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Abstract

Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor

symptoms  of  Parkinson’s  disease.  Given  the  frequent  occurrence  of  stimulation-induced

affective and cognitive adverse effects  we need a better  understanding of the subthalamic

nucleus role in non-motor functions. The main goal of this study is to characterise anatomical

circuits  modulated  by  subthalamic  deep  brain  stimulation,  and  infer  about  the  inner

organisation of the nucleus in terms of motor and non-motor areas. Given its small size and

anatomical inter-subject variability, STN functional organisation is difficult to investigate in

vivo with current methods. Here, we used local field potential recordings obtained from 10

Parkinson’s disease patients to identify an STN area with an analogous electrophysiological

signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved

by  identifying  a  single  contact  per  each  macroelectrode  for  its  vicinity  to  the

electrophysiological  source  of  the  beta  oscillation.  We  then  conducted  whole  brain

probabilistic  tractography  seeding  from  the  previously  identified  contacts,  and  further

described connectivity  modifications  along the macroelectrode  main  axis.  The designated

STN “beta” area projected predominantly to motor and premotor cortical regions additional

to  connections  to  limbic  and  associative  areas.  More  ventral  subthalamic  areas  showed

predominant connectivity to medial temporal regions including amygdala and hippocampus.

We interpret  our findings as evidence for the convergence  of different  functional  circuits

within STN portions deemed to be appropriate as deep brain stimulation target to treat motor

symptoms in Parkinson’s disease. Potential clinical implications of our study are illustrated

by an index case where DBS of estimated predominant non-motor STN induced hypomanic

behaviour.

2



Keywords 

Deep  brain  stimulation;  Parkinson’s  disease;  Parkinson’s  disease:  imaging;  subthalamic

nucleus; beta oscillations.

Abbreviations
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Introduction

Deep Brain Stimulation of the subthalamic nucleus in Parkinson’s disease leads to effective

reduction  of  motor  symptoms  and  improvement  of  quality  of  life  (Krack  et  al.,  2003;

Schuepbach et al., 2013). Despite its efficacy in ameliorating motor symptoms, DBS of the

STN is also associated with affective, behavioural and cognitive adverse effects (Castrioto et

al., 2014; Voon  et al., 2006; Welter  et al., 2014). The most frequently observed symptoms

include  emotional  instability  (Krack  et  al.,  2001;  Odekerken  et  al.,  2012)  additional  to

induction of (hypo)manic episodes (Chopra et al., 2012; Kulisevsky et al., 2002; Mallet et al.,

2007; Ulla et al., 2011; Welter et al., 2014) and impulsivity changes (Cavanagh et al., 2011;

Frank  et  al.,  2007),  alongside  depression  and  apathy  most  probably  due  to  medication

reduction (Okun et al., 2009; Thobois et al., 2010; Witt  et al., 2012). Given that one of the

main  determinants  of  clinical  outcome  is  the  precise  location  of  the  macro-electrode

(Castrioto  et al., 2014), a detailed knowledge of STN anatomy is particularly relevant for

optimal target choice and DBS efficiency.

Although  recently  disputed  (Alkemade  and  Forstmann,  2014;  Lambert  et  al.,  2015),

mounting  evidence  from anatomical,  neurophysiological  and clinical  studies  confirms  the

notion of a tripartite functional organisation of the human STN (Hamani et al., 2004; Karachi

et al., 2009; Krack et al., 2001; Mallet et al., 2007; York et al., 2009). Despite the assumption

of  functional  specialisation,  the  putative  segregated  sensorimotor,  associative  and  limbic

territories show substantial areas of overlap(Haynes and Haber, 2013). The STN functional

sub-regions can be distinguished with a certain degree of precision using neurophysiological

markers – procedure that is widely used in the clinical routine for electrode implantation

(Abosch et al., 2002; Kinfe and Vesper, 2013; Marceglia et al., 2010; Rodriguez-Oroz et al.,
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2001). In Parkinson’s disease patients, LFP recordings from the STN demonstrated enhanced

oscillations in the beta band (13-30Hz), which is substantially and consistently reduced after

the intake of levodopa along with symptom improvement (Hammond et al., 2007; Kühn et

al., 2006). Interestingly, neurons with predominant firing at frequencies within the beta range

or those that are locked to oscillatory beta band activity are significantly more abundant in

the dorso-lateral portion of the STN (Trottenberg et al., 2007; Weinberger et al., 2006; Zaidel

et al., 2010) - a region that is part of the cortico-basal ganglia motor loop (Haynes and Haber,

2013). Beta activity could be therefore considered as the electrophysiological signature of the

sensori-motor function within the dorso-lateral STN (Chen  et al., 2006; Trottenberg  et al.,

2007; Zaidel et al., 2010). 

An inherent limitation when studying  in vivo the anatomical and functional organisation of

the  STN  is  due  to  the  high  level  of  inter-individual  variability  (Richter  et  al.,  2004).

Addressing this  limitation,  we combine neurophysiological  recordings with brain imaging

data from Parkinson’s disease patients undergoing DBS of the STN. The main goal of the

study  is  to  obtain  fine-grained  topographical  information  about  the  STN  functional

subregions through characterisation of its anatomical and functional connectivity patterns. To

this aim, we use LFP recordings from DBS macroelectrodes within the STN in parallel with

investigation  of  the  anatomical  connectivity  of  the  very  same  DBS  contacts  based  on

probabilistic diffusion tractography. Finally, we analyse how connectivity values vary along

the  macro-electrode  main  axis.  Based  on  the  clinical  observation  of  reduction  of  DBS-

induced  psychiatric  symptoms  when  shifting  the  stimulation  site  dorsally  (Welter  et  al.,

2014),  we hypothesize  that  different  patterns  of  connectivity  to  limbic  cortical  structures

differentiate  neighbouring contacts  in the electrodes  implanted in the STN of Parkinson’s

disease patients. 
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 Materials and Methods

We acquired data  from 10 idiopathic  Parkinson’s disease patients recruited at  the Charité

Movement  Disorders  clinic  and scheduled  for  DBS based on clinical  decision.  Inclusion

criteria  were an established clinical  diagnosis of idiopathic  Parkinson’s disease,  a  proven

response  to  levodopa  and the  absence  of  other  neurological  or  psychiatric  diagnosis  not

related  to  Parkinson’s  disease.  STN  targeting  and  stereotactic  surgery  were  performed

according to a standard protocol as detailed previously (Kühn et al., 2009). 

All subjects gave informed written consent to the study, which was approved by the local

Ethics committee. Demographic and available clinical information is summarized in Table 1.

Levodopa equivalent daily dosage (LEDD) was calculated according to a recent systematic

review (Tomlinson et al., 2010).

Pre-surgery MRI 

Before  surgery,  all  patients  underwent  quantitative  multi-parameter  brain  imaging  and

diffusion-weighted imaging on a 3T whole-body MRI system (Magnetom TIM Trio, Siemens

Healthcare, Erlangen, Germany) using a 32-channel radio-frequency (RF) head receive coil

and RF body transmit coil. The quantitative MR protocol consisted of 3D multi-echo FLASH

datasets with predominantly proton density weighting (PDw; repetition time TR = 23.7 ms,

flip angle α = 6°),  T1 weighting (T1w; TR/α = 18.7 ms/20°),  and magnetization transfer

weighting (MTw; TR/α = 23.7 ms/6°) contrast according to the previously published protocol

(Draganski et al., 2011; Weiskopf et al., 2013). 
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The diffusion-weighted imaging protocol was performed with the following parameters: TE =

80 ms, TR 8300ms, acquisition matrix 128 x 128 voxels, 74 axial slices, yielding voxel size

of 1.7 x 1.7 x 1.7mm, BW = 2003 Hz/pixel, diffusion weighting at a high b = 1000 s mm−2

along 60 directions and 6 reference volumes at zero b-value acquired one every 10th high b-

value acquisition.

Post-surgery LFP recordings

Patients were studied 2–6 days after DBS implantation with externalised DBS electrodes and

prior  to  their  connection  to  the  stimulator  device  (Macroelectrode  3389,  Medtronic,

Minneapolis, USA). 

Bipolar  LFP activity was recorded from adjacent contact  pairs  (01, 12,  23) in each DBS

electrode,  where 0 is the most ventral  and 3 is the most dorsal contact (R=right, L=left).

Signals  were  amplified  50000-fold  and  filtered  at  0.5–250  Hz  on  a  Digitimer  D360

(Digitimer Ltd., Welwyn Garden City, Hertfordshire, UK) and recorded through a 1401 A-D

converter  (Cambridge  Electronic  Design [CED],  Cambridge,  UK) onto a  computer  using

Spike2 software (CED, Cambridge, UK). Signals were sampled at 1 kHz (except in Patient 4,

where signals were sampled at 826 Hz) and monitored on-line. 

In  all  patients  LFP recordings  of  3-5  minutes  duration  were  performed  at  rest  (i)  after

overnight withdrawal of dopaminergic mediation (OFF-drug) and (ii) 1 h after intake of 200

mg of levodopa or 1.5 times the patient-specific morning levodopa dose (ON-drug). For the

analysis  of  the  LFP signals  a  segment  of  180  s  without  muscle  or  ocular  artefacts  was

selected for each patient from the OFF-drug and ON-drug LFP recordings.
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Post-surgery MRI 

Within 5 days after surgery, patients underwent brain MRI as part of the clinical protocol to

confirm the  planned localisation  of  the  electrodes.  Dedicated  T2-weighted  fast-spin  echo

sequences were acquired in a 1.5 Tesla MRI machine (NT Intera; Philips Medical Systems,

Best,  the  Netherlands),  with  the  following  parameters:  TR/TE,  3500/138  ms;  echo-train

length, 8; excitations, 3; flip angle, 90°; section thickness, 2 mm; FOV, 260 mm (in-plane

resolution 0.51 x 0.51 mm); matrix size, 384 interpolated to 512; total acquisition time, 10

minutes 41 seconds; Philips software Version 11.1 level 4.

Data analysis

LFP and neuroimaging data were processed and analysed in Matlab 7 (Mathworks, Sherborn,

MA, USA). Image processing was performed with the freely available Statistical Parametric

Mapping  software  (SPM8;  Wellcome  Trust  Centre  for  Neuroimaging,  London,  UK,

http://www.fil.ion.ucl.ac.uk/spm/software/),  running under Matlab 7. Probabilistic diffusion

tractography  was  performed  with  the  FDT diffusion  toolbox  in  the  framework  of  FSL

(Behrens et al., 2007). 

 Analysis of LFP activity

The continuous LFP recordings of 180s-length were used for the LFP analyses described in

this section.

The power spectral density (PSD, in V2/Hz) of the raw data was computed with the standard

fast  Fourier  Transform (Welch  method,  Hanning window of  1  s,  75% overlap)  for  each
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patient  and  medication  condition  separately. The  PSD  (measured  power:  P)  was  then

normalized into decibels (dB) with the average PSD (reference power: P0) within 105-195 Hz

(excluding the 145-155 Hz range to avoid possible harmonics of the 50Hz power line noise)

to account for between-subjects variability:

In order to confirm that the OFF state was associated with a larger beta-band (13-30Hz) LFP

activity (Kühn et al., 2006; Priori et al., 2004), we first tested for spectral power differences

between the OFF and ON states within the 1-100 Hz range. In this analysis, we averaged for

each patient the normalized PSD across all contact pairs (R01, R12, R23, L01, L12, L23).

Next,  to  confine  the  local  generator  of  the  beta-band activity  based  on our  bipolar  LFP

recordings, we used the analysis of phase reversal of oscillatory activity(Rodriguez-Oroz et

al., 2011) (Fig. 1), which provides a more consistent spatial localisation than the evaluation

of the peak of activity in the spectral power. The occurrence of significant phase reversal

between two pairs of bipolar recordings (i.e. between 12 and 23) indicates that the source of

the activity, although spatially distributed, lies closer to the contact shared by both bipolar

recordings (e.g. contact 1 in the previous example. As each electrode has only 4 contacts, this

analysis was limited to 3 pairs per side. See Fig. 1 panels A-C). 

Phase reversal was analysed for neighbouring contact pairs in each STN, in OFF medication

condition. Prior to the phase reversal analysis, the LFP signals were band-pass filtered (finite

impulse response filter) between 13-30Hz to obtain the signal content in the beta frequency

range. Then, we applied the Hilbert transform to extract the phase values for
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each band-passed filtered bipolar recording i, at time point t and within the frequency band f.

Our criterion of phase reversal was based on the computation of the cosine of the phase of the

resultant vector: 

where N is the signal length (N = 180000 sampling points) and 

is  the  phase  difference  between  neighbouring  signals  i  and  j from bipolar  recordings  at

sampling (time) point k. A phase reversal occurs when the resultant phase difference is within

the range (π/2, 3π/2) radians and is thus associated with a negative cosine value (Fig. 1 panel

C). When a phase difference lies within the range (-π/2,π/2) radians, no phase reversal occurs

and, correspondingly,  a positive cosine value is obtained  (Fig. 1 panel B).  The statistical

evaluation of the phase reversal was performed following Rodriguez-Oroz et al. (Rodriguez-

Oroz et al., 2011), with the Rayleigh test of uniformity of angle by obtaining the significance

value according to the expression:

where

is the norm of the resultant vector v.

Following this  procedure,  we selected in each STN the contact  where the phase reversal

occurred (e.g. 1) and, in addition, the next one in the dorsal (e.g. 2) and ventral direction (e.g.
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0) along the macroelectrode axis (if available;  note that whenever the phase reversal was

estimated to occur beyond contact 3, there was no dorsal contact available; and whenever the

phase reversal was estimated to occur beyond contact 0, no ventral contact was available.

These estimations were based on a tendency of the cosine towards more negative values,

either in the 0 → 1 → 2 → 3 direction or in the opposite direction. However, these effects did

not represent a true phase reversal). Beta-band phase reversal occurred within the STN for the

majority of the nuclei (N = 16/20). A detailed list of the contacts at the phase reversal of beta

LFP activity is provided in Table 1.

We then analysed the normalised spectral power with respect to the localization of the contact

pairs  (in relation to the beta-band phase reversal).  The selection  of  contact  pairs for this

analysis was based on the occurrence of a significant phase reversal: for phase reversal at

contact 1 or 2 (L or R STN), we selected contact pair 12 and 23, respectively, as the closest

one to the phase reversal (phr). The remaining contact pairs were defined as  ventral to phr

contact pair for the one caudal to the phr contact pair, and  dorsal contact pair for the one

rostral to the phr contact pair (if available, see above). Note that the contact pairs choice in

relation to phase reversal proximity (found for only one contact) is arbitrary, but this criterion

was kept for consistency.

MRI data processing 

The  multi-parameter  maps  were  only  used  for  the  purpose  of  non-linear  registration  to

standardised space.

MT maps were first linearly registered to the diffusion space (using as a destination volume

the  first  B0 diffusion  acquisition)  and  then  segmented  according  to  the  standard  unified
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segmentation  approach  in  the  framework  of  SPM  (Ashburner  and  Friston,  2005).

Deformation fields from the previous step allowed for the inverse deformation of labelled

probabilistic cortical atlases from MNI into individual native diffusion space, as well as for

the transformation of tractography results into the common space for further analysis (see

below).  For  delineation  and  labelling  of  cortical  areas  we  used  a  combination  of  freely

available probabilistic atlases: the Juelich atlas for medial temporal areas (Eickhoff  et al.,

2005, including amygdala and hippocampus) and the Harvard-Oxford cortical atlas (Desikan

et al., 2006) for the remaining areas. 

Each  group  of  10  DWI  b=1000  s/mm2 volumes  was  affine  registered  to  the  respective

reference  B0 volume,  and  then  with  the  first  b=0 (b0)  volume of  the  block acquisition.

Diffusion  vector  directions  were  corrected  accordingly  with  in-house  Matlab  code.  Post-

operative T2 images were subsequently linearly co-registered with the average reference b0

volume, allowing for superposition of electrode artefacts on the diffusion native space. The

accuracy of the procedure was visually inspected,  and coordinates of the central  voxel of

contact  artefact  manually identified.  From these coordinates,  cube-shaped seed masks for

tractography  were  built  by  expanding  to  all  neighbouring  voxels  (total  seed  volume=27

voxels). We used the recently implemented LEAD-DBS toolbox (Horn and Kühn, 2015) to

estimate contacts coordinates in the MNI space, and their spatial localisation with respect to

the STN Morel atlas (Krauth  et al., 2010). With the settings used, the toolbox allowed for

subject-specific  non-linear  registration  after  segmentation  of  structural  images

(Supplementary Fig. 3).

Whole-brain  unconstrained  probabilistic  tractography  was  performed  in  subject  specific

native space using the default settings in FSL bedpostx with the following parameters: 10000
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originating  tracts  per  voxel,  curvature  0.2,  step  length  0.5.  Distributions  of  diffusion

parameters were estimated at each voxel in order to model the directions of up to two tensors

per voxel (Behrens et al., 2007). Through the option “classification targets” we computed for

each contact-surrounding seed the average number of tracts reaching each cortical target.

In order to maintain consistency across subjects, tractography was conducted seeding from

contacts  closest  to  the beta  source (further  called  contacts  ‘B’),  from the adjacent  dorsal

contact (contacts ‘D’) and the adjacent ventral contact (contacts ‘V’). In the case of contact

‘B’ being assigned to the most dorsal contact (due to a trend towards a phase reversal beyond

contact  3:  2/20  cases,  see  Table  1),  the  adjacent  connectivity  profile  was excluded  from

analysis (contact ‘D’). The STNs showing no phase reversal were excluded from this analysis

(4/20 cases).  

In order to reduce well-known biases affecting the probabilistic tractography method (Morris

et al., 2008), we excluded targets in close proximity to the implanted electrodes – i.e the basal

ganglia.  Moreover,  the  cingulate  cortex  was  also  excluded,  after  demonstration  of  an

important proximity bias: connectivity values were strongly affected by the vicinity of corpus

callosum, so that it was not possible to reliably distinguish tracts directed to cingulate cortex

from inter-hemispherical projections. 

For  each side,  seed-to-target  connectivity  matrices  were thresholded at  50 tracts,  and the

values were transformed using the natural logarithm. Values were normalized in each subject

by dividing them by the maximum connectivity value. Cortical targets were considered for

further analysis only if connected to at least 50% of contacts B or D or V.

Statistical analysis 

13



Spectral power differences between the OFF and ON states within the 1-100 Hz range were

tested by means of a non-parametric  pair-wise permutation test (Permutation,  Parametric

and Bootstrap Tests of Hypotheses, 2005) across N subjects, with a total of 5000 random

permutations.  The  difference  in  sample  means  was  the  test  statistic.  The  p-values  were

computed  as the frequencies  that  the replications  of the test  statistic  had absolute  values

greater than or equal to the experimental difference. Statistical tests of the changes in spectral

power were assessed at each frequency within 1-100 Hz.

The  statistical  assessment  of  a  general  effect  of  localisation  (ventral,  beta-band  phase

reversal,  dorsal)  on  the  spectral  power  was  performed  by  means  of  the  non-parametric

Kruskal–Wallis one-way analysis of variance test. This test was assessed at each frequency

bin between 13 and 30 Hz, to determine whether the effect of pair localisation on the beta-

band spectral power occurred in a specific sub-band or in the full beta band. 

Differences  in  connectivity  among  contacts  B,  D and  V were  first  tested  with  the  non-

parametric Kruskal–Wallis  test.  Post-hoc analyses  between D and B or between V and B

contacts were performed by means of pairwise permutation tests. 

In all statistical analyses, differences were considered significant if p < 0.05. Correction of

the significance level due to multiple comparisons was performed by controlling the false

discovery rate (FDR) at  level q = 0.05 by means of an adaptive two-stage linear step-up

procedure  (Benjamini and Yekutieli,  2001). The corrected threshold p-value obtained from

this procedure, pth, was used to reject all null hypotheses fulfilling the condition: p-value <

pth. Throughout the paper, pth is given when multiple comparisons are performed (spectral

power or connectivity analysis).
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Results

Clinical Data

All  patients  showed  a  good  clinical  response  both  to  levodopa  (mean  improvement  in

UPDRS  III  score  =  52±7%)  and  to  DBS  (mean  improvement  with  DBS  OFF  vs  ON,

medication  OFF,  available  for  7/10  patients=  61±5%).  Demographical  and  clinical

information is summarized in Table 1. Two patients presented with mood disturbances after

surgery (case 5,  6).  Subject 5 (male,  55 years  old) developed hypomanic behaviour  with

uncontrolled money spending and high irritability (see below) 4 months after surgery. Subject

6 (male, 53 years old) also presented with transient hypomanic behaviour immediately after

surgery.  However,  a  retrospective  diagnosis  of  a  pre-existing  bipolar  disorder  could  be

established  on  the  basis  of  new  anamnestic  information.  Symptoms  stabilised  under

withdrawal of SSRI and treatment with valproic acid over a time period of a few weeks, and

no clear relation with STN stimulation could be identified.

Source localisation of beta-band LFP oscillations and spectral power analysis.

The average normalised spectral  power OFF medication,  as compared to ON medication,

exhibited significantly larger  values in the lower beta range (13-20 Hz, p < pth = 0.031,

Supplementary Fig. 1). This outcome confirmed that there was a higher level of beta-band

activity OFF medication, which was further assessed using the phase reversal analysis. We
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found a significant phase reversal of the beta-band STN oscillatory activity OFF medication

for the majority of the patients, and typically in both STNs (16 nuclei out of 20 in 10 patients,

p < 10-6, see Fig. 1 A-C, and Table I). In four STNs stemming from four different patients, no

significant  phase reversal could be found. For two of these nuclei,  postoperative imaging

showed a slight medial positioning of the macro-electrode (patient 3 and 6). For all other

patients post-operative imaging confirmed the optimal electrode placement with at least one

contact of the macro-electrode within STN.

The contacts closer to the beta source (contacts B), after transformation of coordinates onto

the standard MNI space,  were localised in the dorso-lateral  (sensorimotor)  STN (average

MNI coordinates in mm ± SEM: right: x= 11.25 ± 0.41; y= -12.62 ± 0.90; z= -6.62 ± 0.41;

left: x= -11.00±0.59; y= -13.12±0.51; z= -6.87±0.61, Fig. 2). Neighbouring contacts located

above (dorsal, contacts  D) the contact exhibiting the beta-band phase reversal were placed

mainly outside the STN, while  contacts  below (ventral,  contacts  V)  were still  within the

nucleus borders (Fig. 2). 

The assessment  of a  general  effect  of contact  pair  localisation  (beta-band phase reversal,

dorsal and ventral) on the normalised spectral power OFF medication, revealed a significant

effect in the upper beta band within 26-30 Hz (Kruskal–Wallis test, p < pth = 0.0208;  Fig.

1D). This was due to consistently larger beta-band power values at the phase reversal contact

pairs,  relative  to  the  ventral  and  dorsal  contact  pairs.  Accordingly,  the  analysis  of  the

normalised  spectral  power  based  on  the  phase  reversal  classification  of  contact  pairs

demonstrated  a  frequency-specific  effect.  By  contrast,  power  analysis  in  the  case  of

classification of contact pairs based on the peak of beta-band oscillatory activity revealed
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largely  non-frequency  specific  (and  non-significant)  power  modulations  (Supplementary

Fig. 2).

DBS contacts: anatomical connectivity 

Probabilistic tractography seeding from contacts B revealed a high connectivity to motor and

premotor  areas,  and  to  a  lesser  extent  to  medial  temporal  and  post-central  structures

(descriptive results in Fig. 3).  In contrast, connectivity to amygdala, hippocampus and post-

central  gyrus  were  maximal  from  contacts  V,  and  progressively  reducing  in  the  dorsal

direction (Fig. 3, 3rd row). Connectivity to superior, middle and inferior frontal  gyri,  and

supplementary motor cortex (SMC) were highest in contacts D, intermediate in contacts B,

and lowest in contacts V (Fig. 3, 2nd row). 

The cortical  areas that  fulfilled  both our criteria  of (i)  > 50 tract  thresholding and (ii)  >

connectivity to at least 50% of either contacts B, D, and V included the frontal pole, superior,

middle and inferior frontal gyrus, precentral gyrus, SMC, amygdala, hippocampus, superior

parietal lobule, precuneus, and lateral occipital cortex. The non-parametric Kruskal–Wallis

test  revealed  a  main  effect  of contact  localisation  (3 levels:  D, B,  V) on the normalized

connectivity to the amygdala, hippocampus, superior, middle and inferior frontal gyri, post-

cental gyrus, SMC (p<pth = 0.01, after control of FDR at level q = 0.05; Fig. 3 and 4). Post-

hoc analysis by means of permutation tests showed that contacts B had a significantly higher

connectivity  to  the  amygdala  and smaller  connectivity  to  the  superior  frontal  gyrus  than

contacts D ( p < pth = 0.01). Compared to contacts V, contacts B had significantly smaller

connectivity  to  the amygdala,  whereas  they had larger  connectivity  to  the SMC, and the

superior,  middle  and  inferior  frontal  gyri  (p  <  pth  =  0.016).  Hence,  in  a  dorso-ventral
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direction we described an increasing connectivity gradient to the amygdala, and a decreasing

gradient of connectivity to SMC and the superior, middle and inferior frontal gyri.

Index Case – clinical and imaging findings

Subject 5 (male, 54 years old at surgery) developed stimulation-induced hypomanic episodes.

The patient underwent STN stimulation with no peri-operative complications and good motor

response after activation of contacts 1R and 1L (2nd contact proceeding ventro-dorsally, right

and left respectively). For the same contacts, we observed the appearance of hemi-corporal

sensory symptoms at 2,4 V amplitude bilaterally.  Over the next few months,  the positive

effect  on  the  motor  symptoms  waned  progressively,  prompting  successive  adaptations

including shifting to the contacts above (2R and 2L). The pharmacological treatment was also

optimised and included levodopa/carbidopa/entacapone and pramipexole. The total amount

was 40% less than before surgery. 

Six days after the last stimulation voltage increase to 2,5 V (right STN) and 2,7 V (left STN),

60 µsec,  130 Hz, the patient  complained of restlessness and irritability.  His son reported

irascible behaviour and episodes of uncontrolled, unnecessary money spending (mounting up

to a car purchase). The psychiatric symptoms were almost completely resolved by reducing

the intensity of the stimulation to 2,0V and 2,1V while the patient did not tolerate further

reduction  of  the  oral  treatment.  The  lasting  emotional  irritability  during  in-patient  care

evolved further in a hypomanic state. The restlessness and logorrhoea could be prompted by

increasing the stimulation voltage at contacts 2 bilaterally to rapidly disappear when the DBS

was  turned  OFF.  The  psychiatric  assessment  was  consistent  with  DBS-induced  manic

episodes given that the patient had no similar symptoms prior to surgery. After stimulation
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was shifted to most dorsal contacts (3R and 3L), there was a prompt optimal motor response

associated with a subjective appeasing sensation. In the long-term observation there was a

complete resolution of the psychiatric symptoms despite further increases in voltage up to

2,9V in the right and 2,7V in left STN.

The  stereotactic  localisation  according  to  the  Morel  STN atlas  showed  that  the  contacts

eliciting  hypomanic  manifestations  were  positioned  slightly  anterior  and  ventral  to  the

putative motor area, particularly in the left STN (Fig. 5 panel A). The connectivity results in

this patient confirmed the trend observed in the rest of the population (Fig. 5 panel B). The

tracts originating from the contacts 2 bilaterally were subtracted from those originating from

contacts 3. Ventral contacts, eliciting manic manifestations (contacts 2R and 2L) had higher

connectivity to medial temporal cortex, and lower to primary motor cortex as compared to

dorsal  contacts  (contacts  3R and 3L).  There was a  certain asymmetry,  with the left  STN

showing globally lower connectivity to prefrontal cortex. Clinical testing was not conducted

separately for each side, so it was not possible to ascertain whether psychiatric side effects

were caused predominantly by one of the two macro-electrodes. 

Discussion

In our study we combine neurophysiological recordings with magnetic resonance imaging to

investigate in vivo subthalamic nucleus’ functional organisation. In the effort of overcoming

the  limitations  of  both  methods,  we  gather  evidence  on  the  existence  of  overlapping

functional sub-regions within the nucleus. Our results support a neurobiological interpretation

of  the  manifold  clinical  effects  of  DBS to  further  provide  valuable  information  guiding

clinical  decision  making  after  occurrence  of  STN  DBS  adverse  effects. These  findings
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expand  the  current  knowledge  suggesting  a  rather  complex  and possibly  subject-specific

interplay between anatomical connectivity and neural activity patterns that does not support

the notion of clear-cut segregated STN sub-regions. 

Sensory-motor STN

We  found  that  the  target  for  DBS  -  the  dorso-lateral  STN  -  is  characterized  by  beta

oscillations and anatomical connections to motor cortical areas, suggesting a link between

electrophysiological  activity,  connectivity,  and  function.  Our  neurophysiological  findings

confirm previous reports based on single unit recordings and LFP spectral analysis (Kühn et

al., 2005; Trottenberg et al., 2007; Weinberger et al., 2006; Zaidel et al., 2010). The depicted

anatomical network of the STN beta oscillatory region is compatible with the sensorimotor

function previously attributed to the beta rhythm (Engel and Fries, 2010; Little and Brown,

2014).  The  most  highly  connected  targets  include  sensorimotor  areas  -  pre-central,  post-

central  gyrus,  SMC. This finding is consistent with the ‘hyper-direct’ pathway connecting

primary motor areas with the dorso-lateral  STN (Haynes and Haber, 2013; Nambu  et al.,

1996; Whitmer  et al., 2012), and with the beta-coherence observed between STN and M1

(Fogelson et al., 2006; Litvak et al., 2011; Marsden et al., 2001). 

The current knowledge about the generator of beta oscillations recorded from the STN is

sparse, however strong evidence indicates that cortical activity drives beta oscillations in the

STN (Fogelson et al., 2006; Hirschmann et al., 2013; Lalo et al., 2008; Litvak et al., 2011).

Although not statistically significant,  we found that contacts closest to the beta source had

highest connectivity to the prefrontal gyrus. This could represent the anatomical basis of the
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observed beta coherence among STN and precentral gyrus activity as recorded from subdural

electrodes (Whitmer et al., 2012). 

Besides  confirming  the  known  topography  of  the  sensorimotor  STN,  we  restrain  from

oversimplifying  STNs  functional  organisation.  The  demonstrated  pattern  of  connectivity

strongly suggests that STN areas involved in the origin of beta activity in PARKINSON’S

DISEASE project not only to sensorimotor areas, but also to regions involved in cognitive

and emotional/behavioural  functions:  contacts  B were also highly connected  to prefrontal

regions, including superior, middle and inferior frontal gyri; higher order sensory areas in the

post-central  gyrus,  precuneus,  superior  parietal  lobule  additional  to  medial  frontal  and

temporal regions also showed high connectivity with ‘beta’ contacts. These results have to be

interpreted with caution given major limitations in spatial resolution of MRI that we tried to

overcome.  However,  we  estimate  that  our  combination  of  beta  source  localisation,  high

resolution  DWI  sequence  (1.7  mm  isotropic),  and  probabilistic  tractography  reached  a

sufficient reliability for inferring the STN’s functional organisation. The notion of a tripartite

STN – constituted by motor, associative and limbic functional subregions – is supported by

consistent evidence (Hamani et al., 2004; Karachi et al., 2009; Krack et al., 2001; Mallet et

al., 2007; York et al., 2009). However, STN anatomo-functional subdivisions are not clear-

cut  as  demonstrated  by  anatomical  and  neurophysiological  evidence.  Distribution  of

prefrontal projections to STN in the non-human primate (Haynes and Haber, 2013) and in

humans as captured by recent imaging studies (Accolla et al., 2014; Brunenberg et al., 2012;

Lambert  et al., 2012; Mallet  et al., 2007) show convergence and multiple areas of overlap.

STN subareas are also not clearly segregated from a neurophysiological point of view, as

firing pattern modifications secondary to sensory-motor tasks have been observed in regions

with no prominent beta activity (Zaidel et al., 2010). Given these premises, our data further
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support that  i)  beta oscillations  are not  restricted to a  ‘motor’ STN area;  and that  ii)  the

‘motor’ STN is not connected exclusively with motor cortical areas. We here show that where

the electrophysiological source of beta activity is found, motor connectivity is predominant,

but not exclusive. We conclude that beta oscillations have a main but not exclusive motor

significance, and that STN might be organised following a topographical specialisation by

which predominant function at each location is constantly informed by other circuits’ activity.

STN connectivity to limbic cortical areas

Comparison of neighbouring contacts revealed a significantly higher connectivity of ventral

STN to limbic targets – medial temporal structures including hippocampus and amygdala.

This principle of organisation was also observed at the single subject level in a patient with

DBS induced hypomanic manifestations. The involvement of amygdala and hippocampus in

manic states - mostly investigated in the context of bipolar disorder - is well documented,

with  reported  volume  differences  among  patients  and  healthy  subjects(Schneider  et  al.,

2012),  and  increased  BOLD  fMRI  signal  in  response  to  affective  faces  during  mania

(Altshuler  et al., 2005; Malhi  et al., 2007; Strakowski  et al., 2012). Our findings provide a

plausible anatomical substrate for the occurrence of (hypo)manic states following STN DBS,

and a rationale for improvement observed when shifting stimulation dorsally. 

Methodological considerations

Our approach to differentiate  STN contact  pairs  based on the proximity to the beta-band

phase  reversal  aimed  at  increasing  spatial  resolution,  and strengthens  the  validity  of  our

conclusions.  The alternative approach, based solely on maximum spectral power, was not

frequency-specific (Supplementary Fig. 2). Rather, this approach revealed that the contact

22



pair with maximum power in the beta range also exhibited maximum power in neighbouring

frequency  ranges,  therefore  suggesting  a  generally  larger  signal-to-noise  ratio  in  these

contacts  but  not  a  specific  contact  localisation  in  the  proximity  of  the  generator  of  beta

oscillations.  With this respect, the phase reversal analysis  provides a higher accuracy for

spatial localisation of oscillatory activity in a specific frequency range(Rodriguez-Oroz et al.,

2011) .

One limitation of the beta source localisation lies in the few available contact pairs per STN:

four contacts amounting to 3 contact pairs. A larger number of contact pairs per STN could

lead to a more accurate spatial localisation of the beta oscillations, although it should also be

noted that the beta-band activity pattern is not expected to be localised to a single focal point

within  the  STN but  may rather  be spatially  distributed  across  the dorso-lateral  STN. An

additional limitation that affects exclusively the power analysis is that it was necessary to set

a criterion upon which to select the contact  pair closest to the phase reversal. That is, if a

phase reversal was found between contact  pairs  01 and 12, there was no ambiguity with

regard to which contact was closest to the phase reversal (here contact 1), but it was indeed

necessary to decide which contact pair from the two containing the phase-reversal contact (1)

should be selected for power analysis. Importantly,  however, the connectivity analysis was

not affected by this ambiguity.

In conclusion, our study expands the knowledge of STN anatomy and describes anatomical

networks  potentially  modulated  by  DBS.   We  failed  to  address  more  specific  clinical

questions due to the retrospective nature of clinical data. We nevertheless here demonstrate

the  advantages  of  merging  clinical,  neurophysiological  and  neuroimaging  data  in

investigating specific neuro-scientific questions relevant for medical purposes. We propose
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that  future  strategies  for  improving  DBS  outcome  should  focus  beyond  the  schematic

tripartite principle of organisation, to target individually the optimal STN stimulation site.   
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Table 1.

Subjects 1 2 3 4 5 6 7 8 9 10

Age 51 63 62 51 55 53 52 57 66 71

Gender 1=f m m m f m m m f f m

Disease duration (years) 6 11 8 14 8 10 15 13 12 11

Stimulating Contacts (R L) 1 / 1 1 / 1 1 / 1 2(-)3(+)  /
2

3 / 3 3 / 3 1 / 1 3 / 3 3 / 3 1 / 1

Beta phase reversal OFF (R L) 2 / 2 (-) / 1 1 / (-) 1 / 2 1 / 2 (-) / 1 3 / 2 2 / (-) 2 / 2 3 / 1

UPDRS preop. OFF 29 34 21 (n.a.) 34 42 50 36 24 30

UPDRS preop.  ON 3 14 12 8(n.a.) 20 13 38 15 16.5 22

UPDRS medOFF/  StimOFF 30 47 22 45 32 39 50 n.a. n.a. n.a.

UPDRS medOFF/ stimON 8 12 14 8 16 14 28 n.a n.a n.a.

UPDRS DBS improvement % 73.33 74.47 36.36 82.22 50.00 64.10 44.00 n.a n.a n.a

LEDD preop 402 1382 1580 675 1689 1552 875 1380 832 3395

LEDD reduction postop % 35.32 16.42 50.31 88.88 67.49 70 71.42 n.a. 18.02 77.94
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Captions 

Table 1.  Demographic and clinical information. Macroelectrode contacts are indicated as follows: R=Right, L=Left; contacts from most

ventral to most dorsal 0-1-2-3; (-) indicates that a phase reversal could not be identified in the recordings. UPDRS: Unified Parkison’s

Disease Rating Score, part III (range 0-108).n.a.=not available.

Figure 1. Local Field Potential recordings (LFPs) from STN-implanted macroelectrodes. A. Representative time course of beta-band

oscillatory activity in the right STN obtained from bipolar recordings in patient #1. Note the phase reversal occurring between R12 and

R23 (phase reversal at contact R2). For the power analysis, contact pair R12 was selected by convention (see main text) as the closest one

to the source of beta activity (phase reversal). B. Histogram depicting the difference phase values between signals recorded from contact

pairs R01 and R12 in patient #1. The maximum of the histogram is located at 0 radians (0°), indicating no phase reversal between both

pairs. C. Same for the difference phase values between signals recorded from contact pairs R12 and R23. In this case, the histogram attains

its maximum value at  π radians (180°), indicating the occurrence of phase reversal at contact R2.  D. Grand-average of the normalized

spectral power OFF medication for the contact pair closest to the phase reversal of beta-band activity (potential source; phr, in black), and

for the dorsal (d, orange line) and ventral (v, green line) contact pairs. A significant effect of localisation on the spectral  power was

obtained within 26-30 Hz (Kruskall-Wallis test, p < pth = 0.0208, after control of FDR). The inset shows the mean value and corresponding
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standard error of the mean (SEM) for the spectral power (d, phr, v) averaged within the range 26-30Hz, in which the significant effect was

found. 

Figure 2. Localisation of contacts in relation to the STN. Contacts coordinates were non-linearly registered to the MNI standard space,

and superimposed to a STN 3D representation of the Morel stereotactic atlas (Krauth  et al., 2010).  A. 3D rendering of all leads post-

operative position from a dorsal (left panel) and posterior (right) view.  B. Distribution model (coordinates average and covariance) of

contacts in relation to the source of the beta oscillation. Contacts most close (Contacts B, middle panel)  lie in the dorso-lateral STN while

neighbouring dorsal contacts (contacts D, left panel) are more frequently outside the nucleus. Contacts lying immediately beneath contacts

B are closer to its inferior border (contacts V, right panel).

Figure 3. Probabilistic diffusion tractography from STN macroelectrode contacts. First row. Connectivity profile of contacts closest

to source of beta oscillations (contacts B). Regions with highest connectivity (yellow) include precentral gyrus and superior frontal gyrus.

Lower  connectivity  values  were  found  for  prefrontal  cortex  and  medial  temporal  regions.  Second  row.  Normalised  difference  of

connectivity values: contacts dorsal to beta minus contacts closest to beta source (D (-) B).  Third row.  Contacts ventral to beta minus

contacts closest to beta source (V (-) B). More dorsal contacts show higher connectivity to prefrontal associative regions, while most

ventral contacts have higher connectivity to medial temporal and orbitofrontal regions. 
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Figure 4. Kruskal–Wallis test showing a significant (*) effect of localisation for connectivity to cortical targets surviving threshold

(see Methods section). Columns represent normalised difference of connectivity values between (a) contacts dorsal to beta (D, orange) and

contacts closest to beta source: D-source;  and (b) contacts  ventral  (V, green) to beta and contacts closest to beta source: V- source.

Connectivity  to  amygdala  and  hippocampus  increases  towards  more  ventral  contacts,  whereas  more  dorsal  contacts  show increased

connectivity to prefrontal  cortex (superior,  middle and inferior  frontal  gyrus)  and supplementary motor  cortex (SMC), and decreased

connectivity to postcentral  gyrus.  Significance is set  at  p < pth = 0.01, after  control  of FDR at level  q = 0.05. On the background,

connectivity of beta contacts is represented by the shaded grey area (right y axis). 

Figure 5.  Imaging data relative to the case patient (#5). This subject had a significant  motor  improvement  after  stimulation from

contacts 2 (right and left), but developed manic behaviour and restlessness. After shifting more dorsally (contacts 3 bilaterally)  motor

benefit was maintained, and psychiatric manifestations relieved. A. MNI localisation of stimulating contacts, superimposed to the STN

atlas (in purple, from Morel et al.). First row: axial view, with z coordinates specifying the section level (vertical axis). Second row: sagittal

view, with x coordinates (right to left axis). Contacts eliciting hypomanic manifestations (2L and 2R) are located in a more anterior and

ventral position within the nucleus.  B.  Voxelwise, whole brain connectivity difference between contacts 2 and 3 (both sides computed

separately) are shown (coronal view). In blue/light-blue voxels with higher connectivity to ventral contacts (contacts 2 vs contacts 3). In

orange/red voxels with higher connectivity to dorsal contacts (contacts 3). Values represent the difference of number of tracts passing from
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each voxel.  C. Transversal sections at different z coordinates. Ventral contacts have higher connectivity to medial temporal structures,

including amygdala, while more dorsal contacts have higher connectivity values to primary motor areas (particularly on the right side).

Clinical effects were not tested separately for each side.
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