.arco.mf.sulG.C4.wav sustain 19.67 2.14 19.67 2.14 0

Table 3.11: This table compares the timbre matching performance of the data driven nearest neighbour

search with 100,000 and 200,000 point data sets from the complex FM synthesizer. The final

column shows the reduction in error observed with the larger data set.

80

Target Standard Hybrid Standard Hybrid Error

GA score GA GA error GA difference

score error

AltoFlute.mf.C4.wav attack 40.9549 35.3057 1.0255 1.1896 0.1641

AltoFlute.mf.C4.wav sustain 22.0323 20.5850 1.9063 2.0403 0.1340

AltoSax.NoVib.mf.C4.wav attack 34.5376 32.6473 1.2161 1.2865 0.0704

AltoSax.NoVib.mf.C4.wav sustain 35.2891 32.5919 1.1902 1.2887 0.0985

Bassoon.mf.C4.wav attack 18.4056 23.0549 2.2819 1.8217 -0.4602

Bassoon.mf.C4.wav sustain 17.4296 19.5440 2.4097 2.1490 -0.2607

BbClar.mf.C4.wav attack 21.9440 19.6708 1.9140 2.1351 0.2212

BbClar.mf.C4.wav sustain 19.0656 19.6745 2.2029 2.1347 -0.0682

Cello.arco.mf.sulC.C4.wav attack 21.0522 23.4298 1.9950 1.7926 -0.2025

Cello.arco.mf.sulC.C4.wav sustain 21.9489 18.8694 1.9135 2.2258 0.3123

Horn.mf.C4.wav attack 22.9452 27.2126 1.8304 1.5434 -0.2870

Horn.mf.C4.wav sustain 21.2800 22.8407 1.9737 1.8388 -0.1349

oboe.mf.C4.wav attack 19.5410 18.1563 2.1493 2.3132 0.1639

oboe.mf.C4.wav sustain 18.6582 16.8630 2.2510 2.4907 0.2396

Piano.mf.C4.wav attack 21.2228 19.1744 1.9790 2.1904 0.2114

Piano.mf.C4.wav sustain 22.3547 22.6377 1.8788 1.8553 -0.0235

Trumpet.novib.mf.C4.wav attack 18.1214 19.4593 2.3177 2.1583 -0.1594

Trumpet.novib.mf.C4.wav sustain 17.7829 18.0937 2.3618 2.3212 -0.0406

Violin.arco.mf.sulG.C4.wav attack 25.0713 24.3025 1.6752 1.7282 0.0530

Violin.arco.mf.sulG.C4.wav sustain 19.7671 19.6673 2.1247 2.1355 0.0108

Table 3.12: This table compares the standard GA which starts with a random population to the hybrid

GA which starts with a population derived from a data driven search.

per batch or more if the synthesizer is more complex. This could be reduced with the

implementation of a multi-threaded algorithm, probably to 1
numberofCPUcores but it will

never match the speed of the data driven approach, even with the latter in its unoptimised

form. Therefore a hybrid approach is proposed, where the initial population for the genetic

algorithm is generated by finding the 1000 closest matches to the target using the data

driven search. This system was implemented and it was run against the 20 instrument

sounds using the complex FM synthesizer. The results of the standard GA and the hybrid

GA are compared in table 3.12. The results do not show the hybrid GA to be superior, it

performs worse about as many times as it performs better.

81

3.4.3 Conclusion

Five sound synthesis algorithms have been described and their behaviour in feature space

as their parameter settings are varied has been investigated. Five optimisation techniques

have been described and their performance at the problem of eliciting appropriate pa-

rameter settings for the sound synthesis algorithms has been extensively tested. The best

performing optimisation technique was the genetic algorithm, which searches well and

with reasonable consistency over all of the fixed architecture sound synthesizers. It was

not the best performer in the search of the space of sounds that can be generated by

a variable architecture synthesizer, however, being beaten by the more conservative hill

climber. The feed forward neural network failed nearly completely at the task. The greedy

search offered by the data driven approach was shown to be more efficient than the ge-

netic algorithm as well as having nearly comparable search performance in several cases.

Increasing the greed of this search by using a bigger data set was shown to be effective in

an initial test. The hybrid form of the genetic algorithm and the greedy search was not

shown to have better performance in an initial test. Regarding the eliciting of optimal

parameter settings for the synthesizers for the matching of real instrument timbres, the

complex FM synthesis algorithm, similar to that found in the Yamaha DX7, was found

to be superior to analog-style subtractive algorithms overall. However, the subtractive

algorithms still performed well and better than FM in some cases such as the Violin and

French Horn sounds. There was no apparent pattern at work here, e.g. the subtractive

synthesizers being better at making string sounds.

The next chapter is about SynthBot. SynthBot is an automatic VSTi sound synthesizer

programmer which is implemented based partly on the results of this study.

