
MUSICAL AUDIO SYNTHESIS USING AUTOENCODING NEURAL NETS

Andy M. Sarroff and Michael Casey
Computer Science
Dartmouth College

Hanover, NH 03755, USA
sarroff@cs.dartmouth.edu

ABSTRACT

With an optimal network topology and tuning of hyperpa-
rameters, artificial neural networks (ANNs) may be trained
to learn a mapping from low level audio features to one
or more higher-level representations. Such artificial neu-
ral networks are commonly used in classification and re-
gression settings to perform arbitrary tasks. In this work
we suggest repurposing autoencoding neural networks as
musical audio synthesizers. We offer an interactive musi-
cal audio synthesis system that uses feedforward artificial
neural networks for musical audio synthesis, rather than
discriminative or regression tasks. In our system an ANN
is trained on frames of low-level features. A high level
representation of the musical audio is learned though an
autoencoding neural net. Our real-time synthesis system
allows one to interact directly with the parameters of the
model and generate musical audio in real time. This work
therefore proposes the exploitation of neural networks for
creative musical applications.

1. INTRODUCTION

Artificial Neural Networks (ANNs) have recently experi-
enced renewed interest. New training paradigms that in-
clude backpropagation, nonlinear activation functions, and
regularization schemes have allowed the formulation of ex-
pressive models via deep architectures. Such deep net-
works are being applied to multitudinous domains. In mu-
sic, there have been advances in instrument classification [1],
genre classification [2–4], artist identification [2, 4], and
key detection [4]. In each of these works a new represen-
tation of low level audio features is implicitly learned from
the training data; in other work feature-learning for musi-
cal audio is explicit, e.g. [5–9].

Despite their increased popularity for classification and
regression, attributes of neural networks have not been fully
exploited to synthesize musical audio. The generative prop-
erties of Restricted Boltzmann Machines, which are the
building blocks of Deep Belief Networks, are not explicitly
used for musical sound synthesis in the literature. Autoen-
coders, which are feedforward building blocks for deep

Copyright: c©2014 Andy M. Sarroff et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

architectures have also not been studied as musical audio
synthesizers.

In this work we suggest that the features learned by such
networks may be directly modified to generate new musi-
cal audio. We provide a real time system for musical sound
synthesis based on shallow and deep autoencoders. Our
models are trained using the Pylearn2 machine learning li-
brary [10] which wraps around Theano [11] for fast eval-
uation of mathematical expressions. In the following sec-
tion, we give some background on autoencoders. Section
3 describes how we have trained several shallow and deep
autoencoders. It also addresses some of the challenges as-
sociated with learning meaningful mid-level representation
of the input features. We then describe our musical in-
terface for “playing” an autoencoding neural net. Future
directions are discussed in Section 5. All code is writ-
ten in Python and provided freely on github at https://
github.com/woodshop/deepAutoController. We
hope that this paper encourages other researches to exam-
ine how this highly adaptable class of models may be used
for creative musical tasks.

2. AUTOENCODERS

A classical autoencoder 1 is a deterministic feedforward
ANN comprised of an input layer, a hidden layer, and an
output layer (see Figure 1). We note that some authors
place Restricted Boltzmann Machines (RBMs) in the same
class as autoencoders. We follow the convention in [12]
and use therm term “autoencoder” when speaking of the
deterministic feedforward networks and reserve RBMs for
the stochastic generative variant.

Each layer of an autoencoder consists of one or more
units. The input and output layers of an autoencoder have
the same number of units. The autoencoder learns a map-
ping, or encoding, from an input vector x ∈ [0, 1]d to a
hidden representation y ∈ [0, 1]e. It also learns a map-
ping (decoding) from y to the output layer z ∈ [0, 1]d.
The inputs to the units in the hidden and output layers are
weighted sums of the activations of the layers immediately
preceding before them, i.e.

y = s(Wx+ bhid) (1)

and
z = s(Wprimey + bvis) , (2)

1 Autoencoders are also known as autoassociators.

mailto:sarroff@cs.dartmouth.edu
http://creativecommons.org/licenses/by/3.0/
https://github.com/woodshop/deepAutoController
https://github.com/woodshop/deepAutoController


x0

x1

x2

x3

x4

y0

y1

y2

y3

z0

z1

z2

z3

z4

Hidden
Layer

Input
Layer

Output
Layer

Figure 1. An autoencoder having 5-4-5 input, hidden,
and output units, respectively. The autoencoder’s objec-
tive function minimizes the difference between x and z, as
measured by some distance function.

where s(·) indicates an activation function (often a logistic
function such as the sigmoid or hyperbolic tangent). Acti-
vation function(s) for neural networks a key component of
design and continue to be a topic of active research.

When training an autoencoder we choose an objective
function that minimizes the distance between the values at
the input layer and the values at the output layer according
to some metric. Popular metrics include squared error:

d∑
k=1

(xk − yk)
2 , (3)

and cross entropy:

−
d∑

k=1

[xk log yk + (1− xk) log(1− yk)] . (4)

The architecture of autoencoders vary. The number of
units in the hidden layer may be less than that of the in-
put and output layers. In such cases the activations of the
hidden layer are a compressed encoding of the input sig-
nal. Alternatively we may choose to give the hidden layer
more units than the inner and outer layers. In such cases we
will usually enforce some sparsity or regularization on the
model so that the overcomplete set of weights may learn
a meaningful representation of the data. One method of
regularization is denoising [12], in which the model learns
to reproduce the input from a corrupted version of the in-
put, There are a number of corrupters used in practice, e.g.
gaussian distributed noise, dropout, and salt and pepper
corruption.

After training a shallow (single hidden layer) autoencoder,
we may use the activations of its hidden layer as the input
to a second autoencoder. In this way we may stack autoen-
coders. For each successive model, we may learn a more
abstract mapping from the layer beneath it. The layer-wise
pretraining of autoencoders and subsequent stacking and
finetuning is a predominant strategy for building deep neu-
ral networks.

Classical autoencoders are not inherently generative. They
are feedforward deterministic graphical models. Yet once a
shallow or deep autoencoder has been successfully trained,
we may expose the activations of the hidden units to a hu-
man operator. In one case, we may stream audio through
the model and modify the activations at one or more hidden
layers. Alternatively, we may remove the encoding part
of an autoencoder entirely and replace a subset of the hid-
den units with our own streaming values, propagating them
through the decoding half at an appropriate audio rate.

3. MODELS

As a proof of concept for an autoencoder synthesizer, we
trained several models and built an interface for manipulat-
ing the models. We discuss the models in this section and
discuss the interface in the next section.

We experimented with three model variants:

• Pretraining of a shallow autoencoder

• Deep pretraining of a second autoencoder

• Fine tuning of a deep composed autoencoder

The first model we train is a simple autoencoder like the
one depicted in Figure 1. In the second variant we take
the output of the hidden layer of an already-trained au-
toencoder and train a second autoencoder to reproduce the
mapped input. Hence if the size of the hidden layer of the
first encoder is N , then this is also the size of the input
and output layers of the second autoencoder. There is no
limit to how many stacked autoencoders we may train in
this fashion. For our purposes, we have limited ourselves
to stacked autoencoders of size 2. In the final variant we
build a deep composed autoencoder by taking the hidden
layers of our two pretrained autoencoders and finetuning
the weights of the whole system to improve reconstruction
of the original input.

We note that this is the order of events usually employed
for training a deep neural network. Each layer is pretrained
in succession as a shallow model with the previous layer
providing the input to the subsequent layer. When pre-
training is finished the system is “finetuned”, sometimes
by additionally attaching one last layer for softmax classi-
fication.

3.1 Data

We used 70,000 frames of magnitude Fourier transforms
randomly selected from a dataset of approximately eight
thousand songs existing across unique artists. The dataset
is roughly stratified across 10 musical genres. Of these
audio frames 10,000 were held out as a validation set and
10,000 were held out as a test set. Each audio frame was
computed from a 2,048-point FFT on audio having a sam-
pling rate of 22,050 samples per second. The entire data
set was normalized to the range [0, 1]. The magnitudes of
the first 1,025 frequency bins were given to the models as
the input vector of a shallow autoencoder.



Noise
HL1 0.00 0.01 0.02 0.05 0.10 0.25 0.50
8 0.0440
16 0.0414
64 0.0276
256 0.0187
512 0.0198 0.0664 0.0854 0.0921
1024 0.0352 0.0711 0.0927 0.0980
1500 0.0371 0.0360 0.0405 0.0547
2048 0.0983 0.1798 0.2114 0.0972
2500 0.0951 0.0951 0.0951 0.0951
3500 0.0951 0.0951 0.0951 0.0951

Table 1. Mean squared validation error on for pretraining of shallow autoencoders. The input/output layers of each model
had 1025 units. HL1 designates the number of hidden units. Noise designates the standard deviation of gaussian distributed
noise used to corrupt the input signal.

3.2 Training

Training was performed using stochastic gradient descent
on mini-batches of 100 frames. The learning rate was set
at 0.005 and a learning momentum 0f 0.5 was used. In
all training, the mean squared error was used as the cost
function. On pretraining of shallow networks, a sigmoid
activation function was used only on the hidden layer, with
linear activation on the output layer. When a second au-
toencoder was employed for a deep model, the sigmoid
activation function was used on both the hidden and output
layers of the second autoencoder. On some models we ad-
ditionally used gaussian noise as a network corruptor as a
denoising regularizer.

3.3 Discussion of Training Results

Table 1 shows the best mean squared error on the valida-
tion set for each model that was trained. It is clear that
the smaller networks that employed no denoising perform
the best. The optimal number of hidden units appears to
be 256, a feature size reduction of approximately 25%.
Increasing the hidden layers to yield overcomplete filters
does not appear to improve the models’ performance. This
is expected behavior for overcomplete models lacking reg-
ularization (such as no denoising). Adding some corrup-
tion to the model with 1500 hidden units appears to im-
prove results slightly.

Figure 2 shows the original spectrogram and a recon-
structed spectrogram using a 256-8-256 unit autoencoder
trained without denoising. We observe that much of the
fine-grained detail is lost by the autoencoder, especially
after the first few frequency bins. The figure does not em-
ulate depict desirable behavior for an optimal autoencoder.

Table 2 shows the validation performance of a second
autoencoder trained on the hidden units of a first autoen-
coder. Once again smaller networks perform better than
large ones and denoising does not appear to help much.

Table 3 shows the final validation and test error for two
models. The test error is significantly worse than the vali-
dation error—a sign of possible overfitting. The final fine-
tuned models perform worse than the deep architectures
presented in Table 2, suggesting that the learning rate may

Figure 2. Top: STFT of original audio file. Bottom: STFT
of reconstructed audio file.

Noise
HL1 HL2 0.00 0.10 0.25
256 8 0.0184 0.0184 0.0184
256 16 0.0184 0.0184 0.0184
256 32 0.0184 0.0184 0.0184
1500 8 0.0485 0.0484 0.0482
1500 16 0.0509 0.0506 0.0504
1500 32 0.0521 0.0540 0.0562

Table 2. Mean squared validation error for second-layer
pretraining of deep autoencoders. The input/output layers
of each model is designate by HL1. The models printed in
boldface in Table 1 were used to provide the inputs to the
models in this table. HL2 designates the number of hidden
units. Noise designates the standard deviation of gaussian
distributed noise used to corrupt the input signal.



HL1 HL2 Validation Test
256 8 0.0723 0.1006
1500 8 0.0953 0.1333

Table 3. Mean squared error on validation and test set for
deep composed autoencoders. The models printed in bold
in Tables 1 and 2 were connected and finetuned to reduce
overall reconstruction error.

have been inappropriate. Overall more complex models
perform much worse than the simpler topologies.

Neural networks have lots of hyperparameters over which
to search, including learning rate, regularization, layer width,
and model depth. The training results presented here indi-
cate that the hyperparameters chosen for the models were
probably inappropriate. Further work is needed to exam-
ine how these models might be improved. It is also no-
table that the input features—magnitude FFT coefficients
exhibit decreased average amplitude as the frequency bin
increases (cf. Figure 2. If many of the input features are
close to zero, then training may require more epochs and a
steeper learning rate to adjust.

We choose to work with FFT feature frames because given
an optimal autoencoder the reconstruction will be cleaner
than if we use band-limited features. Future models may
employ preemphasis and deemphasis stages to move aver-
age amplitudes of higher frequency bins closer to the mid-
dle of the models’ operating range.

4. INTERFACE

We programmed a real-time interface for interaction with
the hidden units of deep or shallow autoencoders. Which
ever type of model is given to the program, the innermost
hidden layer is exposed to the user for interaction. The
interface is designed to work with models that have been
trained using the Pylearn2 library, but generalizing the pro-
gram, to accept lists of parameters is trivial. The code
is freely available on github (https://github.com/
woodshop/deepAutoController) and will be ac-
tively improved/updated. The current version is written in
Python, but another version which is written in Objective-
C++ may be deployed soon.

The current code consists of two classes, one for the inter-
face, and one for the audio streaming and processing. The
program is executed with two input arguments: the path to
a pickled Pylearn2 model and the path to an audio file.

At the initialization of the application a Python Queue is
instantiated for message-passing between the Autocontrol
class and the PlayStreaming classes. The two classes are
briefly described below.

4.1 Autocontrol Class

The interface is designed to work with the Korg nanoKon-
trol2, a MIDI controller having 8 fader channel controls
and a transport. Although the code has been written for
this controller, it is easy to rewrite the mappings for an-
other MIDI controller. The Autocontrol class instantiates a
MIDI connection and uses the package Pygame to poll for

Figure 3. A snapshot of the information window show-
ing which hidden units are in view and what their scaling
settings are.

MIDI events and produce informational output in a sepa-
rate window 3. The interface receives and several defined
MIDI events form the nanoKontrol2:

• Track: Cyclically moves the view of hidden layer
units backward or forward by 8 units.

• Cycle: Shuts down the application

• Set: Sets the output of all units to 0.

• Rewind and Fast Forward: Switches between origi-
nal and synthesized audio

• Stop: Stops the audio and rewinds

• Play: Plays/pauses the audio output

• Record: Resets all hidden units to original activation
values

• Pan pot and fader: Control a scaling factor which
is multiplied against a particular unit’s activity, thus
suppressing or augmenting the activity at that unit.

4.2 PlayStreaming Class

This class is instantiated as a separate process. It loads the
parameters of the Pylearn2 model and an audio file. It polls
for messages from a queue instance. When a user interacts
with the midi controller this class instance receives a mes-
sage from the Autocontrol class instance. Audio frames
are read directly from an open audio file and transformed
to FFT frames. If the user has designated that the original
audio stream should be monitored, the audio frame is im-
mediately transformed back to the time domain and sent to
the output. Otherwise it is encoded (Eq. 1). The activation
of the hidden units are scaled by the user’s settings, and the
output is decoded (Eq. 2 back to an FFT frame, converted
to the time domain, and sent to the output.

https://github.com/woodshop/deepAutoController
https://github.com/woodshop/deepAutoController


The current version of the class only works with audio
files. But the class will be extended in the near future so
that it can also take sound from the computer’s audio in-
put, or operate in a no input mode. In the latter case, the
class will “fire” the hidden layer at an appropriate audio
rate while the user maintains full control over the scale
of the hidden layer units. A channel vocoder will provide
phase continuity for the inverse FFT.

5. FUTURE WORK AN CONCLUSIONS

This paper presents a first step toward extending the typical
use patterns of neural networks beyond classification and
regression to audio synthesis. Training an autoencoder so
that it captures a meaningful mid-level or higher-level rep-
resentation of the input is difficult. As has been shown in
Section 3 it may be difficult to optimize a model. Simply
adding extra layers to create a deep model does not auto-
matically yield a richer instance. There are lots of model
hyperparameters to finetune in ANNs, including learning
rate, weight decay, momentum, and other forms of regu-
larization. In the immediate future additional effort will
be placed toward building more robust models. This may
require preprocessing the input data so that it is more ap-
propriate for neural networks.

One drawback of using neural networks for musical au-
dio synthesis is that the learned weights may be negative.
Since weights may be subtractive as well as additive, it
is difficult to understand how they contribute to the model.
Future work will include investigating models that are trained
using nonnegative weight regularization, as well additional
sparsity constraints. It is the authors’ belief that neural net-
works having overcomplete, sparse nonnegative weights
will be easier to musically control.

The currently investigated models do not consider tem-
poral dependency. In the future we would like to apply
musical synthesis using temporally inclusive architectures
such as recurrent neural networks.

There are many other extensions to consider. For instance
we envision pretraining a deep autoencoder for optimal re-
construction, followed by supervised finetuning using in-
strument classes. If the model learns to respond well to
specific instruments (or other acoustic events), we may use
autoencoder synthesizers to remix music.

6. REFERENCES

[1] P. Hamel, S. Wood, and D. Eck, “Automatic identifi-
cation of instrument classes in polyphonic and poly-
instrument audio.” in Proceedings of the 10th Interna-
tional Society for Music Information Retrieval Confer-
ence (ISMIR-09), Kobe, Japan, October 2009, pp. 399–
404.

[2] H. Lee, P. T. Pham, Y. Largman, and A. Y. Ng, “Unsu-
pervised feature learning for audio classification using
convolutional deep belief networks.” in Proceedings of
the Neural Information Processing Systems Founda-
tion (NIPS-14), vol. 9, Vancouver, Canada, December
2009, pp. 1096–1104.

[3] P. Hamel and D. Eck, “Learning features from music
audio with deep belief networks.” in Proceedings of the
11th International Society for Music Information Re-
trieval Conference (ISMIR-10), Utrecht, Netherlands,
September 2010, pp. 339–344.

[4] S. Dieleman, P. Brakel, and B. Schrauwen, “Audio-
based music classification with a pretrained convo-
lutional network,” in Proceedings of the 12th inter-
national society for music information retrieval con-
ference (ISMIR-11), Miami, USA, October 2011, pp.
669–674.

[5] E. Humphrey, A. Glennon, and J. Bello, “Non-linear
semantic embedding for organizing large instrument
sample libraries,” in Proceedings of the IEEE Interna-
tional Conference on Machine Learning and Applica-
tions (ICMLA-11), Honolulu, HI., December 2011.

[6] E. M. Schmidt, J. J. Scott, and Y. E. Kim, “Fea-
ture learning in dynamic environments: Modeling the
acoustic structure of musical emotion.” in Proceedings
of the 13th international society for music information
retrieval conference (ISMIR-12), Porto, Portugal, Oc-
tober 2012, pp. 325–330.

[7] E. Humphrey and J. Bello, “Rethinking automatic
chord recognition with convolutional neural networks,”
in Proceedings of the 11th International Conference
on Machine Learning and Applications (ICMLA-12),
Boca Raton, USA, December 2012.

[8] E. Humphrey, T. Cho, and J. Bello, “Learning a robust
tonnetz-space transform for automatic chord recogni-
tion,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP-12), Kyoto, Japan, May 2012, pp. 453–456.

[9] E. M. Schmidt and Y. E. Kim, “Learning rhythm and
melody features with deep belief networks,” in Pro-
ceedings of the 14th International Society for Music In-
formation Retrieval Conference (ISMIR-13), Curitiba,
Brazil, November 2013.

[10] I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Du-
moulin, M. Mirza, R. Pascanu, J. Bergstra, F. Bastien,
and Y. Bengio, “Pylearn2: a machine learning re-
search library,” arXiv preprint arXiv:1308.4214, 2013.
[Online]. Available: http://arxiv.org/abs/1308.4214

[11] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin,
R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley,
and Y. Bengio, “Theano: a CPU and GPU math expres-
sion compiler,” in Proceedings of the Python for Sci-
entific Computing Conference (SciPy), Jun. 2010, oral
Presentation.

[12] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and
P.-A. Manzagol, “Stacked denoising autoencoders:
Learning useful representations in a deep network with
a local denoising criterion,” J. Mach. Learn. Res.,

http://arxiv.org/abs/1308.4214

	 1. Introduction
	 2. Autoencoders
	 3. Models
	3.1 Data
	3.2 Training
	3.3 Discussion of Training Results

	 4. Interface
	4.1 Autocontrol Class
	4.2 PlayStreaming Class

	 5. Future Work an Conclusions
	 6. References

