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Abstract

Functional brain imaging studies have highlighted the significance of right-lateralized temporal, frontal and parietal brain areas for
memory for melodies. The present study investigated the involvement of bilateral posterior parietal cortices (PPCs) for the recogni-
tion memory of melodies using transcranial direct current stimulation (tDCS). Participants performed a recognition task before and
after tDCS. The task included an encoding phase (12 melodies), a retention period, as well as a recognition phase (24 melodies).
Experiment 1 revealed that anodal tDCS over the right PPC led to a deterioration of overall memory performance compared with
sham. Experiment 2 confirmed the results of Experiment 1 and further showed that anodal tDCS over the left PPC did not show a
modulatory effect on memory task performance, indicating a right lateralization for musical memory. Furthermore, both experiments
revealed that the decline in memory for melodies can be traced back to an interference of anodal stimulation on the recollection pro-
cess (remember judgements) rather than to familiarity judgements. Taken together, this study revealed a causal involvement of the
right PPC for memory for melodies and demonstrated a key role for this brain region in the recollection process of the memory task.

Introduction

An important factor for the enjoyment and communicative role of
music is the ability to encode (and later recognise) tunes. The neural
structures of auditory memory, especially for melodies, are not well
known, and the aim of the present study was to investigate the cau-
sal involvement of the right and left posterior parietal cortices
(PPCs) in recognition memory for melodies, using transcranial direct
current stimulation (tDCS).
Behavioural research on memory for melodies has looked at the

influence of surface parameters, such as timbre or tempo, on musical
memory (Halpern & M€ullensiefen, 2008; Lange & Czernochowski,
2013) but only a few studies have investigated its neural correlates.
A recent study using magnetoencephalography showed increased
activation of the superior temporal gyri as well as the right inferior
temporal gyrus, inferior frontal gyrus and parietal areas for auditory
short-term memory (Nolden et al., 2013). Using positron emission
tomography, Platel et al. (2002) revealed activation of bilateral
middle frontal areas (Brodmann areas 9 and 10) and bilateral (but

predominantly right-sided) precuneus (Brodmann area 7) for epi-
sodic memory for short melodies. Furthermore, Klostermann et al.
(2009) showed the activation of the right PPC for the retrieval of
short tunes using functional magnetic resonance imaging.
Recognition memory is not a unitary construct. According to the

dual-process model (Yonelinas, 2002), remember/know responses
index two types of recognition responses: true recollection ‘I really
remember that item’ vs. familiarity ‘that item seems familiar’. These
responses also characterise musical memory (Gardiner et al., 1996;
Lange & Czernochowski, 2013). Brain imaging studies support a
distinction between recollection and familiarity (Ranganath et al.,
2004; Yonelinas et al., 2005). Yonelinas et al. (2005) revealed that
recollection was associated with increased activation of the lateral
parietal cortex and posterior cingulate, whereas familiarity judge-
ments activated the superior lateral parietal cortex and precuneus.
To our knowledge, brain areas causally involved in musical remem-
ber/know responses have not yet been studied.
Transcranial direct current stimulation is a useful tool to investi-

gate the causal involvement of targeted brain areas in cognitive tasks
(Nitsche & Paulus, 2001). Research in the motor domain typically
links anodal tDCS to a facilitation of neural activity, whereas
cathodal tDCS more likely suppresses the cortical excitability under
the site of stimulation (Nitsche & Paulus, 2000). Previous tDCS
studies on pitch memory have revealed a causal link between the
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left supramarginal gyrus and pitch recognition and recall (Vines
et al., 2006; Schaal et al., 2013, 2014b), as well as between Hes-
chl’s gyrus and pitch discrimination (Mathys et al., 2010). Thus, we
examined the causal involvement of the bilateral PPC for memory
for whole melodies. As Klostermann et al. (2009) showed activation
in the right PPC during auditory non-verbal memory, we first exam-
ined the right PPC in Experiment 1 by applying either anodal or
sham stimulation. In Experiment 2 we compared the effect of anodal
tDCS over the right and left PPC. Furthermore, the study investi-
gated whether recollection and familiarity judgements in memory
for tunes can be dissociated at the neural level.

Materials and methods

Participants

A total of 27 participants with a mean age of 23.8 years (SD 5.1,
range 19–41) took part in Experiment 1. They were randomly
assigned to the anodal (N = 13; six males, seven females; mean age
25.0 years, SD 6.5, range 19–41) or sham (N = 14; five males, nine
females; mean age 22.7 years, SD 3.0, range 19–30) condition. One
female participant from the sham group was distracted by the stimula-
tion and was excluded from the analysis. Twenty-four novel partici-
pants (who did not participate in Experiment 1) with a mean age of
24.8 years (SD 4.1, range 21–40) took part in Experiment 2. They
were assigned to one of the two groups: anodal tDCS over the right
PPC (N = 12; four males, eight females; mean age 23.5 years, SD
2.7, range 21–29) or anodal tDCS over the left PPC (N = 12; four
males, eight females; mean age 26.1 years, SD 4.8, range 21–40).
Groups were matched by baseline memory performance (see Proce-
dure section). Table 1 summarises the demographic details of the final
sample. All participants were right-handed non-musicians (< 2 years
of formal musical training in the past, not playing an instrument at
present). They signed a written informed consent and received either
course credits or 8 Euros for their participation. The study was
approved by the local research ethics committee at Heinrich-Heine-
University in accordance with the Declaration of Helsinki.

Material

Questionnaire

The German version of the Goldsmiths Musical Sophistication Index
questionnaire (M€ullensiefen et al., 2014; Schaal et al., 2014a) was

used to evaluate musical sophistication and engagement. The scale
consists of 31 statements, which are rated on a seven-point Likert
scale, as well as another seven items asking for the amount of time
spent on musical activities. The relevant Musical Training dimension
consists of seven statements and a score that ranges between 7 and
49. The low mean score of 11.9 points of the present sample con-
firms that non-musicians took part.

Acoustic stimuli

The 48 stimuli were short, unfamiliar tonal melodies that were
derived from folk songs or that were unrecognisable permutations of
familiar tunes. The average duration was 6.2 s (range 4–10 s) and
they were single-line melodies synthesised in a MIDI piano timbre
(two examples in Fig. 1). They were split into four blocks (A–D) of
12 melodies, respectively. Blocks A and B, as well as C and D,
comprised a set of old and new melodies. Sets, as well as the block
order within sets, were counterbalanced among participants. Pilot
testing ensured that the sets were of the same difficulty.

Transcranial direct current stimulation

In Experiment 1, the anode electrode (5 9 5 cm2) was placed over
the right PPC and the reference electrode (5 9 7 cm2) was located
over the left supraorbital area. An electroencephalographic electrode
cap was used to mark the position of the right PPC at P4 (according
to the international 10–20 system) as per previous studies (e.g. Bardi
et al., 2013). In Experiment 2, the anode electrode was either placed
over the right PPC (P4) or the left PPC (P3). The reference elec-
trode was placed over the contralateral supraorbital area. A reference
electrode that was slightly larger compared with the anode electrode
was used to achieve a more focal stimulation (Nitsche et al., 2007).
The electrodes were covered in saline-soaked sponges and were
fixed on their positions with self-adhesive bandages. Participants in
the anodal stimulation conditions received 15 min of 2 mA direct
current stimulation (with 15 s fade in and fade out, respectively),
whereas the sham group received the same fade in and fade out, but
did not receive any active current during the 15 min stimulation
window. Sham stimulation evoked the somatosensory sensation of
being stimulated, but did not lead to a neurophysiological change
that can influence performance. Participants were not informed about
which stimulation they received.

Procedure

Both experiments consisted of three parts and they were identical in
their set-up: baseline testing of memory, tDCS stimulation and post-
manipulation testing of memory (see Fig. 2).
For baseline testing, the participants listened to 12 tunes,

each played once, via headphones with 3 s between each tune in the

Table 1. Characteristics and matched baseline performance for the groups
of both experiments

Experiment 1 Experiment 2

Anodal
right PPC

Sham
right PPC

Anodal
right PPC

Anodal
left PPC

N 13 13 12 12
Gender 6 males/

7 females
5 males/
8 females

4 males/
8 females

4 males/
8 females

Age (years) 25.00 (6.54) 22.15 (2.30) 23.50 (2.71) 26.08 (4.79)
Musical training
(Gold-MSI score)

11.62 (3.89) 11.77 (3.52) 10.58 (2.71) 13.31 (5.14)

Baseline
performance (dʹ)

1.45 (0.81) 1.30 (0.67) 1.19 (0.44) 1.17 (0.54)

SDs are given in parenthesis. Gold-MSI, Goldsmiths Musical Sophistication
Index.

Fig. 1. Two examples from the 48 melodies of the memory recognition
task.
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exposure phase. They were asked to memorise the melodies. During
the retention phase, the participants worked on a word puzzle for
7 min to prevent rehearsal of the melodies. In the recognition phase,
the participants listened to a set of 24 melodies (comprising the 12
melodies from the encoding phase and 12 new melodies). They were
required to indicate whether the presented melody was new or old. If
they classified a melody as old, they were asked to specify a remember
or know judgement. The instruction stated that remember meant that
one was consciously aware that this melody was presented before, or
true recollection. A know response was explained as a feeling of hav-
ing heard the melody in the encoding phase without any conscious
memory of having heard it before, indicating familiarity.
After the baseline testing, electrodes were placed on the scalp.

The stimulation lasted for 15 min. The participants were asked to
relax, within the first 10 min of the stimulation, then the post-stimu-
lation testing started, consisting of the exposure phase (with 12 new
melodies), the word puzzle, and the test phase (24 melodies). It has
been shown that the after-effects of 11 min of 1 mA tDCS over the
motor cortex last up to 1 h, as measured by motor-evoked potentials
(Nitsche & Paulus, 2001). Therefore, we expected to modulate the
whole memory process (encoding and retrieval) in the anodal condi-
tions. After completing the tasks, the electrodes were removed and
the participants filled in the German version of the Goldsmiths
Musical Sophistication Index questionnaire.

Statistical analysis

For the explicit memory for melodies, we computed dʹ scores
(Green & Swets, 1966) both overall, and separately for the ‘remem-
ber’ (recollection) and ‘know’ (familiarity) responses (R-d and K-d).
For overall memory performance a mixed-factor ANOVA was

conducted for each experiment with the within-subject factor phase
(pre-stimulation vs. post-stimulation) and between-subject factor
stimulation condition (anodal vs. sham stimulation in Experiment 1
and anodal right PPC vs. anodal left PPC in Experiment 2) on overall
dʹ scores. Cohen’s d effect sizes with confidence intervals (CIs) are
reported as a measure of effect size. If applicable, post-hoc t-tests were
conducted to disentangle significant interactions. Bonferroni correc-
tions were applied appropriately. Furthermore, performance differences
were calculated by subtracting baseline dʹ scores from the dʹ scores
after stimulation, reflecting the memory performance change due to
stimulation. Independent-sample t-tests were conducted to check for the
influence of stimulation between the two groups of each experiment.
Additionally, mixed-factor ANOVAs were also conducted for recol-

lection on R-dʹ and for familiarity on K-dʹ with the identical within-
subject and between-subject factors for both experiments.

Results

Table 2 gives an overview of mean performances of the groups of
Experiment 1 and Experiment 2. Overall performance on the

memory for melody task was above chance (dʹ ≥ 0) for every
individual participant.
For Experiment 1, a mixed-factor ANOVA with the within-subject

factor phase (pre-stimulation vs. post-stimulation) and between-
subject factor stimulation condition (anodal vs. sham stimulation) on
overall dʹ scores revealed a borderline significant effect of phase
[F1,24 = 4.13, P = 0.053, 95% CI (0.00, 1.60), d = 0.79], a non-
significant result for stimulation condition [F1,24 = 1.16, P = 0.292,
95% CI (�0.35, 1.20), d = 0.42] and a significant phase 9 stimula-
tion condition interaction [F1,24 = 7.36, P = 0.012, 95% CI (0.24,
1.89), d = 1.06]. Post-hoc paired-samples t-tests revealed a signifi-
cant decline of performance in the anodal group after stimulation
(t12 = 3.31, P = 0.006) and no significant difference pre-stimulation
and post-stimulation in the sham group (t12 = 0.19, P = 0.633)
(Fig. 3A and B). Additionally, an independent-samples t-test was
conducted on performance differences and group as the between-
subject variable, which showed a significant difference [t24 = 2.71,
P = 0.012, 95% CI (0.25, 1.97), d = 1.11]. The reduction of mem-
ory performance in the group receiving anodal tDCS over the right
PPC (M = �0.66, SD 0.72) was significantly different from the per-
formance difference in the sham group (M = 0.09, SD 0.70)
(Fig. 4).
For recollection, a mixed-factor ANOVA with the factors phase and

stimulation condition and the dependent variable R-dʹ revealed a
non-significant result for stimulation condition [F1,24 = 0.69,
P = 0.415, 95% CI (�0.45, 1.10), d = 0.33], a significant effect of
phase [F1,24 = 10.85, P = 0.003, 95% CI (0.45, 2.14), d = 1.29], as
well as the phase 9 stimulation condition interaction [F1,24 = 7.17,
P = 0.013, 95% CI (0.23, 1.87), d = 1.05]. Post-hoc paired-samples
t-tests showed a significant decline after anodal stimulation
(t12 = 5.48, P < 0.001) and no significant difference pre-stimulation
and post-stimulation in the sham group (t12 = 0.37, P = 0.72)
(Fig. 5A). A similar mixed-factor ANOVA for familiarity showed no
significant effects (P-values > 0.538).

Fig. 2. Procedure of the experiment. An experimental session consisted of two phases of baseline and post-stimulation testing. Each phase consisted of three
parts of encoding, retention and recognition. Participants were asked to memorise a set of 12 melodies during the encoding parts. Subsequently, they were pre-
sented with 24 melodies of which 12 were old (previously presented in the encoding phase) and 12 were new. They were asked to indicate whether the melody
was old or new and, if old, whether they remember it or know it. Numbers indicate the durations in minutes.

Table 2. Overview of group performances on overall memory performance
as well as ‘remember’ and ‘know’ scores for both experiments

Experiment 1 Experiment 2

Anodal
right PPC

Sham
right PPC

Anodal
right PPC

Anodal
left PPC

Baseline overall dʹ 1.45 (0.81) 1.30 (0.67) 1.19 (0.44) 1.17 (0.54)
Stimulation overall dʹ 0.79 (0.46) 1.39 (0.62) 0.79 (0.55) 1.42 (0.79)
Baseline remember dʹ 1.58 (0.87) 1.33 (1.06) 1.36 (0.55) 1.22 (0.63)
Stimulation remember dʹ 0.44 (1.1) 1.22 (0.68) 0.66 (0.88) 1.07 (0.63)
Baseline know dʹ 0.41 (0.96) 0.54 (0.80) 0.37 (0.58) 0.46 (0.68)
Stimulation know dʹ 0.52 (0.60) 0.61 (0.49) 0.39 (0.57) 0.62 (0.42)

SDs are given in parenthesis. The bold values highlight the group perfor-
mances that show a significant modulation effect.
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For Experiment 2, a mixed-factor ANOVA with phase (pre-stimula-
tion vs. post-stimulation) and stimulation condition (anodal right
PPC vs. left PPC) on overall dʹ scores revealed non-significant
results for the factors phase [F1,22 = 0.32, P = 0.576, 95% CI
(�0.57, 1.03), d = 0.23] and stimulation condition [F1,22 = 2.34,
P = 0.141, 95% CI (�0.19, 1.44), d = 0.79], but a significant phase
9 stimulation condition interaction [F1,22 = 5.32, P = 0.031, 95%
CI (0.10, 1.79), d = 0.94]. Post-hoc paired-samples t-tests confirmed
the significant decline of anodal tDCS in the group receiving anodal
stimulation over the right PPC (t11 = 3.31, P = 0.03), thus replicat-
ing the findings from Experiment 1. No significant difference was
found in the group receiving anodal stimulation over the left PPC
(t11 = 0.19, P = 0.310) (Fig. 3C and D). Additionally, the indepen-
dent-samples t-tests on performance differences showed that the
decline of the anodal tDCS right PPC group (M = �0.41, SD 0.57)
was significantly different from the performance change of the ano-
dal tDCS left PPC group [M = 0.25, SD 0.81) (t22 = 2.31,
P = 0.031, 95% CI (0.1, 1.87), d = 0.99] (Fig. 4B).
In addition, we conducted planned paired-samples comparisons

on R-dʹ to analyse the recollection memory performance (Wilcox,
1987). A significant decline after anodal stimulation over the right
PPC (t11 = 2.6, P = 0.025) and no significant difference pre-stimula-
tion and post-stimulation in the group receiving anodal tDCS over
the left PPC (t11 = 0.51, P = 0.621) was revealed (Fig. 5B). The
familiarity analysis on K-dʹ revealed no significant modulation
effects (P-values > 0.380) (Fig. 5B).

Discussion

The results of Experiment 1 show that anodal tDCS over the right
PPC, compared with sham stimulation, modulates performance and
highlights a pivotal role for the right PPC in recognition memory
for melodies. Anodal tDCS over the right PPC led to a decline in
overall memory performance. Additionally, the analyses of recollec-
tion and familiarity showed that anodal tDCS over the right PPC led
to deterioration in conscious recollection judgements only. Experi-
ment 2 was then conducted to replicate the decline in memory seen
in the first experiment. Also, because functional magnetic resonance
imaging studies report a strong rightward activation for musical and
auditory non-verbal material (Zatorre et al., 1994, 2002; Wagner
et al., 1998), whereas verbal memory processes are usually referred
to left-hemispheric involvement (Wagner et al., 1998; D’Arcy et al.,
2004; Javadi & Walsh, 2012), we compared right and left PPC
active stimulation. Experiment 2 confirms the decline of memory for
melodies after anodal tDCS over the right PPC and shows a hemi-
spherically specific modulation of melody as anodal tDCS over the
left PPC had no effect. Furthermore, Experiment 2 also shows that
the decline in performance was isolated to interference with the
remember judgements, suggesting the independence of recollection
and familiarity during recognition.
Our results are in accordance with brain imaging studies that have

highlighted the activation of the right parietal cortex during recogni-
tion memory for musical material (Platel et al., 2002; Klostermann

A B

C D

Fig. 3. Summary of overall dʹ scores for different conditions and experiments including individual data points to show individual differences. (A) In Experi-
ment 1, anodal tDCS over the right PPC led to a significant decline of overall performance on memory for melodies (t12 = 3.31, P = 0.006). (B) Sham stimula-
tion over the right PPC showed no modulation effect. (C) Experiment 2 confirmed the significant deterioration of performance after anodal tDCS over the right
PPC (t11 = 3.31, P = 0.03). (D) No significant modulation effect could be found when stimulation was applied over the left PPC. *P < 0.05.
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et al., 2009). This is the first study to show a causal involvement of
the right (but not left) PPC for memory for melodies, which con-
firms previous studies claiming a dominant activation of a right-
hemispheric neural circuit for non-verbal musical memory (Wagner
et al., 1998; Platel et al., 2002; Nolden et al., 2013).
Additionally, the results contribute to the theory that recollection

and familiarity are independent components of the memory process

(Ranganath et al., 2004; Yonelinas et al., 2005; Vilberg & Rugg,
2008; Evans & Wilding, 2012) as modulation effects were only
found on remember judgements. This highlights the involvement of
the right PPC for recollection. There are at least three reasons that
may account for the lack of modulation on familiarity judgements:
(i) the right PPC is selectively involved in recollection of recogni-
tion memory; (ii) this process is less sensitive to modulation effects
given the automatic nature of familiarity memory processes; and (iii)
the non-significant result is due to a floor effect (performance of
know responses was relatively low overall). It will be important to
disentangle these possibilities with additional research.
Interestingly, anodal stimulation of the right PPC led to a drop in

recognition memory performance rather than the predicted increase
in Experiment 1. Even though the majority of tDCS studies link
anodal tDCS to a facilitation of cognitive performances (e.g. Ladeira
et al., 2011; Javadi & Walsh, 2012; Santiesteban et al., 2012;
Schaal et al., 2013), several studies have also reported deterioration
of performance after anodal stimulation (Ferrucci et al., 2008; Jones
& Berryhill, 2012; Kaminski et al., 2013). A recent tDCS study on
an auditory between-channel gap detection task showed a significant
decline in performance after anodal stimulation over the left auditory
cortex (Heimrath et al., 2014). Three possible reasons for the delete-
rious effect of stimulation on musical memory are as follows.
1 Anodal tDCS over the right PPC may have secondary effects on

brain regions being functionally connected with the PPC, such as
the dorsolateral prefrontal cortex and medial temporal lobe (Shi-
mamura, 2011), thus influencing memory performance (Chib
et al., 2013; Notturno et al., 2014).

2 The relationship between ratios of excitation and inhibition in the right
PPC and cognitive performance may be important. Krause et al.
(2013) suggested an inverted U-shape for the influence of anodal stim-
ulation driven by the balance of excitation and inhibition of gamma-
aminobutyric acid and glutamate levels. This result implies that anodal
stimulation can improve cognitive performance to a certain point
where optimum performance is reached, but if stimulation evokes
too much excitability, then a reduction in performance may occur.

A B

Fig. 4. (A, B) The scatterplots show performance differences (post-stimulation performance – baseline performance) for individual participants. Negative values
represent a decline in performance compared with baseline, whereas positive values represent an improvement. In both experiments the decline in performance
in the group receiving anodal tDCS over the right PPC was significantly different to the control groups (P < 0.05).

A

B

Fig. 5. Summary of dʹ scores for recollection (remember) and familiarity
(know) in both experiments. (A) In Experiment 1, the analysis on remember
and know dʹ scores reveals a significant modulation effect of tDCS over the
right PPC on remember judgements (t12 = 6.48, P < 0.001). (B) Experiment
2 confirms the interference of anodal tDCS over the right PPC on remember
responses (t11 = 2.6, P = 0.025). No effects were found on know responses.
The error bars indicate the SEM. *P < 0.05.
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3 The signal-to-noise ratio may also play a pivotal role in the
interpretation of the results. It might be the case that anodal tDCS
over the right PPC increased the neural noise in this region (Mini-
ussi et al., 2013) leading to a reduction in task performance. Along
these lines, a study in the visual domain has shown impaired per-
ceptual learning consolidation after anodal tDCS, which was inter-
preted in the context of a potential increase in noise and a decrease
of the signal-to-noise ratio (Peters et al., 2013).

The results of our study therefore add to the growing evidence
highlighting the diversity of effects that tDCS modulation can have
on performance depending on the interaction between target site and
task. They feed into a larger debate about the need to consider how
baseline levels of cortical excitability within different neural systems
contribute to task performance when attempting to develop optimal
tDCS protocols (e.g. Krause & Cohen Kadosh, 2014). More studies
including different stimulation intensities and durations, potentially
in combination with brain imaging (e.g. Di Bernardi Luft et al.,
2014), are needed to clarify the detailed effects of tDCS on cogni-
tive performances.
The present study does not allow a distinction of the possible

involvement of the right PPC for a specific stage of the memory
process. It would be desirable to disentangle the different memory
stages, encoding, retention and retrieval in a follow-up study. Along
these lines, a stage-specific involvement of the left supramarginal
gyrus during the retention and not encoding stage of pitch memory
was revealed recently (Schaal et al., 2015). In that study, repetitive
transcranial magnetic stimulation was applied during the retention
stage or encoding phase of a pitch recognition task over the left
supramarginal gyrus or vertex. The results showed increased reac-
tion times selectively when stimulation was applied over the left
supramarginal gyrus and during the retention period.
A further point to consider is the functional role that the right

PPC plays in the melody memory process and to what extent the
modulation effects can be explained according to this framework.
The studies of Klostermann et al. (2009) and others associate the
involvement of the PPCs with memory retrieval (for a review, see
Rugg & Curran, 2007), which is also linked to attentional features
in visual and non-visual modalities (Shomstein & Yantis, 2006; for
a review, see Ciaramelli et al., 2008). With respect to the results of
the present study it is plausible that we modulated the attentional
control of the right PPC and thereby created an imbalance of atten-
tional awareness, which in turn led to a disruption of memory for
the melodies. This disruption may have resulted from diverting
attention from the melody memory task. Along these lines, Jacobson
et al. (2012) showed that simultaneously applied anodal tDCS over
the left superior parietal lobe and cathodal tDCS over the right infe-
rior parietal lobe, compared with the opposite condition of stimula-
tion, resulted in an attentional shift and significant facilitation of
memory recognition for novel words. Furthermore, they also looked
at familiarity and recollection processes but could only find a
descriptive improvement for the recollection process in their para-
digm and the difference did not reach significance. It is important to
note that their recollection and familiarity analysis was based on
confidence ratings, which is a slightly different approach compared
with the remember/know paradigm used in the present study and
could explain the different outcomes (Geraci et al., 2009).
In conclusion, the present study reveals a causal involvement of

the right PPC for recognition memory of melodies by showing that
anodal tDCS over the right PPC, compared with sham stimulation
and anodal tDCS over the left PPC, leads to a decline in memory
performance. Hereby, the effect may be based on the modulation of

attentional control required for the melody recognition memory task.
Furthermore, the deterioration can be traced back to the interference
of anodal tDCS on conscious remember judgements, indicating that
the right PPC is involved in the recollection process. It would also
be desirable for future studies to investigate at which stage of the
memory process, e.g. encoding or recognition, the right PPC is
involved.
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