Resource Allocation and Dispensation Impact of
Stochastic Diffusion Search on Differential
Evolution Algorithm

Mohammad Majid al-Rifaie and John Mark Bishop and Tim Blaekw

Abstract This work details early research aimed at applying the pwegsource
allocation mechanism deployed in Stochastic Diffusionr&8@4SDS) to the Dif-
ferential Evolution (DE), effectively merging a nature pired swarm intelligence
algorithm with a biologically inspired evolutionary algitm. The results reported
herein suggest that the hybrid algorithm, exploiting infation sharing between the
population, has the potential to improve the optimisatiapability of classical DE.

1 Introduction

In the literature, nature inspired swarm intelligence &tans and biologically in-
spired evolutionary algorithms are typically evaluatethgenchmarks that are
often small in terms of their objective function computabcosts [9, 39]; this is
often not the case in real-world applications. This papaniattempt to pave the way
for more effectively optimising computationally experesiobjective functions, by
deploying the SDS diffusion mechanism to more efficientlgadte DE resources
via information-sharing between the members of the pojmulat
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The use of SDS as an efficient resource allocation algorithsifisst explored in
[21, 26, 28] and these results provided motivation to irgest the application of
the information diffusion mechanism originally deployed3DS with DE.

Communication — social interaction or information exchargbserved in social
insects is important in all swarm intelligence and evolugity algorithms, including
SDS and DE algorithms.

This work investigates the communication between the mesntifehe popula-
tion as the mean to maintain population diversity, whichaisilfated by using the
resource allocation and resource dispensation of SDSitlgor

In a former work [3], SDS is merged with Particle Swarm Op8ation (PSO)
algorithm and the promising results of this hybridisatitonaside some statistical
analysis of its performance are reported.

Although in real social interactions, not just the synteattinformation is ex-
changed between the individuals but also semantic ruledbaliefs about how to
process this information [18], in typical swarm intelligenalgorithms, only the
syntactical exchange of information is considered.

In the study of the interaction of social insects, two impattlements are the in-
dividuals and the environment, which will result in two igtation schemes: the first
one is the way in which individuals self-interact and theogetone is the interaction
of the individuals with the environment [6]. Self-interiact between individuals is
carried out through recruitment strategies and it has beemodstrated that, typi-
cally, differing recruitment strategies are used by an®§ find honey bees. These
recruitment strategies are used to attract other membettseafociety to gather
around one or more desired areas, either for foraging pegosfor moving to a
new nest site.

In general, there are many different forms of recruitmeragtsgies used by so-
cial insects; these may take the form of local or global sgi&s; one-to-one or
one-to-many communication; and deploy stochastic or detéstic mechanisms.
The nature of information exchange also varies in diffesmtironments and with
different types of social insects. Sometimes the inforara¢ixchange is quite com-
plex where, for example it might carry data about the dimettsuitability of the
target and the distance; or sometimes the information istpasisimply a stimula-
tion forcing a certain triggered action. What all these wéanent and information
exchange strategies have in common is distributing usefatmation throughout
their community [23].

In this paper, the swarm intelligence algorithm and the @vmhary algorithm
are first introduced, followed by the hybridisation stratejfterwards, the results
are reported and the performance of the hybrid algorithnisisugsed.

1 The ‘information diffusion’ and ‘randomised partial obfee function evaluation’ processes enable SDS to more
efficiently optimise problems with costly [discrete] obige functions; see Stochastic Diffusion Search Sectiorafo
introduction to the SDS metaheuristic.
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2 Stochastic Diffusion Search

This section introduces SDS [5], a multi-agent global deantd optimisation al-
gorithm, which is based on simple interaction of agentspfiiesl by one species
of ants,Leptothorax acervorum, where a 'tandem calling’ mechanism (one-to-one
communication) is used, where the forager ant which findgdabd location, re-
cruits a single ant upon its return to the nest, and therefaréocation of the food
is physically publicised [24]). A high-level descriptiori 8DS is presented in the
form of a social metaphor demonstrating the proceduresitiirovhich SDS allo-
cates resources.

SDS introduced a new probabilistic approach for solving-fiepattern recogni-
tion and matching problems. SDS, as a multi-agent populdigsed global search
and optimisation algorithm, is a distributed mode of comaioh utilising interac-
tion between simple agents [22].

Unlike many nature inspired search algorithms, SDS hasoamgtmathemati-
cal framework, which describes the behaviour of the algariby investigating its
resource allocation [26], convergence to global optimui,[®bustness and mini-
mal convergence criteria [25] and linear time complexit9][2n order to introduce
SDS, a social metaphtite Mining Game[1] is used.

2.1 The Mining Game

This metaphor provides a simple high-level descriptionhef behaviour of agents
in SDS, where mountain range is divided into hills and eadhiddivided into
regions:

A group of miners learn that there is gold to be found on thés lnif a mountain range
but have no information regarding its distribution. To nmaide their collective wealth, the
maximum number of miners should dig at the hill which has tbleast seams of gold (this
information is not available a-priori). In order to solvestiproblem, the miners decide to
employ a simple Stochastic Diffusion Search.

e At the start of the mining process each miner is randomlycalied a hill to mine (his
hill hypothesis ).

e Every day each miner is allocated a randomly selected regiothe hill to mine.

At the end of each day, the probability that a miner is hapgraportional to the amount
of gold he has found. Every evening, the miners congregateeach miner who is not
happy selects another miner at random for communicatighelthosen miner is happy, he
shares the location of his hill and thus both now maintais their hypothesidy; if not, the
unhappy miner selects a new hill hypothesis to mine at random

As this process is isomorphic to SDS, miners will naturadlif-erganise to congre-
gate over hill(s) of the mountain with high concentratiorgofd.
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In the context of SDS, agents take the role of miners; actjemts being "happy
miners’, inactive agents being 'unhappy miners and the tgjeypothesis being the
miner’s "hill-hypothesis’.

Algorithm 1 The Mining Game

Initialisation phase
Al'l ocate each mner (agent) to a random
hill (hypothesis) to pick a region randonly

Until (all miners congregate over the highest
concentration of gold)

Test phase
Each miner eval uates the anmount of gold
they have mined (hypotheses eval uation)
Mners are classified into happy (active)
and unhappy (inactive) groups

Di f fusi on phase
Unhappy miners consider a new hill by
either communi cating with another niner
or,if the selected mner is also
unhappy, there will be no information
fl ow between the mners; instead the
sel ecting mner nust consider another
hill (new hypothesis) at random
End

2.2 SDS Architecture

The SDS algorithm commences a search or optimisation balisihg its popu-
lation (e.g. miners, in the mining game metaphor). In any SB&ch, each agent
maintains a hypothesib, defining a possible problem solution. In the mining game
analogy, agent hypothesis identifies a hill. After inigaliion two phases are fol-
lowed (see Algorithm 1 for these phases in the mining gamehifgh-level SDS
description see Algorithm 2):

e Test Phase (e.g. testing gold availability)
¢ Diffusion Phase (e.g. congregation and exchanging of iméion)

Algorithm 2 SDS Algorithm

Initialising agents()

Wil e (stopping condition is not net)
Testing hypot heses()
Di f fusi on hypot heses()

End
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In the test phase, SDS checks whether the agent hypothasisdsessful or not
by performing a partial hypothesis evaluation which resuarboolean value. Later
in the iteration, contingent on the precise recruitmeritegfy employed, successful
hypotheses diffuse across the population and in this wayrnmdtion on potentially
good solutions spreads throughout the entire populati@yents.

Inthe Test phase, each agent perfopargial function evaluation, pFE, which is
some function of the agent’s hypothe$E,E = f(h). In the mining game the partial
function evaluation entails mining a random selected megio the hill, which is
defined by the agent’s hypothesis (instead of mining allaegion that hill).

In the Diffusion phase, each agent recruits another ageimtieraction and po-
tential communication of hypothesis. In the mining gameapbor, diffusion is
performed by communicating a hill hypothesis.

2.3 Standard SDS and Passive Recruitment

In standard SDS (which is used in this papggssive recruitment mode is em-
ployed. In this mode, if the agent is inactive, a second agerandomly selected
for diffusion; if the second agent is active, its hypothéssommunicatedd]ffused)
to the inactive one. Otherwise there is no flow of informati@tween agents; in-
stead a completely new hypothesis is generated for therfastive agent at random
(see Algorithm 3).

Algorithm 3 Passive Recruitment Mode

For ag = 1 to No_of _agents
If (ag is not active)
r_ag = pick a random agent ()
If (r_ag is active)
ag. set Hypot hesi s(r_ag. get Hypot hesi s())
El se
ag. set Hypot hesi s(randonHypot hsi s())
End

2.4 Partial Function Evaluation

One of the concerns associated with many optimisation ekgos (e.g. Genetic
Algorithm [11], Particle Swarm Optimisation [17] and etis)the repetitive evalu-
ation of a computationally expensive fithess functions.dme applications, such
as tracking a rapidly moving object, the repetitive functavaluation significantly
increases the computational cost of the algorithm. Theeefo addition to reduc-
ing the number of function evaluations, other measures earsbd in an attempt to
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reduce the computations carried out during the evaluafieach possible solution,
as part of the overall optimisation (or search) processes.

The commonly used benchmarks for evaluating the performahswarm intel-
ligence algorithms are typically small in terms of their@dtjve functions computa-
tional costs [9, 39], which is often not the case in real-@agpplications. Examples
of costly evaluation functions are seismic data interpi@td39], selection of sites
for the transmission infrastructure of wireless commutideanetworks and radio
wave propagation calculations of one site [38] etc.

Costly objective function evaluations have been investigander different con-
ditions [14] and the following two broad approaches haven@eposed to reduce
the cost of function evaluations:

e Thefirstis to estimate the fitness by taking into account thess of the neigh-
bouring elements, the former generations or the fitness efstime element
through statistical techniques introduced in [4, 7].

e Inthe second approach, the costly fitness function is subeti with a cheaper,
approximate fitness function.

When agents are about to converge, the original fitnessiamcan be used for
evaluation to check the validity of the convergence [14].

Many fitness functions are decomposable to components éimabe evaluated
separately. In partial evaluation of the fitness functioB DS, the evaluation of one
or more of the components may provide partial informatioguae the subsequent
optimisation process.

3 Differential Evolution

DE, one of the most successful Evolutionary Algorithms (EAsa simple global
numberical optimiser over continuous search spaces whashfinst introduced by
Storn and Price [32, 33].

DE is a population based stochastic algorithm, proposestiech for an optimum
value in the feasible solution space. The parameter veofotise population are
defined as follows:

whereg is the current generatio is the dimension of the problem space and
NP is the population size. In the first generation, (whgea 0), theit" vector’s jth
component could be initialised as:

X2} = Xmin,j + T (Xmax,j — Xmin,j) )

wherer is a random number drawn from a uniform distribution on thé im
tervalU (0, 1), andXnin, Xmax are the lower and upper bounds of tﬁ*édimension,
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respectively. The evolutionary process (mutation, carssand selection) starts af-
ter the initialisation of the population.

3.1 Mutation

At each generatiog, the mutation operation is applied to each member of the pop-
ulation x? (target vector) resulting in the corresponding vecﬁ)(mutant vector).
Among the most frequently used mutation approaches aretosing:

e DE/rand/1

Vig = Xgl +F (ng - ng) 3)
e DE/target-to-best/1
V=X F (g =) +F (8, —8) “@
e DE/best/1
Vig = Xgeﬁ +F (Xgl B ng) (5)
e DE/best/2
Vig:XgeﬂJrF(X?liX?z)JrF(fziX?s) (6)
e DE/rand/2
V?:X?1+F(X? _X?3)+F(X?4_X?5) (7)

wherery, ry, r3, r4 are different from and are distinct random integers drawn
from the rangé1, NPJ; In generatiory, the vector with the best fitness valueds,
andF is a positive control parameter for constricting the difece vectors.

3.2 Crossover

Crossover operation, improves population diversity tigfoexchanging some com-
ponents ofvig (mutant vector) Withxig (target vector) to generau%4 (trial vector).
This process is led as follows:

v, if r <CRorj=rg
x;, otherwise

wherer is a uniformly distributed random number drawn from the umierval
U (0,1), rq is randomly generated integer from the raflg®]; this value guarantees
that at least one component of the trial vector is differemtfthe target vector. The
value ofCR, which is another control parameter, specifes the levehbéiitance
from vig (mutant vector).
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3.3 Sdection

The selection operation decides Whetiq”e(target vector) ouig (trial vector) would
be able to pass to the next generatiga-(L). In case of a minimisation problem, the
vector with a smaller fithess value is admitted to the nexegation:

B 1) < ()
X = (©)
x?, otherwise

wheref (x) is the fithess function.
Algorithm 4 summarises the behaviour of DE algorithm

Algorithm 4 DE Pseudo Code

Initialise population

For ( generation =1 to n)
For ( agent = 1 to NP )
Mitation : generate nutant vector
Crossover: generate trial vector
Sel ection: generate target vector for next generation
End

Find agent with best fitness value
End

DE, like other evolutionary algorithms, suffers from preora convergance
where the population lose their diversity too early and gggtpied in local optima,
therefore performing poorly on problems with high dimensamd many local op-
tima.

DE is known to be relatively good in comparison with other Esk&l PSOs at
avoiding premature convergence. However, in order to redbe risk of prema-
ture convergence in DE and to preserve population diversetyeral methods have
been proposed, among which are: multi-population appes{® 19, 20, 34, 35];
providing extra knowledge about the problem space [30, iBf¢rmation storage
about previously explored areas [13, 41]; utilising adaptnd control parameters
to ensure population diversity [40]; using CrowdingDE f@aaking and maintaining
multiple optima [31, 36].

This paper proposes information exchange and agent disp@em¢SDS-led ran-
dom restart) as methods to avoid premature convergencerasdrpe population
diversity.
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4 Merging SDS and DE Algorithms

The initial motivating thesis justifying the hybridisatiof SDS and DE is the partial
function evaluation deployed in SDS, which may mitigate liigh computational
overheads entailed when deploying a DE algorithm onto alpnolwith a costly

fithess function. However, before commenting on and expiptiis area — which
remains an ongoing research — an initial set of experimemsdto investigate if

the information diffusion mechanism deployed in SDS maytsmivn improve DE

behaviour. These are the results that are primarily regantéhis paper.

In this new architecture, a standard set of benchmarks & tasevaluate the
performance of the hybrid algorithm. The resource allacafor recruitment) and
partial function evaluation sides of SDS (see Section 2:d)used to assist allo-
cating and dispensing resources (e.g. members of the DHaimm) after partially
evaluating the search space.

Each DE agent has three vectors (target, mutant and trisdngrand each SDS
agent has one hypothesis and one status. In the experinpentee here (hybrid
algorithm), every member of DE population is an SDS agentttagether termed
SDEAgents. In SDEAgents, SDS hypotheses are defined by the DE targeiryand
an additional boolean variable (status) determining wéretthe SDEAgent is active
or inactive (see Figure 1). The behaviour of the hybrid atborin its simplest form
is presented in Algorithm 5.

Fig. 1 Encapsulating SDS agent and DE agent as SDE-Agent

SDEAgent
SDS Agent
Status Hypothesis
Active / Inactive DE agent

4.1 Test and Diffusion Phases in the Hybrid Algorithms

In the test-phase of a stochastic diffusion search, eacht ége to partially eval-
uate its hypothesis. The guiding heuristic is that hypathekat are promising are
maintained and those that appear unpromising are discaméte context of the
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Algorithm 5 Hybrid Algorithm

Initialise SDEAgents
For ( generation = 1 to generationsAllowed )

For ( SDEAgent = 1 to NP )

Mutation : generate nutant vector

Crossover: generate trial vector

Sel ection: generate target vector for next generation
End For

If ( generation counter MOD n == 0 )
/1 START SDS
/| TEST PHASE
For ag = 1 to NP
r_ag = pick-random SDEAgent ()
If ( ag.targetVecFitness() < r_ag.targetVecFitness() )
ag. set Activity (true)
El se
ag. set Activity (false)
End | f
End For

/1 DI FFUSI ON PHASE
For ag = 1 to No_of SDEAgents

If ( ag is not active )
r_ag = pick-random SDEAgent ()
If ( r_ag is active )
ag. set Hypo( r_ag. get Hypo() )=
El se
ag. set Hypo( randontypo() )
End | f
End | f

End for
End |f
/1 END SDS
Fi nd SDEAgent with best fitness val ue
End For

* | n setHypo() and getHypo(), Hypo refers to
the SDEAgent’s hypothesis (target vector).

hybrid DE-SDS algorithm, it is clear that there are manyatéht tests that could be
performed in order to determine the activity of each SDEAgArvery simple test
is illustrated in Algorithm 5. Here, the test-phase is symqanducted by comparing
the fitness of each SDEAgent’s target vector against thatafidom SDEAgent; if
the selecting SDEAgent has a better fitness value, it wilbbezactive, otherwise it
will be flagged inactive. On average, this mechanism wilbea$0% of SDEAgents
remain active from one iteration to another.

In the Diffusion Phase, each inactive SDEAgent picks anmaBizEAgent ran-
domly, if the selected SDEAgent is active, the selected S@#fA communicates
its hypothesis to the inactive one; if the selected SDEAgemiso inactive, the
selecting SDEAgent generates a new hypothesis at randontfr®search space.
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As outlined in the pseudo-code of the hybrid algorithm (ségoAthm 5), after
eachn generations, one full SDS cyélis executed. The hybrid algorithm is called
SDSNDE, wheren refers to the number of generations before an SDS cycle ghoul
run.

In the next section, the experiment setup is reported ancethdts will follow.

5 Results

In this section, a number of experiments are carried out laagérformance of one
variation of DE algorithm (DE/best/1) is contrasted agathe hybrid algorithm,
SDSnDE.

5.1 Experiment Setup

The algorithms are tested over a number of benchmarkingiumscfrom Jones et
al [15] and De Jong [16] test suite, preserving differentelisionality and modal-
ity (see Tables 1 and 2, where benchmark function equatieasible bounds, the
number of dimensions in which the benchmarks are used inxperinents, the
optimum of each function which is knowapriori and also the boundaries where
particles are first initialised are presented).

The first two functions (Sphere/Parabola and Schwefel Ja2¢ fa single mini-
mum and are unimodal functions; Generalised RosenbrodkifieensiorD, where
D > 3, is multimodal; Generalised Schwefel 2.6, Generalizedtiitan, Ackley,
Generalized Griewank, Penalised Function P8 and Pen&lisection P16 are com-
plex high-dimensional multi-modal problems with many loodnima and a sin-
gle global optimum; Six-hump Camel-back, Goldstein-Priskekel 5, 7 and 10
are lower-dimensional multi-modal problems with fewerdbminima. Goldstein-
Price, Shekel 5, 7 and 10 have one global optimum and Six-HDampel-back has
two global optima symmetric about the origin.

In order not to initialise the DE agents on or near a regiorhagearch space
known to have the global optimumegion scaling technique is used [10], which
makes sure DE agents are initialised at a corner of the sspeate where there are
no optimal solution.

The experiments are conducted with the population of 10@tsgd&he halting
criterion for this experiment is when the number of generetireaches,200.

There are 30 independent runs for each benchmark functidhenresults are
averaged over these independent trials.

Accuracy, which is used as performance measure, is defined by theygobihe
best agent in terms of its closeness to the optimum posifienowledge about the

2 Test Phase: decides about the status of each SDEAgent, tene@adther; Diffusion Phase: shares information ac-
cording to the algorithm presented
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Table 1 Benchmark Functions Equations

Function Equation

D)
Sphere/Parabola f1= Z X2

D i
Schwefel 1.2 =5 (3 x)?

i=1 j=1

D-1
Generalised Rosenbrodkz = 100 x|+1 — x2 + (x5 — 1)2}

i=1

D
Generalised Schwefel 2.6, = — 5 % sin(/X)
i=1

D
Generalised Rastrigin |fs = ¥ {x? —10cog2m%)+ 10}

i£1

D
Ackley fo= 20exp{ 0.2 % z X }
D £

exp{ 3 p3 cos(2nxi)} +20+e
Generalised Griewank |f; = ﬁ z X — n cos( ) +1
Penalized Function P8 |fg = Z 103|n’-(7'ly1)-~-zI Ly {1+ 10sirf (myi41) } + (Yo — )2}

+321H(x%,10, 100,4)
yi=1+z(x+1)
k(x —a)™ x>a
p(x,akm =<0 —a<x<a
kK(—x —a)™ x < —a
Penalized Function P16 fg = 0.1{sin2 (3mx1) + 3Pt (% — 1)% {1+ sir? (3mx1) } + (xp — 1)? x
{1+sir? (2mxp) } } + 324 1 (%, 5,100,4)
Six-hump Camel-back | f1o=4x§ — 2.1x} + 3)§ + XX — 4% + 44

Goldstein-Price fl1= {1+ (X1 + %2 +1)% (19— 14xy + 3¢ — 14 + Bxyxp + 3x§)} x
{30+ (2~ 30)” (18- 324 + 12¢ + 48 — 36wxe + 273) }
-1
Shekel 5 f1p= —z?ﬂ{zj‘zl(xj —aj)2+ci}
-1
Shekel 7 fig= —ZLl{Z?zl(Xj —a;j)z—s-ci}
10 4 2 -t
Shekel 10 f14:—zi:1{zj:1(xj—a,») +ci}

optimum position is knowm priori (which is the case here), the following would
define accuracy:

Accuracy(Sit) = |f (Xeg) — T (Xopt)| (10)

Wh(_arexgast is the best agent at generatigrandxqy is the position of the known
optimum solution.

Another measure used, igliability, which is the percentage of trials where
swarms converge with a specified accuracy and it is defined by:
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Table 2 Benchmark Functions Details

Function D |Feasible Bounds Optimum Initialisation
f, |Sphere/Parabola 30| (-100100° 0.0° (50,100)°
f, [Schwefel 1.2 30| (—100100)° 0.0° (50,100°
f3 |Generalized Rosenbroc30|  (—30,30)° 1.0° (15,30)°
f, |Generalized Schwefel 280 (—500,500)° 4209687 (250,500)°
f5 |Generalized Rastrigin |30| (—5.12,5.12)° 0.0P (2.56,5.12)°
fe |Ackley 30 (-3232° 0.0° (16,32)°
f; |Generalized Griewank |30 (—600,600)° 0.0° (300,600)°
fg |Penalized Function P8 |30|  (—50,50)° ~-1.0° (25,50)°
fg [Penalized Function P1630,  (—50,50)° 1.0° (25,50)°

f10|Six-hump Camel-back |2|  (-5,5)° (—0.08980.7126),| (2.5,5)°
(0.0898 —0.7126)

f11|Goldstein-Price 2| (-22P° (0,-1) (1,2)P
f12|Shekel 5 4 (0,10)° 4.0° (7.5,10)°
f13|Shekel 7 4| (0,10° 4.0° (7.5,10)°
f1a|Shekel 10 4| (0,10° 4.0° (7.5,10)°
'
Reliability = % x 100 (11)

wheren is the number of trials in the experiment amds the number of successful
trials.

In this paper, SDSNDE, is presented with few variations of parameter, n (the
number of generations before an SDS cycle is perfornmed)s, 50, and 200. These
values were selected merely to provide a brief initial ergtion of the behaviour of
the new hybrid algorithm over three relatively widely segiad parameter values;
no claim is made for their optimality.

5.2 Results

Table 3 shows the performance of the various hybrid algmstialongside DE al-
gorithm. For each benchmark and algorithm, the table shioeva¢curacy measure.
The overal reliability of each algorithm is also reported.

The focus of this paper is not finding the bestor SDSNDE (for this set of
benchmarks), but rather investigate the effect of SDS #lguaron the performance
of DE algorithm.



14 Mohammad Majid al-Rifaie and John Mark Bishop and Tim Rieell

Table 3 Accuracy and Reliability Details

Accuracy (tstandard error) is shown with two decimal places after 20sof 2,000 generations;
and the reliability of each algorithm over all the benchnsaiscgiven in the last row of the table.
For each benchmark, algorithms which aignificantly better (see Table 4) than the others are
highlighted. Note that the highlighted algorithms do ngingiicantly outperform each another.

H5: SDSnDE H50: SDSnDE  H200: SDSnDE|H50D: Dispenser
DE n=>5 n =50 n =200 n=50
generate Hypothesis generate Hypothesis generate Hypothesis | SDS Test + Dispense
fl 1.06E-10%-7.92E-10830) | 5.29E-16-4.72E-10(28) 5.52E-92+4.03E-92(30) 4.70E-104-3.11E-10430) |2.03E-85-1.61E-8530)
fo |1.20E-03-2.60E-040) |1.21E+0%:188E+000)  2.55E-05:7.27E-06(0) 1.48E-04-3.86E-05(0) 8.58E-04:2.42E-04(0)
f3 |3.66E+01:823E+00(0) |4.40E+01:6.46E+00(0) 1.71E+00:5.36E-01(0) 3.87E+00:2.29E+00(0) | 1.26E+00t3.22E-01(0)
fs |5.00E402:1.236+02(0) |3.02E-02:8.28E-03(0) 4.83E-01:4.37E-01(0) 6.23E-01+:2.39E-01(0) 2.50E-02:9.26E-03(0)
f5 1.61E+02:8.49E+00(0)  |2.67E-01-8.15E-02(2) 1.34E+01:7.49E+00(0) 2.79E+01:1.74E+00(0) 2.41E+01-1.00E+01(9)
f5 1.45E+0%1.34E+00(0)  |2.36E-06+1.10E-06(0) 1.02E-01:7.00E-02(17) 3.23E-011.11E-01(19) 1.45E-01+1.34E-01(21)
f7 |5.26E-02-1.05E-021)  |3.85E-02-1.43E-02(6) 1.99E-02:-4.40E-03(5) 2.82E-02:6.76E-034) 7.42E-02:5.50E-02(2)
fg |1.31E+01:307E+003) |5.66E-12:311E-1230)  1.96E-02:128E-02(24)  10SE-02L5.77E-03(25)  |7.00E-03:4.86E-03(28)
fg 3.24E+00:2.41E+00(8) 1.51E-10:9.08E-11(29) 5.27E-01-3.68E-01(19) 1.03E-02:5.72E-03(26) 3.50E+01-1.73E+01(23)
flO 1.90E-01-6.41E-02(23) |2.48E-04+2.34E-04(28) 4.44E-17+-1.65E-17(30) 5.92E-17+-1.82E-17(30) 4.44E-17+1.65E-17(30)
f11 |2.556+02:5.97E+01(1) |1.13E-08:113E-08(29)  0.00E+00:0.00E+00(30) ~ 2.96E-17-2.96E-17(30) | 0.00E-+00-0.00E+00(30)
f12 5.05E+00-6.73E-17(0) | 1.25E+00:4.77E-01(24) 3.02E+00-5.43E-01(14) 3.37E+00:5.31E-01(7) 4.80E+06-2.52E-01(2)
f13|5.27E406-0.00E400(0) |7.03E-01:3.33E-01(23)  1.28E+00-4.33E-01(11)  3.78E+005.56E-01(0) 4.83E+00:3.09E-01(1)
14 |5.36E+00:6.00E-17(0)  |3.57E-01:2.48E-0127)  5.81E-01:3.26E-01(13)  4.19E+00-4.86E-01(0) 4.82E+00:2.99E-01(0)
> 66 226 193 171 176
15.71% 53.81% 45.95% 40.71% 41.90%

As Table 4 shows, over all benchmarks, other thann (DE — H5), DE al-
gorithm does not significantly outperform any of the hybrigagithms SDSnDE
(n= 5,50, 200). On the other hand, in most cases (dsgs, fg and fi1g_14), the
hybrid algorithms outperform the classical DE algorithigngficantly.

As detailed in Table 3, irf; 3, f11, the performace of H5, which has the highest
rate of information exchange, is weaker than the other byddgorithms with lower
information sharing. This implies that the performancearhe problems might be
negatively affected by excessive information exchangg. (e. f1, Fqs > Fyso >
Fr200, WhereF is the fitness value).

However in another set of problems, higher rate of infororaéxchange (more
communication between the agents) results in better owtc(y. f4 6, fg_o,
f12_14). More specifically, inf4_g and f12_14 fewer communication between the
agents, corresponds to worse performance of the hybriditigts Fq5 < Faso <

F200)-
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This demonstrates the importance of deploying the riglefufeacy of communi-
cation and information exchange.

6 Discussion

The resource allocation process underlying SDS offergtbl@sely coupled mech-
anisms to the algorithm’s search component to speed itsecgamce to global op-
tima. The first component is ‘efficient, non-greedy inforioatharing’ instantiated
via positive feedback of potentially good hypotheses betwagents; the second
component is the dispensation mechanism — SDS-led randstarts — deployed
as part of the diffusion phase; the thrid component is rantmartial hypothesis
evaluation’, whereby a complex, computationally expemsibjective function is
broken down into ‘k independent partial-functions’, eacle @f which, when eval-
uated, offers partial information on the absolute qualftgurrent algorithm search
parameters. It is this mechanism of iterated selection raihdom partial function
that ensures SDS does not prematurely converge on locahnuini

The resource allocation and dispensation components ofi$th® hybrid algo-
rithm are executed in the ‘Diffusion Phase’, where inforimrais shared (diffused)
among SDEAgents (see Algorithm 3). Analysis of the perfaragaof the hybrid
algorithm (see results above) demonstrates that adding@iresource allocation
and dispensation mechanisms to the classical DE archigeictyroves the overall
performance of the algorithm (i.e. it enhances algorithouaacy and reliability, as
defined herein).

To further analyse the role of SDS in the hybrid algorithrhe, Diffusion Phase
of SDS algorithm is modified (see Algorithm 6) to investigtite dispensation ef-
fect caused by randomising a selection of agent hypothdsasaanumber of DE
function evaluations (effectively instantiating a DE w8DS-led random-restarts).
In other words, after the SDS test-phase, the hypotheseabf mactive SDEAgent
is randomised.

As detailed in Table 3, although, information sharing plagsmportant role in
the performance of hybrid DE algorithm, the significance ispdnsation mecha-
nism (in randomly restarting some of the agents) in imprg\uhre performance of
DE algorithm cannot be discarded.

In few cases {3 4g), solely the dispensation mechanism (H50D), which is fa-
cilitated by the test-phase of the SDS algorithm, demotestra slightly better
performance compared to the hybrid algorithm (see TableH8ywever, in the
majority of the cases, the hybird algorithms outperform mhedified algorithm:
f12, fs_7, f9, f12_14, Out Of which fg and f12_14 are performing significantly better
(see Table 4). Also it is shown that the algorithm with modifééffusion phase is
less reliable than its corresponding hybrid algorithm.

The results show the importance of coupling the SDS-le@restechanism (dis-
pensation mechanism) and the communication of agents venelhoth deployed
in SDS algorithm.
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Table 4 TukeyHSD Test Results for Accuracy

Based on TukeyHSD Test, if the difference between each palgorithms is significant, the pairs
are marked. X—o shows that the left algorithm is signifioabttter than the right one; and 0—X
shows that the right algorithm is significantly better thae dne, on the left.

DE-H5 DE-H50 DE-H200 DE-H50D H5-H50 H5-H200 H5-H50D H50-HR0 H50-H50D H200-H50D
| - . . . - . . . - .
fg X-0 - - - 0-X o0-X o0-X - - -
f3 - 0-X 0-X 0-X 0-X o-X 0-X - - -
f4 0-X o0-X o0-X 0-X - - - - - -
f5 0-X 0-X o0-X 0-X - - - - - -
f6 0-X 0-X o0-X 0-X - - - - - -
| - . . . - . . . - .
f8 o-X 0-X o0-X o0-X - - - — - -
f9 - - - X-0 - - X-0 - X-0 X-0
f]_() o-X 0-X o0-X o0-X - - - — - -
f]_ 1 0-X o0-X o-X 0-X - - - - - -
le o-X o-X 0-X - X-0 X-0 X-0 - X-0 -
flg o-X o-X 0-X - - X-0 X-0 X-0 X-0 -
f14 0-X o0-X - - - X-0 X-0 X-0 X-0 -

Algorithm 6 Hybrid Algorithm Control

/1 DI FFUSI ON PHASE
For ag = 1 to No_of _agents
If ( ag is not active )
ag. set Hypo( randonHypo() )
End | f
End For

The third SDS component feature, which is currently onlylioitly exploited by
the hybrid algorithm, is ‘randomised partial hypothesialeation’. In the Mining
Game (see Section 2.1), “At the start of the mining procesh @siner maintains
a [randomly allocated] hypothesis - their current beliefa&st hill’ to mine”; and
each miner mines one small randomly selected area of thigalfiler than the en-
tirety of it (i.e. revealing a partial estimate of the thedjobntent of the entire hill);
following this approach, each miner forms a partial viewrd gold content of their
hill hypothesis (which is merely part of the overall mounteange: the entire search
space).

In typical optimisation algorithms, the search processies the evaluation of
one point in the n-dimensional search space (iterating gectibe function eval-
uation). In DE population, in addition to this informatiogach agent has implicit
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partial knowledge from other agents (derived from the niotatcrossover and se-
lection mechanisms) comprising the historical evidencpliit in the prior [m]
objective-function evaluations the population has penfed. Thus, since each agent
finds its current position by using this implicit knowleddehas partial knowledge
of the full search space.

In the hybrid algorithm each SDEAgent maintains a fithessevabhich is the
best objective function value it has currently found, basedts exploration of the
search space so far. Thus constituted, each SDEAgent&t tzggtor defines a ‘par-
tial view’ of the entire search space (via the partial int&icn it has with the rest
of the population through mutation, crossover and selegtidence, when the fit-
ness values of two SDEAgents’ target vector are compardtkitest-phase of the
hybrid algorithm, two partial views of the entire searchcgare contrasted. This
is analogous to the ‘test’ process of the Mining Game as ih pobcesses, agents
become active or inactive contingent upon the agent’s atialu of a randomised
partial view of the entire search space.

In both the Mining Game and the new hybrid SDSnDE algorithma,rotion of
partial-function evaluation differs importantly from thtaaditionally deployed in a
simple discrete partial function SDS, where, for a givero$@arameter values (the
agent hypothesis) a complex objective function is brokémimcomponents, only
one randomly selected of which will be evaluated and theemisnt agent-activity
is based on this. Clearly, as this process merely evalugm®ithe total number
of computations required for the full hypothesis evaluatib concomitantly offers
a potentially significant performance increase. Whereétsamew hybrid SDSnDE
algorithm, the objective function is evaluated in-totangsa given set of parameter
values (the agent’s hypothesis) and the subsequent agevrityds based on this. In
the former case, the agent exploits knowledge of the pattiglctive function and in
the process gains a potential partial-function performeaticidend; in the latter the
agent merely exploits partial knowledge of the search spétbe@ut the concomitant
explicit partial-function performance increase. Ongoimyk, on computationally
more complex benchmark problems, seeks to exploit thigigdeunction dividend’
with the hybrid SDSnDE algorithm; if successful, this offdurther, potentially
significant, performance improvements for the new hybrgethm.

6.1 Conclusion

This paper presents a brief overview about the potentiahtefgration of DE with
SDS. Here, SDS is primarily used as an efficient resourceatilon and dispen-
sation mechanism responsible for facilitating commumicebetween DE agents.
Additionally, an initial discussion of the similarity beé&n the hypothesis test em-
ployed in the hybrid algorithm and the test-phase in SDSrélya is presented.
Results reported in this paper have demonstrated thatliakplorations with the
hybrid SDSnDE algorithm outperform the performance of (eaeation of) classi-
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cal DE architecture, even when applied to problems with tmst fithess function
evaluations (the benchmarks presented).

This work, further investigated an earlier work [3] attemptto integrate PSO
with SDS’. In ongoing research, in addition to investigating the perfance of the
hybrid algorithm in other sets of problems (e.g. CEC20050one real-world prob-
lems), further theoretical work seeks to develop the carasgpresented in this paper
on problems with significantly more computationally exgeasbjective functions,
where the performance improvement (relative to classidg) B anticipated to be
much greater.
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