
Information Sharing Impact of

Stochastic Diffusion Search

on Population-Based Algorithms

Mohammad Majid Oudah al-Rifaie

�

�

Thesis submitted for the degree of Doctor of Philosophy

of the

University of London

Department of Computing, Goldsmiths College

January 2012

Declaration

I, Mohammad Majid al-Rifaie, declare that the work presented in this thesis

is entirely my own.

Signature:

Date:

Abstract

This work introduces a generalised hybridisation strategy which utilises the

information sharing mechanism deployed in Stochastic Di�usion Search when

applied to a number of population-based algorithms, e�ectively merging

this nature-inspired algorithm with some population-based algorithms. The

results reported herein demonstrate that the hybrid algorithm, exploiting

information-sharing within the population, improves the optimisation capa-

bility of some well-known optimising algorithms, including Particle Swarm

Optimisation, Di�erential Evolution algorithm and Genetic Algorithm. This

hybridisation strategy adds the information exchange mechanism of Stochas-

tic Di�usion Search to any population-based algorithm without having to

change the implementation of the algorithm used, making the integration

process easy to adopt and evaluate. Additionally, in this work, Stochastic

Di�usion Search has also been deployed as a global optimisation algorithm,

and the optimisation capability of two newly introduced minimised variants

of Particle Swarm algorithms is investigated.

Acknowledgements

Not one or two but many to thank for their direct and indirect contribution

towards the crystallisation of this work, some of whom I have not seen for

half a decade but sensed their encouraging presence throughout. My utmost

love and gratitude goes to my parents in the Middle East and my siblings all

around the world!

My greatest appreciation and thanks go to my supervisor, Prof. Mark Bishop,

for all his generous support throughout these years. Although, while doing

this course, life (politically and socially) has not been gentle, aiming to facil-

itate a premature convergence to local optima, his insight kept illuminating

the global optimum, irrespective of whether or not this has been achieved by

the author!

Further special thanks go to my second supervisor, Dr. Tim Blackwell, whose

enthusiasm and frankness were essential factors in completing this work.

I would also like to thank my colleagues and the sta� at the Computing

Department, whose support I always had on my side.

At last but not least, I would like to name and thank all my friends, for

which I would need double the size of this thesis. Without their support

(e.g. Sacher Torte, pizzas, spices, cigars, authentic Middle Eastern meals,

Greek tea, Sagrada Família tour at night, steak at the riverside of Bristol,

traditional music travelling from overseas, their kind words, etc.), it would

not have been feasible to reach the following dot.

Contents

1 Introduction 17

1.1 Objectives and Methodology . 18

1.2 Chapter Overview . 19

2 Artificial Intelligence and Swarm Intelligence 22

2.1 Arti�cial Intelligence . 23

2.1.1 Connectionist vs. Symbolic AI 24

2.1.2 Multi-Agent Systems . 30

2.2 Swarm Intelligence . 32

2.2.1 Swarm Intelligence in Nature 33

2.2.1.1 Communication in Ants and Bees 34

2.2.1.2 Flocking, Schooling and Herding 35

2.2.2 Swarm Intelligence Algorithms 36

2.3 Optimisation . 38

2.3.1 Optimisation and Search . 38

2.3.2 Global Optimisation . 39

2.3.3 Evolutionary Optimisation 40

2.4 Summary . 43

5

CONTENTS 6

3 Stochastic Diffusion Search 44

3.1 The Mining Game . 45

3.1.1 Re�nements in the Metaphor 46

3.2 SDS Architecture . 48

3.2.1 Search Example One . 49

3.2.2 Search Example Two . 51

3.2.3 Initialisation and Termination 56

3.2.4 Partial Function Evaluation 57

3.2.5 Convergence . 59

3.2.6 Resource Allocation and Stability 60

3.3 Variations in SDS and Recruitment Strategies 62

3.3.1 Passive Recruitment Mode 62

3.3.2 Active Recruitment Mode 63

3.3.3 Dual Recruitment Mode . 64

3.3.4 Context Sensitive Mechanism 65

3.3.5 Context Free Mechanism 65

3.3.6 Synchronous and Asynchronous Update 66

3.3.7 Composite Hypotheses . 66

3.3.7.1 Data Driven SDS 67

3.3.7.2 Coupled SDS . 68

3.4 Applications . 69

4 Population-Based Optimisers 72

4.1 Particle Swarm Optimisation . 72

4.1.1 PSO Algorithm . 76

4.1.1.1 Standard PSO . 76

4.1.1.2 Stopping Condition 78

CONTENTS 7

4.1.1.3 Particles Initialisation 79

4.1.1.4 Interactivity and Diversity 80

4.1.2 PSO Parameters and Variations 80

4.1.2.1 Velocity Clamping 80

4.1.2.2 Inertia Weight . 81

4.1.2.3 Acceleration Coe�cients 82

4.1.2.4 Constriction Coe�cient 82

4.1.2.5 Velocity Models 83

4.1.2.6 Swarm Size . 84

4.1.2.7 Network Topologies 84

4.1.2.8 Synchronous and Asynchronous Updates 86

4.1.3 Understanding PSO . 86

4.1.3.1 Random-Restart PSO Algorithms 87

4.1.3.2 Cooperative Particle Swarm Optimiser 89

4.1.4 Applications . 92

4.2 Genetic Algorithm . 93

4.3 Di�erential Evolution Algorithm 95

4.4 Summary . 98

5 SDS as Global Optimiser 99

5.1 The Coupled Algorithm . 99

5.2 Test and Di�usion Phases in the Coupled Algorithm 100

5.3 Experiments . 101

5.3.1 Performance Measures . 101

5.3.2 Experiment Setup . 102

5.3.3 Results . 103

5.4 Summary . 106

CONTENTS 8

6 Bare Bones with Jumps PSO 109

6.1 Bare Bones PSO . 110

6.2 Bare Bones with Jumps PSO . 110

6.3 Experiments . 112

6.3.1 Experiment Setup . 112

6.3.2 Results . 113

6.4 Summary . 115

7 Merging SDS with PSO and DE 122

7.1 Merging SDS with PSO . 123

7.1.1 Experiments . 124

7.1.1.1 Experiment Setup 124

7.1.1.2 Results . 125

7.2 Merging SDS with DE . 126

7.2.1 Experiments . 127

7.2.1.1 Experiment Setup 127

7.2.1.2 Results . 128

7.3 Discussion . 128

7.3.1 Modi�ed SDSnPSO Algorithm 129

7.3.2 Modi�ed SDSnDE Algorithm 129

7.4 Summary . 130

8 Generalised Hybridisation Strategy 140

8.1 Hybridisation Strategy . 140

8.2 Test and Di�usion Phases in the Hybrid Algorithms 142

8.3 Experiments . 143

8.3.1 Experiment Setup . 143

CONTENTS 9

8.3.2 Results . 145

8.4 Discussion . 146

8.5 Observations . 149

8.6 Summary . 151

9 Conclusions and Future Work 157

9.1 Summary . 157

9.2 Future Work . 160

A Publications 186

B The Blind Men and the Elephant 188

C The Restaurant Game 190

List of Algorithms

3.1 The Mining Game . 46

3.2 SDS Algorithm . 48

3.3 Passive Recruitment Mode . 63

3.4 Active Recruitment Mode . 63

3.5 Dual Recruitment Mode . 64

3.6 Context Sensitive Mechanism . 65

3.7 Context Free Mechanism . 66

4.1 PSO Pseudo Code . 77

4.2 DE Pseudo Code . 98

5.2 Modi�ed Algorithm � SDS Restart coupled with DE (sReDE) . . 106

5.1 Coupled Algorithm . 108

6.1 Bare Bones PSO (PSO-BB) . 110

6.2 Bare Bones with Jumps PSO 1 (PSO-BBJ1) 111

6.3 Bare Bones with Jumps PSO 2 (PSO-BBJ2) 112

7.3 Modi�ed Hybrid Algorithm . 129

7.1 Hybrid Algorithm SDSnPSO . 131

7.2 Hybrid Algorithm, SDSnDE . 134

8.1 Generalised Hybridisation Strategy � Hybrid Algorithm 152

10

List of Figures

3.1 Agents Communication 1 . 53

3.2 Agents Communication 2 . 54

3.3 Agents Communication 3 . 55

4.1 Network Topologies . 85

4.2 Standard Cooperative PSO (CPSO S) 90

4.3 Hybrid Cooperative PSO (CPSO H) 91

4.4 Concurrent PSO (CONPSO) . 91

4.5 Multi-population cooperative PSO (MCPSO) 92

5.1 SDS as Global Optimiser; Accuracy Plot 106

6.1 PSO Bare Bones Variants; Global Neighbourhood Plots 118

6.2 PSO Bare Bones Variants; Local Neighbourhood Plots 121

7.1 Architecture of pAgent . 123

7.3 Architecture of SDEAgent . 126

7.2 SDSnPSO Accuracy and E�ciency Plots 133

7.4 SDSnDE Accuracy Plot . 136

8.1 Architecture of Hybrid Agent . 141

8.2 Generalised Hybridisation Strategy Plot 156

11

LIST OF FIGURES 12

9.1 Possible Multi-Swarm Approaches 161

B.1 The blind men and the elephant . 189

List of Tables

3.1 Initialisation and Test Phases . 49

3.2 Di�usion Phase 1 . 49

3.3 Test Phase 2 . 50

3.4 Di�usion Phase 2 . 50

3.5 Test Phase 3 . 50

3.6 Di�usion Phase 3 . 51

3.7 Test Phase 4 . 51

3.8 Model . 51

3.9 Search Space . 51

3.10 Initialisation and Iteration 1 . 52

3.11 Iteration 2 . 53

3.12 Iteration 3 . 54

3.13 Iteration 4 . 55

5.1 Benchmark Functions Equations 103

5.2 Benchmark Functions Details . 104

5.3 Accuracy Details . 105

5.4 TukeyHSD Test Results for Accuracy 107

6.1 Accuracy Details; Global Neighbourhood 116

13

LIST OF TABLES 14

6.2 E�ciency Details; Global Neighbourhood 117

6.3 Accuracy Details; Local Neighbourhood 119

6.4 E�ciency Details; Local Neighbourhood 120

7.1 Accuracy and E�ciency Details . 132

7.2 Accuracy and Reliability Details 135

7.3 TukeyHSD Test Results for Accuracy 137

7.4 TukeyHSD Test Results for E�ciency 138

7.5 TukeyHSD Test Results for Accuracy 139

8.1 Generalised Hybridisation Strategy on PSO 153

8.2 Generalised Hybridisation Strategy on DE 154

8.3 Generalised Hybridisation Strategy on GA 155

List of Abbreviations

AA Ant Algorithms

ACO Ant Colony Optimisation

AI Arti�cial Intelligence

AL Arti�cial Life

API Pachycondyla Apicalis Ant

CA Cellular Automata

DAI Distributed Arti�cial Intelligence

DE Di�erential Evolution

EA Evolutionary Algorithm

EC Evolutionary Computation

EP Evolutionary Programming

ES Evolution Strategies

FE Function Evaluation

GA Genetic Algorithm

GO Global Optimisation

GP Genetic Programming

LSDS Lattice SDS

15

LIST OF TABLES 16

MG Mining Game

PSO Particle Swarm Optimisation

PSO-BB Bare Bones PSO

PSO-BBJ1 Bare Bones with Jumps PSO Model 1

PSO-BBJ2 Bare Bones with Jumps PSO Model 2

PSO-CK Clerc-Kennedy PSO

SDS Stocahstic Di�usion Search

SI Swarm Intelligence

SS Search Space

TS Tabu Search

Chapter 1

Introduction

�Though this be madness, yet there is method in `t.�

� William Shakespeare

This study originally intended to investigate the possible integration of two

nature-inspired algorithms (i.e. Stochastic Di�usion Search and Particle

Swarm Optimisation), which resulted in the development of a novel hybridi-

sation strategy utilised for a larger variety of population-based algorithms.

The use of population-based algorithms for Global Optimisation (GO) is not

uncommon within both commercial and academic �elds, and their goal is to

�nd better solutions for complex problems.

An `everyday' example of optimisation is the process through which a decision

is made on where to park a car; in this scenario, di�erent parameters are likely

to be considered and the best (optimal) choice might be made with regard

to the following: the distance of the parking lot from the current location of

the car, the suitability of the parking lot and the duration in which the car

could be left parked.

In optimisation, candidate solutions are contrasted against each other with

the intention of �nding the optimal solution. Swarm intelligence and evo-

lutionary algorithms are shown to be of signi�cance in solving optimisation

17

CHAPTER 1. INTRODUCTION 18

problems. These algorithms are usually evaluated through commonly used

benchmarks that are typically small in terms of their objective functions'

computational costs [1, 2] (which is often not the case in many real-world

applications). This justi�es the initial motivation behind utilising Stochastic

Di�usion Search, whose partial objective function evaluation technique alle-

viates the problem of having costly objective functions (see section 3.2.4 on

page 57).

1.1 Objectives and Methodology

The core of this thesis seeks to investigate the possible integration strategies

of Stochastic Di�usion Search (SDS) [3], with other population-based algo-

rithms (e.g. Particle Swarm Optimisation (PSO) [4], Di�erential Evolution

algorithm (DE) and Genetic Algorithm (GA)). As a result, a generalised

hybridisation strategy is proposed, which introduces these population-based

algorithms with another form of information exchange.

The work presented in this thesis investigates the following key research

topics:

1. Deploying Stochastic Di�usion Search in the context of Global Opti-

misation

2. The e�ect of introducing restart mechanism in the context of two min-

imised variants of Particle Swarm Optimisation algorithm

3. The information-sharing impact of Stochastic Di�usion Search on other

population-based algorithms and proposing a generalised hybridisation

strategy for generic use with population-based algorithms

The �rst research topic addresses the deployment of Stochastic Di�usion

Search as a Global Optimiser. Standard SDS has been used in discrete en-

vironments; therefore, in order to utilise the information sharing mechanism

of SDS in the context of global optimisation, the algorithm is modi�ed and

CHAPTER 1. INTRODUCTION 19

then run for a number of iterations, followed by a local search. The outcome

of the experiments conducted on this topic demonstrates the optimisation

outperformance resulted by using this approach.

Having presented PSO with di�erent parameters and variations, Bare Bones

PSO is explained as a minimised variant of standard PSO in order to in-

vestigate the second research topic. Two new minimised variants of PSO

algorithms are then introduced followed by a set of experiments. The results

demonstrate the positive e�ects of the restart mechanisms leading to the

improvements in the optimisation capability of the conventional PSOs.

In order to address the third research topic, which is the main focus of this

study, standard SDS is introduced alongside a few examples on how the algo-

rithm functions. Then few population-based algorithms (PSO, GA and DE)

are presented. After presenting these population-based algorithms, merg-

ing SDS with PSO is �rst investigated. Following the promising results of

this integration, SDS is integrated with another population-based algorithm

(DE). Afterwards, a generalised hybridisation strategy is introduced and a

larger set of algorithms as well as a harder set of benchmarks are used to test

this hybridisation strategy. The results achieved show the outperformance

of the hybrid algorithms over their standard counterparts. It is also shown

that using this strategy, SDS can be integrated with any population-based

algorithm.

1.2 Chapter Overview

Chapter 2 provides a review of Arti�cial Intelligence (AI), Swarm Intelligence

(SI) and optimisation. It begins with a brief account of AI (section 2.1), pre-

senting two main schools of thought in the �eld (Connectionist and symbolic

AI) and highlighting their pros and cons. An introduction to multi-agent

systems which links AI to SI is accompanied by a background to swarm in-

telligence, communication in social insects and their methods of interaction

(Section 2.2). A connection is made between the social behaviour of insect-

s/animals and the swarm intelligence algorithms used in this study. Emphasis

CHAPTER 1. INTRODUCTION 20

will be placed on information exchange in swarm intelligence to demonstrate

how information �ow a�ects the behaviour of the swarm. This follows a

brief discussion on optimisation, highlighting the relation between optimisa-

tion and search, the concept of global optimisation as well as evolutionary

optimisation and its subcategories (Section 2.3).

The next chapter (Chapter 3) constitutes a review of Stochastic Di�usion

Search (SDS). In this chapter, a social metaphor is used to describe the

algorithm, and then the architecture of SDS is explained along with few ex-

amples on how SDS works. Di�erent variations of the algorithm, including

information-sharing strategies (recruitment or gossipping), are outlined, fol-

lowed by a list of applications which have used SDS, both in the research

community as well as in industry.

Chapter 4 presents few population-based optimisers. Section 4.1 presents

Particle Swarm Optimisation (PSO) which has attracted many researchers

due to its applicability as well as its simple structure and easy-to-implement

nature. A description of the algorithm is followed by a discussion of dif-

ferent parameter changes and their e�ects on improving the performance of

standard PSO algorithm. The signi�cance of random-restart mechanism will

be highlighted and the role of cooperative PSO in enhancing the algorithm

will then be presented. Sections 4.2 and 4.3 present simple variants of Ge-

netic Algorithm and Di�erential Evolution algorithm. In this chapter, PSO

is explained in detail (more detailed than DE and GA), as it was originally

studied with the intention of �nding an integration strategy that could merge

this algorithm with SDS (see Chapter 7).

Chapter 5 builds an initial set of experiments aiming to investigate a scenario

where SDS is utilised as a global optimiser. In this chapter, the modi�ed SDS

algorithm (used for global optimisation) is run, followed by a local search.

The modi�ed algorithm is tested over a set of benchmarks and results which

demonstrate improvement are reported.

Chapter 6.2 presents a minimised version of the PSO algorithm (i.e. Bare

Bones PSO) and then introduces two variations of the Bare Bones PSO (Bare

Bones with Jumps Models 1 & 2). This chapter comes to end by presenting a

CHAPTER 1. INTRODUCTION 21

set of experiments, comparing the performance of a number of PSO variants

over a set of standard benchmarks, demonstrating the outperformance of the

newly introduced algorithms � Bare-Bones with Jumps Models 1 & 2.

Chapter 7 and Chapter 8 are the focus of the study. In chapter 7, an initial

investigation of the possibility of integrating SDS with PSO is explored. A

similar approach is developed for integrating SDS with DE, followed by a

set of experiments. Chapter 8 uses the ideas introduced in Chapter 7 on the

possible integration strategies to propose a generalised hybridisation strategy

that is applicable to any algorithm that is classi�ed as population-based. The

generalised hybridisation strategy is subsequently tested on a more recent set

of benchmarks (other than those used in Chapter 7). This is followed by a

discussion on the performance of the hybrid algorithms.

Finally, Chapter 9 provides a summary of the study as well as recommenda-

tions for future research. The appendices present a list of publications which

were derived from or in�uenced by this work, as well as additional materials

referred to in the report.

Chapter 2

Artificial Intelligence and

Swarm Intelligence

�Painting is only a bridge linking the painter's mind with that of

the viewer.�

� Eugène Delacroix

This chapter presents a brief overview over Arti�cial Intelligence (AI), giving

few de�nitions of the term followed by a background to two main schools

of thought in the �eld (Connectionist and symbolic AI). Afterwards, an in-

troduction to multi-agent approach to AI is given, linking AI to Swarm In-

telligence (SI). Next, a background to swarm intelligence, communication

in social insects and their methods of interaction is presented, followed by a

brief discussion on the connection between the social behaviour of insects/an-

imals and the swarm intelligence algorithms. This follows a brief discussion

on optimisation, highlighting the relation between optimisation and search,

the concept of global optimisation as well as evolutionary optimisation and

its subcategories

22

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 23

2.1 Arti�cial Intelligence

For centuries, philosophers have been trying to formalise the human being as

Homo sapiens sapiens � man the wise. They have been interested in the way

these �wise creatures� can possibly draw valid conclusions as well as in the

way knowledge leads to an action. By the same token, Arti�cial Intelligence

(AI), a term coined in 1956 by John McCarthy,1, has been interpreted in a

variety of ways. Russell et al. [6] have suggested a categorisation of some of

the de�nitions (systems that think or act like human, or systems that think

or act rationally):

• Thinking like humans [7]: �The exciting new e�ort to make computers

think . . . machines with minds, in the full and literal sense.�

• Acting like humans [8]: �The art of creating machines that perform

functions that require intelligence when performed by people.�

• Thinking rationally [9]: �The study of mental faculties through the use

of computational models.�

• Acting rationally [10]: �Computational Intelligence is the study of the

design of intelligent agents.�

Based on the above categorisation, the controversial Turing Test, devised

by Alan Turing [11], proposed to �provide a satisfactory operational de�ni-

tion of intelligence� [6] to check whether a system acts in a human-like way

by evaluating its responses to natural language text input. Typically this

would involve: natural language processing, knowledge representation, auto-

mated reasoning, machine learning (as well as computer vision and robotics

if passing the `Total Turing Test' 2 is the goal).

As for thinking human-like, cognitive science o�ers means to investigate that

premise. Whether a system thinks rationally or not is decided upon by means

1Although some might �nd this controversial, McCarthy in a c|net interview states: �I
came up with the term�. (see [5], p. 50))

2Ibid

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 24

of logic as laws of thought. For example, for a system to act rationally, a

`rational agent' approach maybe used (whereby rationality implies acting in

a way that achieves the best result, or when there is no such possibility, the

best possible result).

Early in the 19th century, William Paley had argued that creating complex

adaptive systems requires intelligent designers (read Spector in [12]). How-

ever, the idea was challenged by Charles Darwin in 1859 by demonstrating

that complex and adaptive systems can be created without an intelligent

designer through the evolutionary processes. Still, Spector argues that most

AI researchers �view AI as a set of design problems that human designers are

expected to solve�, whilst he also emphasises that they should be interested

in evolved arti�cial intelligence.

The section begins by introducing the Turing Test; although perhaps contro-

versial, the Turing Test has remained relevant six decades after its emergence

(see [13] for a recent Kybernetes special issue on the Turing Test). Whether

a system is genuinely `intelligent' if it passes the test, remains debatable, but

this question has not yet undermined the signi�cance of the Turing Test and

its role in the �eld of arti�cial intelligence.

2.1.1 Connectionist vs. Symbolic AI

The two major classical schools of thought in Arti�cial Intelligence are Sym-

bolic AI (or representational AI) and Connectionism. While the former is

thought to be more committed to a symbol level of representation (a state

that combines syntactic and semantic structure [14]), the latter is considered

to provide a closer account to the neural structure backed by di�erent groups

including those who believe it best to replace serial machines with massively

parallel ones, the fans of neuroscience-leads-to-understanding-cognition club,

psychologists who do not like the idea of seeing mind as a discrete system,

etc.

According to Pollack [15], the term connectionism is used when neurally-

inspired mechanisms are utilised to study computation and cognitive mod-

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 25

elling. Connectionism, which appeared in the attempt to mathematically

model intelligence based on what was known about the architecture of brain,

is usually seen as a rival to symbolic arti�cial intelligence [16].

In 1943, when Warren S. McCullogh and Walter Pitts proved the possibility

of implementing any logical expression by using an appropriate structure

of simpli�ed neurons (in A logical calculus of ideas immanent in nervous

activity [17]), they �formally� commenced research in the �eld of arti�cial

neural networks [15]. As part of this research, they introduced the �rst

sequential logic model of neuron [18]. Neurons were assumed to be binary

with �nite threshold where signals sent from one neuron can be excitatory

(increasing �ring rate) or inhibitory (decreasing �ring rate).

Later, Hebb, in his 1949 the Organisation of Behaviour [19], was the �rst

to add psychology, mainly based on Stimulus-Response, to the new �eld of

neural networks. He is credited for the following statements [15]:

• memory is stored in connections

• learning takes place in synaptic modi�cation

In his work [19], Hebb states:

�Let us assume then that the persistence or repetition of a

reverberatory activity (or �trace�) tends to induce lasting cellular

changes that add to its stability. The assumption can be precisely

stated as follows: When an axon of cell A is near enough to

excite a cell B and repeatedly or persistently takes part in �ring

it, some growth process or metabolic change takes place in one

or both cells such that A's e�ciency, as one of the cells �ring B,

is increased.�

Hebbian learning is believed to be an important mechanism in the �tun-

ing of neuronal connections during development and thereafter� [20]. This

mechanism argues that simultaneous activation of cells increases the synap-

tic strength between these cells. As suggested by Doidge [21], this can be

summarised in simple terms as �Cells that �re together, wire together�.

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 26

Ashby, in his 1960 Design for a Brain [22], de�ned brain as an adaptive sys-

tem for �develop[ing] adaptation in its behaviour � and considered adaptability

as a key element in arti�cial systems.

In 1962, Rosenblatt presented the �rst simulatable and analysable neurally-

inspired model of synaptic modi�cation in Principle of Neurodynamics [23],

which he called a perceptron. In the perceptron, instead of using neurons

with �xed weights and threshold and absolute inhibition, some weights and

threshold are variable and the inhibition is relative. The weights from the

input (a �retina� of binary inputs) to the middle layer (feature detectors)

are �xed and depend on the application. The adjustable weights are the

ones between the middle layer to the response unit. Presenting procedures

for adjusting these variable weights on di�erent perceptron implementation,

alongside proving the convergence of these procedures in �nite time, has been

Rosenblatt's key work [15].

Following what was seen as the too ambitious goals of researchers in the �eld,

Minskey and Pepert, in their 1969 book, Perceptrons [24], took research in

perceptrons and neurally-inspired modelling to a decade of hibernation, by

highlighting its limitations as a general computational device; they showed

that for a single-layer perceptron, it was impossible to learn an XOR func-

tion, which is an example showing the inability of single-layer perceptrons

in learning linearly non-separable patterns; in a two dimensional space, two

sets of points are linearly separable if they can be separated by one line

(e.g. NOT, AND and OR functions are linearly separable). This princi-

ple is extendable to n-dimensional space. If no such line (or hyperplane, in

case of n-dimensional space where n > 2) exists, the functions are linearly

non-separable.

Within the �eld of AI in the 60s, according to Steels in [25], there was an

emphasis on task speci�c rules of thumb (heuristics3) to take the problem

solver at the vicinity of reasonable solutions as quickly as possible. This focus

on heuristics, resulted in calling the �eld of AI `Heuristic Search' for some

3In situations where greedy search (or exhaustive search) is impractical, heuristic meth-
ods are used to speed up the process of locating a satisfactory solution.

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 27

time.

In addition to the rule of heuristics, the signi�cance of knowledge representa-

tion became clear towards the end of the 60s. Many ideas from logic poured

into AI. The applicability of heuristics and knowledge proved to be impor-

tant through the emergence of the �rst wave of expert systems, which are

computer systems emulating the decision-making ability of human experts

[26]; some examples of expert systems are the following:

• DENDRAL [27], which was introduced to investigate hypothesis for-

mation for making new �ndings, for which a test is selected. The

main of this test was to help organic chemists identify unknown or-

ganic molecules, by analysing their components and using knowledge

of chemistry. DENDRAL project which started in 1965 is considered

�one of the �rst large-scale programs to embody the strategy of using

detailed, task-speci�c knowledge about a problem domain as a source

of heuristics, and to seek generality through automating the acquisition

of such knowledge.� [28]

• MYCIN, which is developed in early 1970s to detect bacteria causing

harmful infections (e.g. bacteremia and meningitis). This expert sys-

tem recommends antibiotics, with the dosage speci�ed to suit patient's

body weight. The naming of MYCIN comes from the antibiotics them-

selves, as many of them have the su�x �-mycin� [29].

• PROSPECTOR [30], which is introduced in the 1970s, is proposed as

a consultation system that assists geologists working in mineral explo-

ration. This system attempts to represent the knowledge and reasoning

processes of experts in the geological domain.

In the 1970s, research in the area of connectionist models did not appear

widely in journals, until re-emergence in the 80s (when symbolic systems

started showing their limits; the issue of parallel computers became more

important and relevant, etc.).

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 28

Thereafter, research in two aspects of AI continued developing in parallel.

Although through complex networks with hidden layers, neural networks

made signi�cant advances, symbolic AI did not lose its importance. Steels

in [25]4 wrote:

�... so far no adequate neural models have been proposed for

language understanding, planning and areas in which symbolic

AI excels.�

From the early 80s, fundamental research decelerated and pragmatic research

on applications took over. In 1982, Feldman and Ballard published Connec-

tionist Models and their Properties [31] which gave connectionism a frame-

work as a possible methodology for cognitive science and arti�cial intelli-

gence. They justi�ed their argument to adapt connectionism, rather than

symbolic AI, relying on four points:

• First, the structure of the brain is di�erent from that of computers.

• Second, the time issue:

�The critical resource that is most obvious is time. Neurons whose basic

computational speed is a few milliseconds must be made to account for

complex behaviors which are carried out in a few hundred milliseconds.

This means that entire complex behaviors are carried out in less than

a hundred time steps. Current AI and simulation programs require

millions of time steps.�

• Third, studying connectionism helps give ideas on how to do parallel

computing.

• Fourth, they believed that studying connectionism might lead to �bet-

ter science� and that understanding many mechanisms behind intelli-

gent behaviours (e.g. associative memory and the remarkable recovery

ability of animals) is not possible under symbolic AI paradigm.

4pp. 23

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 29

The rebirth of connectionism attracted contributions from areas other than

computer science and psychology (e.g. physics). Hop�eld's signi�cant contri-

bution (the Hop�eld net) was the introduction of a system for programming a

model of associative memory by considering each memory as a local minimum

for a global energy function [32]. The energy (E) of a network is calculated

using the following formula:

E = −1
2

∑
ij

wijsisj +
∑
i

θisi

where wij is the weight of the connection between unit i and j; si is the state

of i and si ∈ {0, 1}; θi is the threshold of unit i. In Hop�eld networks, units

are not re�exive (no connection to the self or wii = 0), and connections are

symmetric: {∀ i, j; wij = wji}.

Additionally, back-propagation, another technique for learning in multi-layer

arti�cial neural networks, was independently suggested by several researchers

(e.g. Parker [33], Werbos [34] who developed it in his 1974 mathematics

thesis and Yann Le Cun [35]). At the core of back-propagation technique

is the use of a continuous activation function that allows weights to change

slowly without resulting in major disturbances [15].

Connectionism is known for its contributions in facilitating massively parallel

processing, machine learning and graceful degradation. In connectionism, in

contrary to symbolic AI, a system is less likely to fail completely when one

of its components fails, but continues to operate with reduced performance.

However numerous limitations are also attributed to connectionism; among

the major problems associated with it is the lack of representational adequacy

(and especially the lack of compositionality [14]). An example is given in [15]:

�... if the entire feature system is needed to represent a single

element, then attempting to represent a structure involving those

elements cannot be managed in the same system. For example,

if all the features are needed to represent a Nurse, and all the

features are needed to represent an Elephant, then the attempt

to represent a Nurse riding an elephant will come out either as a

white elephant or a rather large nurse with four legs.�

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 30

Another major problem is the necessity to apply dramatic changes (to the

weights) to the neural network in order to allow the system to deal with a

similar problem with slightly di�erent features or when re-sizing the scale of

the problem (e.g. adding a city to the travelling salesman network [36] would

require changing the con�guration of the whole network).

Several limitations of symbolic AI against connectionism are discussed in [14]

where the �lure of connectionism� is emphasised (e.g. computers/symbolic

processings are too rapid compared to the neural speed; computers are rule

governed; computers are sensitive to damage and noise and etc). These were

seen as a few reasons behind the popularity of connectionism and its rise

among psychologists and philosophers.

Although human cognition is or used to be the main measure to compare

against machine intelligence, some researchers (e.g. Luc Steels in [25]) believe

that this kind of comparison could only lead to disappointment due to the

huge distance between the two at present.

However, amongst many �elds in AI, the following probably bene�ted the

most from progress made [18]:

• Formal representation techniques (logic, rules, frames, agents, causal

networks, etc.)

• Treatment of uncertainty (Bayesian networks, fuzzy systems)

• Dealing with situations where there are more data than knowledge

(Arti�cial Neural Networks)

2.1.2 Multi-Agent Systems

Despite the relative success of applications in both symbolic AI and connec-

tionism towards the end of 80s, the body and environment as major causal

forces in shaping intelligent behaviour started to be considered [37] and the

necessity of having a smoother real-time behaviour by the agent-environment

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 31

interaction (instead of complicated calculations for motor control) became

more vivid (see [25], pp.23).

In the early 90s, the idea of emergent behaviour (through interaction) and

behaviour-based AI dominated AI laboratories [38] and building animal-like

robots began once again. The new focus on the interaction between AI and

biology led to the emergence of the new area of Arti�cial Life [39].

A multi-agent approach to AI was born in the 90s, when cooperation between

agents became essential to have an emerging intelligence resulting from the

interaction of a group of individuals [25]. It was time for sociologists and

anthropologists to play their rules in helping AI with their models and social

views on intelligence [40].

Looking at the historical perspective of AI research, the �eld's trajectory (see

[12]) is observable from emphasising on complex mental faculties to focus on

building complete, situated and embodied agents, which are more natural

forms of intelligence.

Chaib-Draa et al. in their 1992 paper [41] argued that the inevitable exis-

tence of a number of agents in the real world makes a single agent approach

insu�cient. They mentioned four main reasons behind the importance of

what is called Distributed Arti�cial Intelligence (DAI):

1. the need to deal with distributed knowledge for geographically remote

applications like air-tra�c control and cooperation between robots

2. extending man-machine cooperation, using a distributed resolution ap-

proach

3. bringing about a new perspective to knowledge representation and

problem solving

4. changing our understanding of arti�cial intelligence [42] (the emphasis,

however, was on modularity) as it may shed new light on the way

cognitive science is perceived

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 32

As emphasised in [25], in today's densely interconnected world, there is an

apparent global trend towards �collective phenomena in the information pro-

cessing world�; considering the exponential growth of blogs, social networking

websites, P2P sharing systems and wikis, it is clear that the traditional cen-

tralised top-down decision making and the de�nition of a universal ontology

(de�ned by experts and imposed on users) are no longer desired approaches.

2.2 Swarm Intelligence

Swarm Intelligence (SI) which investigates collective intelligence, aims at

modelling intelligence by looking at individuals in a social context and mon-

itoring their interactions with one another as well as their interactions with

the environment [43]. Natural examples of swarm intelligence that exhibit

these forms of interaction include �sh schooling, birds �ocking, ant colonies

in nesting and foraging, bacterial growth, animal herding, brood sorting by

ants, etc.

Therefore, swarm intelligence can be characterised as the communications

between agents as well as the communication of agents with the environment

while expecting an emergent phenomenon (intelligence). In [44], communi-

cation between agents or social interaction is considered to result in a more

human like intelligence:

�Evaluating, comparing, and imitating one another, learning from

experience and emulating the successful behaviors of others, peo-

ple are able to adapt to complex environments through the dis-

covery of relatively optimal patterns of attitudes, beliefs, and

behaviors. Our species' predilection for a certain kind of social

interaction has resulted in the development of the inherent intel-

ligence of humans.�

The story of the blind men and the elephant also suggests how social inter-

action can possibly lead to human intelligence. This famous tale set in verse

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 33

by John Godfrey Saxe [45] in the 19th century, characterises six blind men

approaching an elephant. They ended up having six di�erent ideas about

the elephant, as each person experienced one aspect of the elephant's body:

wall (elephant's side), spear (tusk), snake (trunk), tree (knee), fan (ear) and

rope (tail). To read the whole tale, see Appendix B on page 188.

The moral of the story is that people build their beliefs based on incomplete

beliefs derived from incomplete knowledge about the world [44]. If the blind

men had been talking/listening to each other and exchanging information

about what they were experiencing, they would have possibly come up with

the conclusion that they were exploring the heterogeneous qualities that make

up an elephant.

2.2.1 Swarm Intelligence in Nature

Communication � social interaction or information exchange � observed in so-

cial insects and animals is important in swarm intelligence. As stated in [44],

in real social interactions, not just the syntactical information (i.e. contents)

is exchanged between individuals but also semantic rules, tips and beliefs

about how to process this information; in typical swarm intelligence algo-

rithms, however, only the syntactical exchange of information is considered,

without necessarily changing the thinking process (e.g. rules and beliefs) of

the participants.

In the study of the interaction of social insects, two important elements are

the individuals and the environment, which lead to two integration schemes:

the �rst one is the way in which individuals self-interact and the second one

is the interaction of the individuals with the environment [46] (stigmergy).

Self-interaction between individuals is carried out through recruitment and it

has been demonstrated that there are various recruitment strategies in ants

[47] and honey bees [48, 49]. These recruitment strategies are used to attract

other members of the society to gather around one or more desired areas,

either for foraging purposes or for moving to a new nest site. In animals

like �sh or birds, self-interaction results in bene�ting from discoveries and

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 34

previous experience of all other members of the school of �ock during search

for food ([50], p.209).

There are di�erent forms of recruitment in social insects; it may take the

form of local or global; one-to-one or one-to-many; and deploy stochastic or

deterministic mechanisms. The nature of information exchange also varies in

di�erent environments and with di�erent types of social insects and animals.

Sometimes the information exchange is more complex where, for example, it

might carry data about the direction, suitability of the target and the dis-

tance; or sometimes the information sharing is simply a stimulation forcing

a certain triggered action. What all these recruitment and information ex-

change strategies have in common is distributing useful information in their

community [51].

Next, di�erent forms of information exchange in some social insects and

animals are discussed in further detail.

2.2.1.1 Communication in Ants and Bees

Chemical communication through pheromones forms the primary method of

recruitment in ants. However in one species of ants, Leptothorax acervorum,

where a `tandem calling' mechanism (one-to-one communication) is used, the

forager ant that �nds the food location recruits a single ant upon its return to

the nest, and therefore the location of the food is physically publicised [52].

In group recruitment, an ant convenes a larger number of ants, leading them

to the food location. Laying the pheromone trail from the food source to the

nest is of more advanced nature, in which the leading ant is not physically

in contact with other ants. The most advanced form of ant recruitment is

mass recruitment [53] in which the worker ants follow the pheromone trail,

but individual ants add an amount of pheromones alongside their journey

towards the food location. Therefore, the amount of pheromones plays an

important role in the out�ow attraction of the ants.

In another primitive ant species where nest replacement is studied [54], an

ant with a better nest location, summons an ant with a poorer choice. In

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 35

this approach, Pachycondyla Apicalis Ant (API), ants are all called to the

best nest found so far and subsequently start exploring the area again for

a better nest location. Di�erent types of recruitment and communication

strategies induce di�erent performances. Ants communicating through group

recruitment are faster than tandem calling ants, and similarly, ants utilising

mass recruitment are more e�cient in their performances than the former

recruitment strategies [53].

However, as mentioned in [55], the success of the ants in reaching the food

they have been recruited to obtain varies from one species to another. In

indirect or stigmergetic communication, the exchange of information is based

on modifying the physical properties of the environment and its success lies in

spatial and temporal attributes of mass recruitment and the positive feedback

mechanism it employs. In this mode, which is based on using pheromone,

short routes are loaded with more pheromone (because of the short time it

takes the ants to travel [56]).

In honey bees, group recruitment is performed by means of waggle dances,

in which the direction of the dance shows the location of the food source and

the speed of the dance represents the distance to the target area. Each bee

chooses one of the dancing bees as a guide to the food source.

2.2.1.2 Flocking, Schooling and Herding

There have been many e�orts to formalise the movements of animals herding,

�sh schooling and birds �ocking to (for instance) create computer simulations

of these behaviours. Although birds are discrete units, their motions in

general exhibit a �uid-like magni�cently synchronised movement [57]. For

the �sh to school, they need to preserve two main requirements, staying close

to the �ock as well as avoiding collision with other �sh [58]. Natural �ocks do

not get overloaded with new members joining; neither do they get unstable

with a few members leaving [59]. Through observing �ocks in nature, it

seems that they have what is called constant time algorithm, which means

birds, �sh, animals can �ock, school and herd respectively, irrespective of

their populations [57].

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 36

Although, as stated in [60], a member of a �ock does not seem to have

full attention of every other members of the �ock, at the same time, the

awareness of each individual member of the �ock has been categorised at

three levels: self-awareness, awareness towards neighbours and awareness

towards the �ock.

2.2.2 Swarm Intelligence Algorithms

In recent years, studies of the behaviour of social insects and animals have

suggested several new meta-heuristics for use in collective intelligence. This

has given rise to a concomitant increasing interest in distributed computa-

tion through the interaction of simple agents in nature-inspired optimisation

algorithms; among these are:

• Evolutionary Algorithms (EA) [61]: Genetic Algorithm (GA, which

many believe to be the most popular type of evolutionary algorithms)

[62, 63], Evolutionary Programming (EP, which was initially created

to evolve �nite state machine) and Evolution Strategies (ES, which

originally aimed to solve di�cult discrete and continuous parameter

optimisation problems)

• Swarm intelligence algorithms: Ant Algorithms (AA, based on the idea

of pheromone communication of ants) [64, 65], which were successfully

applied to combinatorial optimisation problems [66] such as the trav-

elling salesman problem5 [67, 68, 64, 69] and the quadratic assignment

problem6 [70, 71], Particle Swarm Optimisation (PSO) [4], which was

the result of an attempt to graphically simulate the choreography of

5Travelling salesman problem (TSP) is one of the combinatorial optimisation problems
where candidate solutions are discrete or can be reduced to discrete ones. In this problem,
given a number of cities and the distances between each pair, the goal is to �nd the shortest
tour to pass by each city just once.

6In quadratic assignment problem (QAP), which is considered one of the fundamental
combinatorial optimisation problems, given n nodes and n services, and having the dis-
tances between each pair of nodes as well as weights between each pair of services (e.g.
communication loads), the goal is to allocate the services to di�erent nodes in a way to
minimise the product of the distances with the weights.

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 37

�sh schooling or birds �ying, and Stochastic Di�usion Search (SDS) [3],

which is inspired by one species of ants, Leptothorax acervorum, etc.

Although some writers (e.g. [72, 22]) blur the di�erence between adaptation

and intelligence by claiming that intelligence is actually the ability to adapt,

other writers in the �eld of swarm intelligence (e.g. [44]) stress that an

individual is not an isolated information processing entity.

Stochastic di�usion search and particle swarm optimisation algorithms, which

function by interaction between agents, adopt the second view and share some

characteristics and behaviours of swarms intelligence algorithms which can

be best understood by observing the behaviours of social insects such as ants

and bees in locating food sources and nest site locations or the behaviours

of social animals like birds �ocking and �sh schooling.

According to Millonas [73], the basic principles of swarm intelligence are the

following:

• Proximity: ability of the population to do simple space and time com-

putation

• Quality: ability of the population to recognise and respond to quality

factors in the environment

• Diverse response: the activity of the population should not be carried

out along excessively narrow channels

• Stability: the population should not be over-sensitive to the changes in

the environment

• Adaptability: the population should be able to change behaviour if it

is computationally bene�cial

As highlighted in [44], the last two principles are the opposite sides of the

same coin.

Some of the swarm intelligence algorithms have been successfully deployed

by the author in the �eld of computational creativity. In one such artwork by

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 38

the author, the swarm intelligence algorithms are assisted by a mechanism

inspired from the behaviour of skeletal muscles activated by motor neurons

[74] and in a di�erent study, the mechanism of blood �ow and blood vessels is

used alongside the swarm intelligence algorithms [75]. In ongoing work and

in an invited journal paper [76], we raise the question of whether integrating

swarm intelligence algorithms (inspired by social systems in nature) could

possibly lead to a novel way of producing `artworks' and whether the swarms

demonstrate computational creativity in a non-representational way.

2.3 Optimisation

2.3.1 Optimisation and Search

In swarm intelligence literature, search and optimisation are often used in-

terchangeably. Nevertheless, the de�nition of search has been categorised in

three broad types in [77]:

• In the �rst de�nition, search refers to �nding a (target) model in a

search space, and the goal of the algorithm is to �nd a match, or the

closest match to the target in the search space. This is de�ned as

data search and is considered a classical meaning of search in computer

science [78].

• In the second type, the goal is �nding a path (path search) and the list

of the steps leading to a certain solution is what the search algorithm

tries to achieve. In this type of search, paths do not exist explicitly but

are rather created during the course of the search.

• In the third de�nition, solution search, the goal is to �nd a solution

in a large problem space of candidate solutions. Similarly to the path

search, where paths do not exist explicitly, the search space consists

of candidate solutions which are not stored explicitly but are rather

created and evaluated during the search process. However, in contrast

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 39

to the path search, the steps taken to �nd the solution are not the goal

of the algorithm.

In optimisation, which is similar to the third de�nition of search, the model

of the �rst de�nition is replaced with an objective or �tness function which

is used to evaluate possible solutions. In both search and optimisation, the

positions of the optima are not known in advance (even though the optima

itself might be known a-priori). The task of the �tness function is to measure

the proximity of the candidate solutions to the optima based on the criteria

provided by each optimisation problem. The algorithm compares the output

of the function to the output of the previously located candidate solutions

and, in the case of a minimisation problem, the smaller the output the bet-

ter the solution. Data search can be seen as a caste of optimisation if the

objective function tests the equality of the candidate solution to the model.

2.3.2 Global Optimisation

Global Optimisation (GA) is concerned with locating the optimal solution

within the entire search space and one of the main di�culties that global

optimisers face, is the existence of local optima within the problem space.

According to [79], global optimisation techniques are categorised into four

groups:

• Incomplete: This technique uses clever intuitive heuristics for search-

ing without presenting safeguards if the search gets stuck in a local

minimum.

• Asymptotically complete: This technique reaches a global minimum

with certainty or at least with probability one with the assumption

of allowing to run inde�nitely long, without providing means to know

when a global minimum has been found.

• Complete: This technique reaches a global minimum with certainty,

with the assumption of having exact computations and inde�nitely long

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 40

run time, and knows after a �nite time that an approximate global

minimum has been found (within prescribed tolerances).

• Rigorous: This technique reaches a global minimum with certainty and

within given tolerances even in the presence of rounding errors, except

in near-degenerate cases where the tolerances may be exceeded.

Most of the population-based algorithms which do not guarantee an optimal

global solution (while capable of escaping a local minimum in some cases)

are de�ned as incomplete global optimisers. However, solely searching parts

of the search space and using the knowledge obtained to update the potential

solutions based on their heuristic rules allows them to be faster than other

methods.

2.3.3 Evolutionary Optimisation

Evolutionary optimisation is an application of the Evolutionary Computation

technique (EC). Evolutionary algorithms are population-based and although

derived from the idea of the survival of the �ttest and natural selection, they

can be further re�ned in the following three categories [80]:

• genetic algorithms (GA)7

• evolutionary programming (EP)

• evolution strategies (ES) .

Some of the similarities between these methods are listed below (for more

details refer to Kennedy et al. [44] p.143):

• initialisation of the population

• using �tness function as a way to evaluate the quality of each member

of the population

7with links to genetic programming (GP)

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 41

• deploying evolutionary operations (e.g. mutation, crossover and selec-

tion) in each generation

• producing the o�spring population from the parent population

Each of the categories in evolutionary algorithms is brie�y introduced in the

next section.

Genetic Algorithms

Genetic Algorithms, introduced by John Holland [81, 62, 82] in the early

1970s, were originally proposed as a general model of adaptive processes,

but, as mentioned by De Jong [83, 84], the largest application of the method

is in the sphere of optimisation. As stated by [80], the same applies to the

other aforementioned techniques.

As a population-based algorithm, a Genetic Algorithm starts with a set of

solutions, each represented by a chromosome, and the number of solutions

(population size) is �xed throughout each generation. During each genera-

tion, the �tness value of each chromosome is evaluated and the evolutionary

operators (e.g. mutation, crossover and selection) are used to produce the

population of the next generation (o�spring). A simple genetic algorithm

that is used in this work is presented in Section 4.2 on page 93.

Evolutionary Programming

Evolutionary programming, introduced by Fogel [85, 86], originally aimed

to evolve �nite state machine. One of the main di�erences between genetic

algorithms and evolutionary programming is the lack of recombination (or

crossover) in the later. The main operator in evolutionary programming is

mutation which is applied randomly, using uniform probability distributions.

Fogel [72] stated that evolutionary programming takes a fundamentally dif-

ferent approach to genetic algorithms:

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 42

�The procedure abstracts evolution as a top-down process of adap-

tive behavior, rather than a bottom-up process of adaptive genet-

ics. It is argued that this approach is more appropriate because

natural selection does not act on individual components in isola-

tion, but rather on the complete set of expressed behaviors of an

organism in light of its interaction with its environment.�

He considers that evolutionary programming implements �survival of the

more skillful� rather than the �survival of the �ttest� which is emphasised

by genetic algorithm researchers.

Among other variants, the real-valued optimisers of the algorithm function by

applying Gaussian mutations to solution vectors8, whose performance could

be enhanced by using a Cauchy-distributed mutation. This variant, Fast

Evolutionary Programming (FEP) [87], uses the fatter tails of the Cauchy

distribution which allows larger mutations to escape from local minima.

Evolution Strategies

Evolution strategies, introduced by Rechenberg [88, 89] and Schwefel [90,

91], originally intended to solve di�cult discrete and continuous parameter

optimisation problems. Although mutation plays a primary role in evolution

strategy, recombination is used as a secondary update operator.

As stated in Kennedy et al. [44], evolution strategy is based upon the evolu-

tion of evolution:

�If evolutionary programming is based on evolution, then, reasons

Rechenberg [89], the �eld of evolution strategies is based upon

the evolution of evolution. Since biological processes have been

optimized by evolution, and evolution is a biological process, then

evolution must have optimized itself.�

Evolution strategy has two common selection mechanisms, namely (µ, λ) and

(µ+ λ):

8ibid.

CHAPTER 2. A.I. AND SWARM INTELLIGENCE 43

• In (µ, λ), µ current individuals are used to generate λ o�spring and the

µ best ones among the λ generated o�spring form the new population.

• In (µ+ λ), µ current individuals are used to generate λ o�spring; then

combine µ parents with λ o�spring and pick the µ best ones to form a

new population. There is a similarity between this method and a form

of elitism in GA where the best parent is kept for the next generation.

Di�erential Evolution (DE) algorithm, a global optimisation method, is sim-

ilar to GA, but is usually classi�ed as an evolution strategy algorithm. DE

iterates through the evolutionary process of mutation, crossover and selection

as explained in more detail in Section 4.3.

2.4 Summary

This chapter gives an overview on arti�cial intelligence and the ways it is

viewed as well as an introduction to two classical schools of thought in ar-

ti�cial intelligence (symbolic AI and connectionism) and a brief historical

account on their existence from late 40s. Next in the chapter, swarm intel-

ligence, which aims at modelling intelligence by looking at individuals in a

social context, is brie�y discussed, followed by some examples of communi-

cation in social insects/animals and swarm intelligence algorithms. Finally,

an introduction to optimisation is given, presenting di�erent types and de�-

nitions for search and optimisation in the literature, followed by a summary

of evolutionary optimisation algorithms (and its subcategories).

Chapter 3

Stochastic Diffusion Search

�All the world's a stage and all the men and women merely

players; they have their exits and their entrances; and one man

in his time plays many parts...�

� William Shakespeare

This chapter surveys SDS, a multi-agent global search and optimisation algo-

rithm, which is based on simple interaction of agents. A high-level description

of SDS in the form of a social metaphor is also presented, followed by a simple

search example demonstrating the procedures through which SDS conducts

the search. The architecture and development of SDS are then discussed in

greater detail. In addition to analysing the behaviour of SDS and the possi-

bility of embedding di�erent interaction strategies, the novel way SDS deals

with computational costly objective functions is investigated. The chapter

concludes by discussing issues related to applications of SDS.

Stochastic Di�usion Search (SDS) [3] introduced a new probabilistic approach

for solving best-�t pattern recognition and matching problems. As a multi-

agent population-based global search and optimisation algorithm, SDS is a

distributed mode of computation utilising interaction between simple agents

[92].

44

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 45

Unlike many nature inspired search algorithms, SDS has a strong mathe-

matical framework, which describes the behaviour of the algorithm by in-

vestigating its resource allocation [93], convergence to global optimum [94],

robustness and minimal convergence criteria [95] and linear time complexity

[96]. In order to introduce SDS, a social metaphor called the Mining Game1

(MG [97]) is used.

3.1 The Mining Game

This metaphor provides a simple high-level description of the behaviour of

agents in SDS, where a mountain range is divided into hills and each hill is

divided into regions:

A group of miners learn that there is gold to be found on the

hills of a mountain range but have no information regarding its

distribution. To maximise their collective wealth, the maximum

number of miners should dig at the hill where the concentration

of gold is highest; this information is not available a-priori. Thus

the goal of the resource allocation process is to allocate the most

miners to the hill which has the richest seams of gold. In or-

der to solve this problem, the miners decide to employ a simple

Stochastic Di�usion Search.

At the start of the mining process each miner is randomly given a

hill to mine (his hypothesis, h). Every day each miner mines at a

randomly selected region on the hill. At the end of each day, the

probability that a miner is happy is proportional to the amount

of gold he has mined. Each evening the miners congregate and

each miner who is not happy selects another miner at random

for communication. If the chosen miner is happy, they share the

1The Mining Game simulator is available online at the following address. In this sim-
ulation, many of the practical aspects of SDS covered in this chapter can be explored:
http://www.arcofbeing.com/miningame/

http://www.arcofbeing.com/miningame/

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 46

location of the gold and thus maintain it as their hypothesis, h; if

not, the unhappy miner selects a new region to mine at random.

As this process is isomorphic to a probabilistic formulation of SDS, miners

will naturally self-organise to congregate over hill(s) of the mountain with

high concentration of gold.

Algorithm 3.1 The Mining Game

01: Initialisation phase

02: Allocate each miner (agent) to a random

03: hill (hypothesis) to pick a region randomly

04:

05: Until (miners congregate over the highest

06: concentration of gold)

07:

08: Test phase

09: Each miner evaluates the amount of gold

10: they have mined (hypotheses evaluation)

11: Miners are classified into happy (active)

12: and unhappy (inactive) groups

13:

14: Diffusion phase

15: Unhappy miners consider a new hill by

16: either communicating with another miner

17: or ,if the selected miner is also

18: unhappy , there will be no information

19: flow between the miners; instead the

20: selecting miner must consider another

21: hill (new hypothesis) at random

22: End

3.1.1 Re�nements in the Metaphor

There are some re�nements to the mining game analogy, which elaborate

further more on the correlation between the metaphor and di�erent imple-

mentations of the algorithm.

The happiness of the miners can be measured probabilistically or gold may

be considered as an absolute unit. In both cases all the miners are either

happy or unhappy at the end of each day; this represents standard SDS. SDS

can be further re�ned through either of the following two assumptions:

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 47

1. Finite resources: the amount of gold is reduced each time a miner mines

the area

2. In�nite resources: the imaginary situation of the existence of in�nite

amounts of gold

In the case of having �nite resources, the analogy can be related to a real

world experiment of robots looking for food to carry along to the nest [98].

Therefore the amount of food (or gold, in the mining analogy) is reduced

after each discovery. In that experiment the following are investigated:

• an ant-like algorithm is used to avoid robots interfering with one an-

other (knowledge about overall colony energy)

• considering individual variation in performing the task

• recruiting other robots when identifying a rich area

In this case, the goal is to identify the location of the resources throughout

the search space. This is similar to conducting a search in a dynamically,

agent-initiated changing environment where agents change their congregation

from one area to another.

The second assumption has similarities with discrete function optimisation

where values at certain points are evaluated. However further re-evaluation

of the same points does not change their values as they remain constant.

The above is similar to an older metaphor of the Restaurant Game [51] used

in the former SDS literature where each customer could choose a meal from

a menu at a speci�c restaurant and it would be possible to try the same meal

again in the restaurant2. In this case, the purpose of the algorithm is con-

verging over the richest area rather than collecting the resources. Therefore,

this mode can be considered as a caste of the �nite resources mode.

2There is however a pitfall in this metaphor and therefore it is replaced with the Mining
Game. The pitfall alongside the metaphor itself is illustrated in Appendix C on page 190.

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 48

3.2 SDS Architecture

An SDS algorithm commences the search or optimisation by initialising its

population (e.g. miners, in the mining game metaphor) followed by the

iteration of two phases (for the high-level SDS description see Algorithm 3.2

and also see Algorithm 3.1 for the test and di�usion phases in the mining

game):

• the Test Phase (e.g. testing gold availability)

• and the Di�usion Phase (e.g. congregation and exchanging of informa-

tion)

In the test phase, the objective function of SDS checks whether the agent is

successful (happy) or not and it always returns a Boolean value. Later in the

iteration, in the di�usion phase, if the objective function returns a positive

result, the hypothesis (e.g. location of the hill, in the mining game) of the

successful agent is di�used. Therefore, the information of potentially good

solutions spreads throughout the entire population of agents.

In SDS, a function is not evaluated in full (in the same way that a miner in

the mining game does not dig all the regions of a hill). This partial evaluation

strategy of SDS helps escaping local minima (see Section 3.2.4 on page 57

for more detail) and helps to improve algorithm e�ciency.

Next, SDS is illustrated using two search examples in details.

Algorithm 3.2 SDS Algorithm

01: Initialising agents ()

02: While (stopping condition is not met)

03: Testing hypotheses ()

04: Determining agents ' activities (active/inactive)

05: Diffusing hypotheses ()

06: Exchanging of information

07: End While

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 49

3.2.1 Search Example One

The search example here is de�ned in the form of a game, where the respon-

dent selects, say, an animal without revealing it to others. Other participants

(questioners) take turn to ask questions (one at a time) in order to �gure

out the selected animal.

In the initial phase, each questioner asks his/her question separately about

the animal (hypothesis) they think of. Questioners are neither able to hear

the questions of their peers nor the answers they are given. After each

question, the respondent gives each questioner the answer in the form of

Yes/No (see Table 3.1).

Table 3.1: Initialisation and Test Phases
Questioner Question Hypothesis Activity

1 Does it climb trees? Monkey? No
2 Does it crawl? Snake? No
3 Does it �y? Pigeon? No

As described in the Mining Game, inactive questioners or agents (those who

get `No' as an answer) choose another questioner randomly to see if he/she

is active. If the chosen questioner is active, it di�uses its hypothesis to the

inactive one (see Table 3.2).

Table 3.2: Di�usion Phase 1
Questioner Communicates with Di�usion

1 3 (inactive) No
2 1 (inactive) No
3 2 (inactive) No

If there is no active questioner, there will not be any di�usion of information

(hypothesis) and each questioner puts forth another question (see Table 3.3).

The respondent gives his answer to the questioners and then communication

between questioners (di�usion), which is illustrated in Table 3.4, takes place;

questioner-2 randomly picks questioner-3 (which is active) and adopts its

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 50

Table 3.3: Test Phase 2
Questioner Question Hypothesis Activity

1 Does it live in the sea? Dolphin? No
2 Has it got a trunk? Elephant? No
3 Does it live in deserts? Camel? Yes

hypothesis (Camel). Note that active questioners (here, questioner-3) do not

pick another questioner.

Table 3.4: Di�usion Phase 2
Questioner Communicates with Di�usion

1 2 (inactive) No
2 3 (active) Yes
3 - -

In the next phase, questioner-2 investigates its newly adopted hypothesis

to see if it is a valid one (see Table 3.5) and questioner-1 (who was not

able to communicate with an active questioner before) asks another question

randomly; questioner-3 (who is active) re-checks the validity of his hypothesis

by asking another question about it.

Table 3.5: Test Phase 3
Questioner Question Hypothesis Activity

1 Does it live in jungles? Tiger? No
2 Has it got fur? Camel? Yes
3 Has it got a hump? Camel? Yes

As Table 3.6 shows, questioner-1 communicates with questioner-2 and adopts

the same hypothesis and evaluates the hypothesis just adopted.

Questioner-2 and questioner-3 do not communicate as they have a hypoth-

esis that they are happy with. They just evaluate another aspect of their

hypothesis to make sure it is the optimal one (see Table 3.7)

As Table 3.7 shows, all the questioners are active now and they all converge

to the same hypothesis, which is the correct animal in the respondent's mind.

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 51

Table 3.6: Di�usion Phase 3
Questioner Communicates with Di�usion

1 2 (active) Yes
2 - -
3 - -

Table 3.7: Test Phase 4
Questioner Question Hypothesis Activity

1 Does it resist thirst? Camel? Yes
2 Can it resist sand storms? Camel? Yes
3 Is it able to walk in sands? Camel? Yes

3.2.2 Search Example Two

In order to demonstrate the detailed process through which SDS functions,

an example is presented which shows how to �nd a set of letters within a

larger string of letters. The goal is to �nd a 3-letter model (Table 3.8) in a

16-letter search space (Table 3.9). In this example, there are four agents. For

simplicity of exposition, a perfect match of the model exists in the Search

Space (SS).

Table 3.8: Model
Index: 0 1 2
Model: S I B

Table 3.9: Search Space
Index: 0 1 2 3 4 5 6 7

Search Space: X Z A V M Z S I

Index: 8 9 10 11 12 13 14 15
Search Space: B V G O L B E H

In this example, a hypothesis, which is a potential problem solution, identi�es

three adjacent letters in the search space (e.g. hypothesis `1' refers to Z-A-V,

hypothesis `10' refers to G-O-L and etc).

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 52

In the �rst step, each agent initially picks a hypothesis randomly from the

search space (see Table 3.10). Assume that:

• the �rst agent points to entry 12 of the search space and in order to

partially evaluate this entry, it randomly picks one of the letters (e.g.

the �rst one, L): L B E

• the second agent points to entry 9 and randomly picks the second letter

(G): V G O

• the third agent refers to entry 2 in the search space and randomly picks

the �rst letter (A): A V M

• the fourth agent goes entry 3 and randomly picks the third letter (Z):

V M Z

Table 3.10: Initialisation and Iteration 1
Agent No: 1 2 3 4

Hypothesis position: 12 9 2 3
L-B-E V-G-O A-V-M V-M-Z

Letter picked: 1st 2nd 1st 3rd

Status: × × × ×

The letters picked are compared to the corresponding letters in the model,

which is S-I-B (see Table 3.8).

In this case:

• The 1st letter from the �rst agent (L) is compared against the 1st letter

from the model (S) and because they are not the same, the agent is set

inactive.

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 53

• For the 2nd agent, the second letter (G) is compared with the second

letter from the model (I) and again because they are not the same, the

agent is set inactive.

• For the third and fourth agents, letters `A' and `Z' are compared against

`S' and `B' from the model. Since none of the letters correspond to the

letters in the model, the status of the agents are set as inactive.

In the next step, as in the mining game, each inactive agent chooses another

agent and adopts the same hypothesis if the selected agent is active. If the

selected agent is inactive, the selecting agent generates a random hypothesis.

Assume that the �rst agent chooses the second one; since the second agent

is inactive, the �rst agent must choose a new random hypothesis from the

search space (e.g. 6). See Figure 3.1 for the communication between agents.

Figure 3.1: Agents Communication 1
ag1 ag2 ag3 ag4

The process is repeated for the other three agents. As the agents are inactive,

they all choose new random hypotheses (see Table 3.11).

Table 3.11: Iteration 2
Agent No: 1 2 3 4

Hypothesis position: 6 10 0 5
S-I-B G-O-L X-Z-A Z-S-I

Letter picked: 2nd 3rd 1st 1st

Status:
√

× × ×

In Table 3.11, the second, third and fourth agents do not refer to their corre-

sponding letter in the model, therefore they become inactive. The �rst agent,

with hypothesis `6', chooses the 2nd letter (I) and compares it with the 2nd

letter of the model (I). Since the letters are the same, the agent becomes

active.

At this stage, consider the following communication between the agents: (see

Figure 3.2)

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 54

• the fourth agent randomly chooses the second one

• the third agent randomly chooses the second one

• the second agent randomly chooses the �rst one

Figure 3.2: Agents Communication 2
ag1 ag2 ag3 ag4

In this case, the third and fourth agents, which chose an inactive agent

(the second agent), have to choose other random hypotheses each from the

search space (e.g. agent three chooses hypothesis `1' which points to Z-A-V

and agent four chooses hypothesis 4 which points to M-Z-S), but the second

agent adopts the hypothesis of the �rst agent, which is active. As shown in

Table 3.12:

• The �rst agent, with hypothesis `6', chooses the 3rd letter (B) and

compares it with the 3rd letter of the model (B). Since the letters are

the same, the agent remains active.

• The second agent, with hypothesis `6', chooses the 1st letter (S) and

compares it with the 1st letter of the model (S). Since the letters are

the same, the agent stays active.

• the third and fourth agents do not refer to their corresponding letter

in the model, therefore they are set inactive.

Table 3.12: Iteration 3
Agent No: 1 2 3 4

Hypothesis position: 6 6 1 4
S-I-B S-I-B Z-A-V M-Z-S

Letter picked: 3rd 1st 2nd 3rd

Status:
√ √

× ×

Because the third and fourth agents are inactive, they try to contact other

agents randomly. For instance (see Figure 3.3):

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 55

• agent three randomly chooses agent two

• agent four randomly chooses agent one

Figure 3.3: Agents Communication 3
ag1 ag2 ag3 ag4

Since agent three chose an active agent, it adopts its hypothesis (6). As

for agent four, because it chose agent one, which is active too, it adopts its

hypothesis (6). Table 3.13 shows:

• The �rst agent, with hypothesis `6', chooses the 1st letter (S) and com-

pares it with the 1st letter of the model (S). Since the letters are the

same, the agent remains active.

• The second agent, with hypothesis `6', chooses the 2nd letter (I) and

compares it with the 2nd letter of the model (I). Since the letters are

the same, the agent stays active.

• The third agent, with hypothesis `6', chooses the 3rd letter (B) and

compares it with the 3rd letter of the model (B). Since the letters are

the same, the agent becomes active.

• The fourth agent, with hypothesis `6', chooses the 1st letter (S) and

compares it with the 1st letter of the model (S). Since the letters are

the same, the agent is set active.

Table 3.13: Iteration 4
Agent No: 1 2 3 4

Hypothesis position: 6 6 6 6
S-I-B S-I-B S-I-B S-I-B

Letter picked: 1st 2nd 3rd 1st

Status:
√ √ √ √

At this stage, the entire agent populations are active pointing to the location

of the model inside the search space.

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 56

3.2.3 Initialisation and Termination

Although normally agents are uniformly distributed throughout the search

space, if the search space is of a speci�c type, or knowledge exists about it a

priori, it is possible to use a more intelligent (rather than random) startup

by biasing the initialisation of the agents.

If there is a pre-de�ned pattern to �nd in the search space, the goal will

be locating the best match or, if this does not exist, its best instantiation

in the search space [94]. Similarly, in a situation which lacks a pre-de�ned

pattern, the goal will be �nding the best pattern in accord with the objective

function.

In both cases, it is necessary to have a termination strategy. In one method3,

SDS terminates the process when a statistical equilibrium state is reached,

which means that the threshold of the number of active agents is exceeded and

the population maintains the same state for a speci�ed number of iterations.

In [99], four broad types of halting criteria are introduced:

1. No stopping criterion, whereby the user interrupts the course of action

of the search or optimisation and is usually preferred when dealing with

dynamically changing problem spaces or when there is no prede�ned

pattern to look for

2. Time-based criterion, in which passing a pre-set duration of time is the

termination point of the algorithm

3. Activity-based criterion, which is a problem-dependent halting criterion

and is the most prevalent form in the SDS algorithm. The termination

of the process is decided upon through monitoring the overall activity of

the agents (e.g. reaching a certain user de�ned activity level, reaching

a stable population state after a sudden increase in their activities)

4. Cluster-based criterion that keeps tracks of the formation of stable

clusters.

3Ibid

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 57

Introducing stopping criteria adds extra computations to what would other-

wise be a distributed algorithm. As an alternative to the full-model cluster-

based criteria, just a small proportion of the population can be checked on

whether they point to the same hypothesis [99]. Increasing the size of the

already monitored sample might also be considered afterwards.

Additionally, in order to reduce the computational complexity of the search,

it is possible to run the termination procedure after every n iterations. The

two most common termination strategies in SDS (introduced in [94]) are the

following:

• Weak halting criterion is the ratio of the active agents to the total

number of agents. In this criterion, cluster sizes are not the main

concern.

• Strong halting criterion investigates the number of active agents that

forms the largest cluster of agents all adopting the same hypothesis.

Therefore, the choice of the halting mechanism is based on whether to favour

the active agents in the whole of the agent populations (weak halting mech-

anism), which is similar to the activity-based criterion, or to consider the

largest cluster of active agents (strong halting mechanism), which is similar

to the cluster-based criterion.

3.2.4 Partial Function Evaluation

One of the concerns associated with many optimisation algorithms (e.g. ge-

netic algorithm [63], particle swarm optimisation [4], etc.) is the repetitive

evaluation of a computationally expensive �tness function. In some appli-

cations, such as tracking a rapidly moving object, the repetitive function

evaluation signi�cantly increases the computational cost of the algorithm.

Therefore, in addition to reducing the number of function evaluations, other

measures should be taken in order to reduce the computations carried out

during the evaluation of each possible solution as part of the optimisation or

search processes.

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 58

The commonly used benchmarks for evaluating the performance of swarm

intelligence algorithms are typically small in terms of their objective func-

tions computational costs [1, 2], which is often not the case in real-world

applications. Examples of costly evaluation functions are seismic data inter-

pretation [2], selection of sites for the transmission infrastructure of wireless

communication networks and radio wave propagation calculations of one site

[100].

Costly functions have been investigated under di�erent conditions [101] and

the following two broad approaches have been proposed to reduce the cost

of function evaluations:

• The �rst is to estimate the �tness by taking into account the �tness of

the neighbouring elements, the former generations or the �tness of the

same element through statistical techniques introduced in [102, 103].

• In the second approach, the costly �tness function is substituted with

a cheaper, approximate �tness function.

When agents are about to converge, the original �tness function can be used

for evaluation to check the validity of the convergence [101].

Many �tness functions are decomposable to components that can be eval-

uated separately. In partial evaluation of the �tness function in SDS, the

evaluation of one or more of the components may provide partial informa-

tion and means for guiding the optimisation. The role of partial evaluation

process in dealing with noise is described in the following [51]:

�Certain types of noise in the objective function may be com-

pletely absorbed in the probabilistic nature of the partial evalua-

tion process, and do not in�uence the search performance of SDS:

i.e., they have no e�ect on convergence times and stability of clus-

ters. More formally, noise that introduces or increases variance

in the evaluation of component functions fi � without altering

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 59

the averaged probabilities of the test score4 � has no e�ect on the

resource allocation process.�

Dynamic Environments The application of partial function evaluation is

of more signi�cance when the problem space is dynamically changing and the

evaluation process is of a more repetitive nature. Repeated (re)evaluations

of �tness functions in many swarm intelligence algorithms necessitate having

less costly �tness functions.

On the other hand, the di�usion mechanism tends to reduce the diversity in

the population or the population homogeneity [51], which in turn leads to an

inadequate subsequent reaction in a dynamically changing �tness function.

SDS aims at proposing a new solution (see Section 3.2.6) to the problem

of population homogeneity by utilising an alternative method to balance the

trade o� between the wide exploration of all possible solutions in the problem

space and the detailed exploitation of any possible smaller region which might

be a candidate for holding the sought object.

3.2.5 Convergence

Convergence time is de�ned as the number of iterations needed before a

stable population of active agents is formed.

An important factor which in�uences convergence is the ratio of the number

of agents to the size of the solution space. In [104], it is proved that in

a noiseless environment convergence always happens. In [94], it is proved

that all agents become active when searching for a solution in a noiseless

environment where a perfect match exists.

Additionally, noise, which does not alter the averaged probabilities of the test

score but increases the variance in the evaluation of component functions, has

no e�ect on the resource allocation process of SDS [51]. However, if the value

4Test score is the probability of producing active agents during the test phase, averaged
over all component functions.

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 60

of test score changes as a result of noise presence, the resource allocation

process may be in�uenced either:

• positively if the value of the test score increases

• or negatively if the value of the test score decreases

It is also proved that the population size and the test score determine the

average cluster size as well as convergence times.

The approximately linear time complexity of SDS is analysed in [94] where

two extreme cases in convergence time have been considered:

1. in the initial stages, some of the agents point to the correct position in

the search space, which results in a shorter convergence time.

2. there is no agent pointing to the correct position for some time after

the initialisation, which may lead to a longer process before the �rst

agent locates a potentially correct location.

It has also been shown that convergence time in SDS is proportionately robust

to the amount of noise in the search space.

Convergence to a global optimal solution in SDS is detailed in [96].

3.2.6 Resource Allocation and Stability

In addition to convergence time, steady-state resource allocation is one of

the important factors in the performance criteria of SDS [105]. In order to

measure the robustness of the algorithm, in the case of the presence of noise

and imperfect matches, resource allocation is taken into account, which is

de�ned as the average number of active states when the search shows steady-

state behaviour. Although, resource allocation in standard SDS is dynamic

and self-regulatory, there are certain issues to be investigated.

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 61

Local Exploitation and Global Exploration In standard SDS, there

is no explicit mechanism to shift the balance from local exploitation (detailed

exploitation) towards global exploration (wide exploration) of candidate so-

lutions.

As observed in [106], a meta-heuristic approach tries to exploit self-similarity

and regularities of the �tness function, which indicates that neighbouring so-

lutions in the problem space have alike properties. Adding this mechanism

to SDS may be helpful; one way of embedding this into the algorithm is to

add a small random o�set to the hypotheses before copying them to other

agents during the di�usion phase, which is similar to mutation in evolution-

ary algorithms [51, 99]. The e�ect of this minor change in the hypotheses

is to investigate nearby solutions, which generally serves as a hill-climbing

mechanism improving the overall performance of the SDS and results in im-

proved convergence time in solution spaces with self-similarity. Nevertheless,

it also accelerates the identi�cation of more optimal solutions in the vicinity

of already found ones.

In dynamically changing environments, it is important to explore the solution

space even after �nding a suitable candidate solution, as once a good solution

is detected, a large proportion of agents are attracted to it, thus limiting fur-

ther exploration of the solution space. Therefore, the Context Sensitive and

Context Free mechanisms (described in Section 3.3.4 and 3.3.5) are proposed

to shift the balance of the search back to exploration.

A full account of Markov chain based analysis of the stochastic nature of stan-

dard SDS for resource allocation and the steady state probability distribution

of the whole swarm is extensively discussed in [93]. More information about

search behaviour and resource allocation can also be found in [107, 108].

In heuristic multi-agent systems, the possibility of agents losing the best

solution results in destabilising or even non-convergence of the algorithm.

Conversely, it is shown that the solutions found by SDS are exceptionally

stable [109].

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 62

3.3 Variations in SDS and Recruitment Strate-

gies

In SDS, similar to other optimisation algorithms, the goal is �nding the

best solution based on the criteria speci�ed in the objective function. The

collection of all candidate solutions (hypotheses) forms the search space and

each point in the search space is represented by an objective value, from

which the objective function is formed [51].

One of the issues related to SDS is the mechanism behind allocating resources

to ensure that while potential areas of the problem space are exploited, ex-

ploration is not ignored. For this purpose, di�erent recruitment methods,

where one agent recruits another, are investigated:

Three recruitment strategies are proposed in [110]: active, passive and dual.

These strategies are used in the Di�usion Phase of SDS. Each agent can be

in either of the following states: It is active if the agent is successful in the

Test Phase; an agent is inactive if it is not successful; it is engaged if it is

involved in a communication with another agent.

The standard SDS algorithm [3] uses the passive recruitment mode, which

will be described next followed by other recruitment modes.

3.3.1 Passive Recruitment Mode

In the passive recruitment mode (see Algorithm 3.3), if the agent is not

active, another agent is randomly selected; if the randomly selected agent is

active, the hypothesis of the active agent is communicated (or di�used) to

the inactive one. Otherwise a new random hypothesis is generated for the

inactive agent and there will be no �ow of information.

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 63

Algorithm 3.3 Passive Recruitment Mode

01: For ag = 1 to No_of_agents

02: If (!ag.activity ())

03: r_ag = pick a random agent()

04: If (r_ag.activity ())

05: ag.setHypothesis(r_ag.getHypothesis ())

06: Else

07: ag.setHypothesis(randomHypothesis ())

08: End If/Else

09: End If

10: End For

3.3.2 Active Recruitment Mode

In the active recruitment mode (see Algorithm 3.4), active agents are in

charge of communication with other agents. An active agent randomly selects

another agent. If the randomly selected agent is neither active nor engaged in

communication with another active agent, then the hypothesis of the active

agent is communicated to the inactive one and the agent is �agged as engaged.

The same process is repeated for the rest of the active agents. However, if an

agent is neither active nor engaged, a new random hypothesis is generated

for it.

Algorithm 3.4 Active Recruitment Mode

01: For ag = 1 to No_of_agents

02: If (ag.activity ())

03: r_ag = pick a random agent()

04: If (!r_ag.activity () AND !r_ag.getEngaged ())

05: r_ag.setHypothesis(ag.getHypothesis ())

06: r_ag.setEngaged(true)

07: End If

08: End If

09: End For

10:

11: For ag = 1 to No_of_agents

12: If (!ag.activity () AND !ag.getEngaged ())

13: ag.setHypothesis(randomHypothesis ())

14: End If

15: End For

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 64

3.3.3 Dual Recruitment Mode

In dual recruitment mode (see Algorithm 3.5), both active and inactive agents

randomly select other agents. When an agent is active, another agent is ran-

domly selected. If the randomly selected agent is neither active nor engaged,

then the hypothesis of the active agent is shared with the inactive one and

the inactive agent is �agged as engaged. Also, if there is an agent which is

neither active nor engaged, it selects another agent randomly. If the newly

selected agent is active, there will be a �ow of information from the active

agent to the inactive one and the inactive agent is �agged as engaged. Nev-

ertheless, if there remains an agent that is neither active nor engaged, a new

random hypothesis is chosen for it.

Algorithm 3.5 Dual Recruitment Mode

01: For ag = 1 to No_of_agents

02: If (ag.activity ())

03: r_ag = pick a random agent()

04: If (!r_ag.activity () AND !r_ag.getEngaged ())

05: r_ag.setHypothesis(ag.getHypothesis ())

06: r_ag.setEngaged(true)

07: End If

08: Else

09: r_ag = pick a random agent()

10: If (r_ag.activity () AND !ag.getEngaged ())

11: ag.setHypothesis(r_ag.getHypothesis ())

12: ag.setEngaged(true)

13: End If

14: End If/Else

15: End For

16:

17: For ag = 1 to No_of_agents

18: If (!ag.activity () AND !ag.getEngaged ())

19: ag.setHypothesis(randomHypothesis ())

20: End If

21: End For

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 65

3.3.4 Context Sensitive Mechanism

Comparing the above-mentioned recruitment modes, it is theoretically deter-

mined in [110] that robustness and greediness decrease in the active recruit-

ment mode. Conversely, these two properties are increased in dual recruit-

ment strategy. Although, the greediness of dual recruitment mode results

in decreasing the robustness of the algorithm, the use of Context Sensitive

Mechanism limits this decrease [110, 93]. In other words, the use of context

sensitive mechanism biases the search towards global exploration. In the con-

text sensitive mechanism, if an active agent randomly chooses another active

agent that maintains the same hypothesis, the selecting agent is set inactive

and adopts a random hypothesis. This mechanism frees up some of the re-

sources in order to have a wider exploration throughout the search space as

well as preventing cluster size from overgrowing, while ensuring the forma-

tion of large clusters in case there exists a perfect match or good sub-optimal

solutions (see Algorithm 3.6).

Algorithm 3.6 Context Sensitive Mechanism

01: If (ag.activity ())

02: r_ag = pick a random agent ()

03: If (r_ag.activity () AND

04: ag.getHypothsis () == r_ag.getHypothsis ())

05: ag.setActivity(false)

06: ag.setHypotheis(randomHypothsis ())

07: End If

08: End If

3.3.5 Context Free Mechanism

Context Free Mechanism is another recruitment mechanism, similar to con-

text sensitive mechanism, where each active agent randomly chooses another

agent. If the selected agent is active (irrespective of having the same hypoth-

esis or not), the selecting agent becomes inactive and picks a new random

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 66

hypothesis. By the same token, this mechanism ensures that even if one or

more good solutions exist, about half of the agents explore the problem space

and investigate other possible solutions (see Algorithm 3.7).

Algorithm 3.7 Context Free Mechanism

01: If (ag.activity ())

02: r_ag = pick a random agent ()

03: If (r_ag.activity ())

04: ag.setActivity(false)

05: ag.setHypotheis(randomHypothsis ())

06: End If

07: End If

3.3.6 Synchronous and Asynchronous Update

In synchronous di�usion mode, the updates of all hypotheses occur simul-

taneously after each iteration of test and di�usion phases; whereas in asyn-

chronous mode, each hypothesis is updated individually. Although, in the

original SDS [3], the synchronous mode is used, it is possible to di�use the

hypotheses of successful agents synchronously or asynchronously.

As mentioned in [99], in many variants, the performance of an asynchronous

process is approximately the same as the synchronous one, with each agent

operating in its own time.

3.3.7 Composite Hypotheses

In standard SDS all hypotheses are homogeneous and thus have the same

type. In this section, new variants of SDS are described where there are two

di�erent types of hypotheses working together. These SDS types are applied

to solve parameter estimation problems, which is a more complicated search

problem compared to pattern matching. In parameter estimation, outlier

data (or random noise) is embedded in the data (or inlier data); the goal

is to �nd parameter values that best describe the inlier data [111]. Data

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 67

Driven SDS [112] and coupled SDS [111], which have composite hypotheses,

are both used to solve parameter estimation problems. In the estimation

problem, similarly to other search problems, a cost function or objective

function is required to measure how close the algorithm is to the inlier data

or the model in the search space.

In parameter estimation, the objective function is optimised with respect to

the estimated model parameters; that is why it is considered an optimisation

problem [112].

3.3.7.1 Data Driven SDS

Data Driven SDS (DDSDS) is shown to outperform [112] Maximum Likeli-

hood Estimator Sample Consensus (MLSESAC) which is a variant of RAN-

dom SAmple Consensus (RANSAC), one of the most popular and robust

estimators based on stochastic principles [113].

DDSDS contains a composite hypothesis: a manifold hypothesis, which main-

tains the minimum necessary dataset for describing a hypothesis; and a da-

tum hypothesis, which represents the smallest building block of the hypoth-

esis. If estimating a line is the problem, then the manifold hypothesis would

consists of two points, which are su�cient to represent a line, and the da-

tum hypothesis would be a single point that is randomly selected from the

manifold hypothesis rather than the whole of the search space.

In the test phase, random datums are selected just from datum hypotheses

that are associated with the agents. The probability of selecting a datum,

which has no link with any agents is zero. This will dynamically constrain the

selection to the data generated by the inlier distribution [112]. The distance

of the agent's manifold hypothesis from the randomly selected datum is then

evaluated to determine if the distance stays within the pre-set inlier threshold

value. If this is the case, the agent's state becomes active.

In the di�usion phase, the active agent di�uses its manifold and datum hy-

potheses to the inactive agent. When an inactive agent is not involved in

any information exchange, similarly to the initialisation phase, it chooses two

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 68

random data from the entire search space for the manifold hypothesis and

the datum hypothesis is selected from one of the two elements of the manifold

hypothesis.

3.3.7.2 Coupled SDS

In Coupled SDS (CSDS) two independent populations of agents are formed

each maintaining di�erent types of hypothesis, namely the manifold hypothe-

ses and datum hypotheses. In contrast to DDSDS, datum hypotheses are

selected randomly from the entire search space. The size of these two popu-

lations are not necessarily the same. They are randomly and independently

initiated with data from the entire search space. In the test phase, the

manifold hypothesis of one agent is compared with the datum hypothesis of

another. Based on the distance threshold, if the datum matches the manifold,

both agents become active. This evaluation is called composite hypothesis

evaluation, which is more complicated than the synchronous evaluation in

standard SDS, where there is just one population of agents. Therefore, in

addition to the asynchronous test, two further synchronisation modes have

been proposed:

• Master/Slave Synchronisation, where one of the populations is master

and the other is slave. The master hypothesis randomly selects a hy-

pothesis from the slave population for the test. In this mode, there will

be m composite evaluation, where m is the size of the master popula-

tion.

• Sequential Master Synchronisation is a variant of the master/slave

mode, where populations take turn to be master. Each iteration has n

composite evaluations, which is the sum of all agents in both manifold

and datum populations.

The di�usion phase in CSDS is similar to the standard SDS for each pop-

ulation independently, where the information �ow is allowed within each

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 69

population of agents and thus there is no information exchange between the

manifold and datum population of agents [111].

It is empirically shown that DDSDS converges even when there are 50% more

outliers while it also outperforms standard SDS in convergence time [112].

Both of these SDS variants have been proposed to improve the performance

of the original SDS towards stable convergence in high noise estimation tasks.

3.4 Applications

There are several applications associated with SDS which have been success-

fully applied to diverse problems.

SDS was �rst introduced by a simple text searching algorithm in 1989 [114]

demonstrating the use of partial function evaluation technique � by partially

evaluating the text to �nd the model or the best match.

Subsequently, in 1992, tracking eyes was investigated in [104]. In this project,

a hybrid stochastic search network was used to locate eye positions within

grey scale images of human faces. It was shown that the network can accu-

rately locate the eye features of all the subjects it has been trained with and

it could reach over sixty percent success in locating eye features on subjects

on which the system has not been explicitly trained with.

In 1995 project, similar to the two above, SDS was used in solving vi-

sual search tasks, such as object recognition (in this case, locating facial

features[115]). The details of another visually related task for real time track-

ing of lips in video �lms was given in [115], where SDS uses a hybrid system

of a set of n-tuple neurons [116].

Exploring a set of candidate positions to self-localise an autonomous wheelchair

or robot in a complex busy environment through a number of cells was used

in a method called Focused Stochastic Di�usion Network [117] in 1998; in

this method, the space of possible positions was examined in parallel by a

set of competitive cooperative cells to identify the most likely position of the

robot or wheelchair in the environment.

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 70

In 1999, emergent characteristics of neuron functionality were also described

using a new metaphor based on SDS utilising spiking neurons [118]; in the pa-

per, it was also argued that the metaphor of conventional computational de-

scription of brain operation is too restrictive (limited to representing and pro-

cessing knowledge of arity-zero; NESTER can represent and process knowl-

edge of arity-n).

SDS was also used in wireless transformation networks, where the location of

transmission infrastructure is of signi�cance to keep the cost minimum while

preserving adequate area coverage [100]. In this application, at 2002, given

a set of candidate sites, a network should be designed so that at a certain

number of reception points, the signal from at least one transmitter can be

received.

In 2008 [119], SDS was used in feature tracking in the context of Atmo-

spheric Motion Vectors derivation, as using template matching techniques,

such as Euclidean distance or cross-correlation for tracking steps which are

very expensive computationally.

In 2011, the SDS algorithm demonstrated a promising ability in identifying

areas of metastasis from bone scintigraphy [120, 121].

Implementation on Hardware

SDS is inherently parallel in nature and the hardware implementation of the

algorithm is feasible. Still, the fact that the original SDS model requires full

inter-agent connectivity, where each agent is able to communicate directly

with all others in the population, causes fundamental di�culty in the e�cient

implementation of the algorithm on parallel computer or dedicated hardware.

One of the solutions proposed in [105] was to limit the communication be-

tween the agents. Agents are considered to be spatially located in a lattice

(SDS or LSDS) where each agent is only connected to the k-nearest neigh-

bours.

Therefore, considering this form of SDS, agents just communicate with the

CHAPTER 3. STOCHASTIC DIFFUSION SEARCH 71

ones they are connected to. It was shown that a network with randomly con-

nected agents (random graph), with a small number of long-range connec-

tions, performs similar to the standard SDS or ordered lattice with roughly

the same number of connections5. The conclusion has been drawn that re-

stricting the number of interconnectivity in random or small-world networks

� which is a lattice with a small additional number of long-range connections

� does not have a huge e�ect on the performance of SDS algorithm. Also,

the rate of information spread is higher in random graphs and small-world

networks than ordered lattices.

Analysing the number of connections and the connection topology leads to

the following conclusion: it has been argued that when a high-dimensional,

complex problem is considered, the time at which one of the agents becomes

active (or `time to hit' as de�ned in [114]), Th, is bigger than the time required

for the active agent to spread its successful hypothesis (`di�usion time') Td

[105]. Although random graphs have shorter Td than regular lattices, they

are harder to implement on parallel hardware, because the connections are

not necessarily local or short. In ordered lattice SDS topology, which shows

the performance of a fully interconnected standard SDS, adding random links

decrease Td exponentially.

Td is considered to be an important factor, which not only a�ects convergence

time, but is also seen as a parameter for resource allocation stability [122],

as well as an indirect measure for robustness [105].

In another approach, the agent swarm can be divided into several sub-

swarms. In this mode, each sub-swarm runs on a separate processor and

they are fully connected while allowing just a low frequency of communica-

tion between swarms. This process is applied to the di�usion phase, during

which agents communicate with each other.

5Ibid

Chapter 4

Population-Based Optimisers

�The used key is always bright.�

� Benjamin Franklin

This chapter presents three well known population-based algorithms: Par-

ticle Swarm Optimisation (PSO), Genetic Algorithm (GA) and Di�erential

Evolution algorithm (DE). A description of Particle Swarm Optimisation is

followed by a discussion on di�erent parameter changes and their e�ects on

standard PSO algorithm. The section on PSO is more detailed than the other

two algorithms in this chapter, as PSO was the primary algorithm investi-

gated alongside SDS in order to explore their integration strategy (which is

reported in Chapter 7 on page 122). The last two sections of this chapter

give an overview on GA and DE algorithms.

4.1 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is an evolutionary computation tech-

nique developed in 1995 by Kennedy and Eberhart [4, 123]. It came about

as a result of an attempt to graphically simulate the choreography of �sh

72

CHAPTER 4. POPULATION-BASED OPTIMISERS 73

schooling or birds �ying (e.g. pigeons, starlings, and shorebirds) in coordi-

nated �ocks that show strong synchronisation in turning, initiation of �ights

and landing, despite the fact that experimental research to �nd leaders in

such �ocks failed [124]. In particle swarms, although members of the swarm

neither have knowledge about the global behaviour of the swarm nor global

information about the environment, the local interactions of the swarms re-

sult in complex collective behaviour, such as �ocking, herding, schooling,

exploration and foraging behaviour [57, 125, 126, 127]. The boid simula-

tion, developed in 1987 by Reynolds [57], visualises �ocking as an emergent

behaviour originated by the interaction of three simple rules:

• Collision avoidance: avoiding collision with neighbouring �ock mates

• Velocity matching: matching the velocity of nearby mates

• Flock centring: attempting to stay close to neighbouring mates

Moreover, the socio-cognitive theory underpinning particle swarms or adap-

tive culture model is described in terms of three simple principles [128]:

• Evaluation, by which the closeness of particles to the optima is mea-

sured; in the simplest form, they are ranked as positive or negative.

• Comparison, where particles are compared with their neighbouring par-

ticles. Comparison, as it is described in [129], is a way to foster learning

and change.

• Imitation, which is a way to learn from other members of the swarm

to do things.

Combining the three principles of evaluation, comparison and imitation leads

a simpli�ed social being to adopt complex environmental challenges and to

optimise hard problems as suggested by Kennedy et al. ([44], p. 284).

The origin of particle swarm optimisation goes back to Arti�cial Life (AL),

social psychology, engineering and computer science. Although PSO lacks

CHAPTER 4. POPULATION-BASED OPTIMISERS 74

operators such as mutation and crossover, it shares similarities with evo-

lutionary computation (genetic algorithms, evolutionary programming, evo-

lution strategies and genetic programming [130]). Here are some of these

similarities:

• random initialisation of populations (potential solutions)

• updating generations to search for optima

• the use of the concept of �tness

However, one of the di�erences is that particles (possible solutions) in PSO

are �own [4] through the problem space. At each iteration, each particle �ies

towards the weighted average of its former best position, which represents

the best �tness value, as well as its neighbourhood's best position.

In evolutionary computation, current populations are transformed and the

transformation is inspired by the neo-Darwinian view of evolution.

Darwin theory of evolution is mainly based on natural selection, but during

Darwin's time, chromosomes were not known and Darwin's theory was not

able to fully describe how variations arise and how they are passed on to the

o�spring. In the neo-Darwinian view of evolution (which includes Mendelian

ideas of genetics from 1865), three main issues are presented [131]:

• the composition of chromosome is determined by the parents

• random mutation expands the diversity of species

• �tter individuals are more likely to survive to the next generation

Nowadays, as Kennedy et al. [131] believe, the Darwinian view of evolution

is perhaps better described as the neo-Darwinian view.

Still, as Kau�man argues in 1993 and 1995 [132, 133], the following two issues

are not fully described with the current theory:

• origin of life: considering the time frame of the earth, it's less likely to

consider chance or mutation to be the origin of life

CHAPTER 4. POPULATION-BASED OPTIMISERS 75

• complex life form: having complex life forms is highly improbable solely

through mutation

On the contrary to evolutionary computation where transformation is in-

spired by the neo-Darwinian view of evolution, transformations in PSO come

as a result of a simpli�ed form of social behaviour of biological organisms.

Both EC and PSO are inspired by natural phenomena [134].

One thing that distinguishes particle swarms from the evolutionary algo-

rithms is that there is no selection in the form of replacement in particle

swarms. There is of course selection in changing the older best with the new

one whenever a better candidate solution is found, but the identity of the

individual is preserved over time [135]. It can thus be said that in parti-

cle swarms an individual improves over time but is not replaced with their

o�spring, whilst improvements of the individual are not considered in evolu-

tionary systems.

It is also apparent that there is a close relationship between particle swarms

and Cellular Automata (CA), which is characterised by three main attributes

[136]:

• individual cell updates are done in parallel

• each new cell's value depends only locally on the old values of the cell

and its neighbours

• all cells are updated using the same rules.

Therefore, as stated in [44], particles can be conceptualised as cells in CA,

whose states change in many dimensions simultaneously.

One of the main attractions of PSO, as a population-based global optimisa-

tion technique is its applicability to di�erent problems (see Section 4.1.4 on

page 92) whilst it remains simple to implement. Still, despite the simplicity

of implementation of PSO algorithm and its increasing number of applica-

tions, little is known theoretically about how PSO achieves its results [137]

(see Section 4.1.3 on page 86 for more details).

CHAPTER 4. POPULATION-BASED OPTIMISERS 76

4.1.1 PSO Algorithm

Since its introduction in 1995, Particle Swarm Optimisation [4] has been

expanded by di�erent researchers. This section describes basic PSO and

discusses some variations of the algorithm.

4.1.1.1 Standard PSO

A swarm in PSO algorithm comprises a number of particles and each particle

represents a point in a multi-dimensional problem space. Particles in the

swarm explore the problem space, searching for the optimal position, as

de�ned by a �tness function. The position of each particle, x, is dependent

on the particle's own experience and those of its neighbours. Each particle

has a memory, containing the best position found so far during the course of

the optimisation, which is called personal best (p). The best position found

throughout the population � or in the neighbourhood � is called global best

(pg) (and local best (pl) respectively).

The standard PSO algorithm de�nes the position of each particle by adding

a velocity to the current position. Below is the equation for updating the

velocity of each particle:

vtid = vt−1
id + c1r1

(
pid − xt−1

id

)
+ c2r2

(
pgd − xt−1

id

)
(4.1)

xtid = vtid + xt−1
id (4.2)

where ~vt−1
id is the velocity vector of particle i in dimension d at time step

t− 1; c1,2 are the learning factors (also referred to as acceleration constants)

for personal best and neighbourhood best respectively (they are constant

and are usually set to 2); r1,2 are random numbers adding stochasticity to

the algorithm and they are drawn from a uniform distribution on the unit

interval U (0, 1); ~pid is the personal best position of particle xi in dimension

d; and ~pgd is global best (or neighbourhood best).

CHAPTER 4. POPULATION-BASED OPTIMISERS 77

Therefore, PSO optimisation is based on particles' individual experience and

their social interaction with the particle swarms.

The in�uence of an individual particle is de�ned by means of c1r1
(
pid − xt−1

id

)
which is the cognitive component (or �nostalgia� of the particle [4]) and the

social in�uence in the optimisation is maintained through c2r2
(
pgd − xt−1

id

)
which is the social component.

The high value of the cognitive component relative to the social one results in

particles wandering through the search space; and the high value of the social

component relative to the cognitive one results in a potentially pre-mature

convergence of particles towards a local minimum1.

Once the velocities of the particles are updated, their new positions are de-

termined. Algorithm 4.1 summarises the behaviour of the PSO algorithm.

Algorithm 4.1 PSO Pseudo Code

01: Initialise particles

02:

03: While (stopping condition is not met)

04: For all particles

05: Evaluate fitness value of the current particle

06:

07: If (current fitness < pbest)

08: pbest = current fitness

09: End If

10:

11: If (pbest < neighbourhood best)

12: neighbourhood best = pbest

13: End If

14:

15: Update particle velocity

16: Update particle position

17: End For

18: End While

In local best PSO (lbest PSO), neighbourhoods are either formed by spa-

tial similarity or particle indices. As stated in [134], neighbourhoods based

on particle indices are preferred2. One reason is because computing spatial

1Ibid
2If particle indices are used, the left neighbour of ith particle is i − 1 and the right

neighbour is i+ 1. Also the last particle is connected to the �rst one.

CHAPTER 4. POPULATION-BASED OPTIMISERS 78

similarities of the particles is computationally expensive, as the Euclidean

distance of the entire pairs of particles have to be calculated which would

result in having a problem with the complexity of O(n2). Secondly, in spa-

tially based neighbourhoods, information of the neighbourhood is restricted

to the region where the neighbours exist, while in index based neighbour-

hoods, since neighbouring particles are not con�ned in a region, information

is spread throughout the search space.

4.1.1.2 Stopping Condition

Di�erent termination strategies have been used to stop the optimisation pro-

cess in di�erent problems. The following are some of the termination strate-

gies in use:

• The maximum number of iterations (or function evaluation) is exceeded

• An acceptable solution is found

• No improvement is observed over a number of iterations. One way

to measure improvement is to consider the objective function slope.

The objective function slope is approximately zero, which is calculated

through the following formula [138]:

f
′
=
f
(
ptg
)
− f

(
pt−1
g

)
f
(
ptg
) (4.3)

where function f returns the �tness value of particles. If f
′
< ε for

a number of iterations, the convergence criterion is considered to have

been met. In other words, this method, monitors the improvement in

pg and if there is not enough improvement (based on the value of ε),

the algorithm terminates.

• The normalised swarm radius is close to zero3

3Ibid

CHAPTER 4. POPULATION-BASED OPTIMISERS 79

Rnorm =
Rmax

Diameter (S)
(4.4)

where Rmax (max radius) is the longest distance between a particle and

the global best; and Diameter (S) is the diameter of the initial swarm.

When normalised radius or Rnorm < ε, the algorithm is terminated.

However care should be given to (depending on the problem) neither

choose a too large ε (as the algorithm might prematurely stop) nor a

too small value (as the swarm may carry out excessive iterations to

have a compact swarm, with all particles centred around the global

best position).

4.1.1.3 Particles Initialisation

Particles are initialised within the boundaries of each dimension. If we as-

sume that the boundaries of all the dimensions are the same, particles are

then initialised based on the following equation:

X(i) = xmin + ri(xmax − xmin) (4.5)

where X(i) is a particle position, xmax and xmin are upper and lower bounds

respectively and ri is a random number drawn from a uniform distribution

on the unit interval U(0, 1).

Although the velocity vector can be initialised in a similar way, it is usually

initialised to zero. Since physical objects are initially stationary, if the ve-

locity vector is not initialised to zero, physical analogy may be violated and

thus initialisation should be done with care [134]. Particles' initial positions

are used to initialise particles' personal best positions.

When the goal is to compare two or more di�erent variants of the PSO

algorithm, care should be taken not to initialise the particles nearby known

optimal point(s) in the search space.

CHAPTER 4. POPULATION-BASED OPTIMISERS 80

4.1.1.4 Interactivity and Diversity

PSO algorithm uses either global best or neighbourhood best (local best)

position in the social component. Two of their main di�erences are discussed

in terms of their convergence characteristics in [130, 139].

Since global best PSO has got a higher rate of interactivity than neighbour-

hood best PSO, it converges faster, but diversity is compromised.

Neighbourhood best PSO, which preserves more diversity than global best

PSO, is able to cover a larger part of the problem space and, thus it is less

likely to be trapped in local minima.

Particles in both global best and neighbourhood best PSO move towards the

global best particle. In neighbourhood best PSO, this is possible because

a particle can be a member in more than one neighbourhood; this allows

information to be shared while it also facilitates the convergence of the swarm

to an optimal point.

4.1.2 PSO Parameters and Variations

Similarly to other optimisation algorithms, PSO is in�uenced by its param-

eters, which in turn a�ect the balance between exploration and exploitation

of the search space. Exploration is the ability of the algorithm to examine

the search space as a whole, and exploitation is the ability of the algorithm

to focus on a region where the possibility of �nding an optimal solution is

higher. The parameters and conditions in�uencing the behaviour of swarms

in PSO are brie�y discussed below.

4.1.2.1 Velocity Clamping

In order to control the exploration of particles, velocities are clamped to keep

the particle swarm within the boundaries of the search space [130]. Therefore,

if the velocity exceeds Vmax (maximum allowable velocity), the new velocity

is set to Vmax. In addition to controlling exploration, Vmax can also a�ect the

CHAPTER 4. POPULATION-BASED OPTIMISERS 81

exploitation ability of the optimising algorithm. If Vmax is large, exploration

is facilitated, while for a smaller Vmax, exploitation is emphasised. Vmax is a

fraction of the range of the problem space:

Vmax = α (xmax − xmin) (4.6)

where α ∈ (0, 1] and, as a number of empirical studies suggests [140, 141],

the optimal value of α is problem-dependent. The value of Vmax is usually

adjusted and, as Eberhart et al. [142] suggest, a better approach is to limit

Vmax to Xmax, the dynamic range of the variable on each dimension.

4.1.2.2 Inertia Weight

Inertia weight, introduced in [143], aims at controlling the exploration and

exploitation with less reliance on clamping velocities. Although inertia weight

shows success in controlling global exploration and local exploitation, it still

cannot completely keep the swarm in the boundaries of the search space.

By adding the inertia weight to the optimisation process, the new update

equation in the standard particle swarm optimisation would be the following:

vtid = wvt−1
id + c1r1

(
pid − xt−1

id

)
+ c2r2

(
pgd − xt−1

id

)
(4.7)

where w is the inertia weight whose optimal value is problem dependent, as

suggested by Shi and Eberhart [141].

Another method introduced was de�ning w as a decreasing function of time

(instead of a �xed constant), starting with a larger value and linearly de-

creasing over time. Some researchers [144] suggest the use of dynamic inertia

weight in the terminal phase to increase convergence. Another study [145]

recommended starting with a �xed value w, followed by a reduction in this

parameter by the fraction α ∈ (0, 1) if no improved solution is found within

h consecutive time steps.

CHAPTER 4. POPULATION-BASED OPTIMISERS 82

4.1.2.3 Acceleration Coe�cients

The acceleration coe�cients (also called learning factors or trust parameters

[134]) are c1 and c2 in the velocity update equation. They specify the con�-

dence a particle should have in itself and its neighbours respectively. Small

values of the acceleration coe�cients results in the particles wandering away

from good regions before returning to good regions again, while high values

of acceleration coe�cients induce more acceleration with swift movements

towards or past potentially good regions.

4.1.2.4 Constriction Coe�cient

This approach is similar to the use of inertia weight, where the goal is to

balance exploration and exploitation by means of constricting velocities with

a constant value χ, which is referred to as the constriction coe�cient [146,

147]. The constriction factor is introduced in an attempt to mathematically

analyse particle swarm optimisation. The following equation, which is known

as Clerc-Kennedy (PSO-CK) update equation, represents this approach:

vtid = χ
(
vt−1
id + c1r1

(
pid − xt−1

id

)
+ c2r2

(
pgd − xt−1

id

))
(4.8)

with

χ =
2k

| 2− ϕ−
√
ϕ2 − 4ϕ |

, ϕ = c1 + c2 (4.9)

and ϕ ≥ 4 and k ∈ [0, 1].

PSO has been empirically shown to outperform other optimisation techniques

such as evolutionary algorithms over standard benchmarks (more details are

reported in [148, 149, 150, 151, 152, 138]). As Bratton and Kennedy stated

in [153], some of the parameters were empirically proved to be working well

in general (e.g. χ = 0.72984 when ϕ = 4.1 and k = 1). However, since these

studies are based on a limited number of problem spaces, they should be

interpreted with caution.

CHAPTER 4. POPULATION-BASED OPTIMISERS 83

4.1.2.5 Velocity Models

Four di�erent variations of PSO are discussed in [154], where the main di�er-

ence lies in the velocity equation and the way the velocity vector is updated:

• Full Model

• Cognitive-Only Model

• Social-Only Model

• Sel�ess Model.

Full Model has already been introduced (see equations 4.7/4.1 and 4.8).

In Cognitive-Only Model, the social component is ignored, and there is a

tendency to return to particle's previous best position, which can be psy-

chologically assimilated to the willingness to return to the previously seen

regions.

vtid = vt−1
id + c1r1

(
pid − xt−1

id

)
(4.10)

Kennedy4 showed that this model is slightly more vulnerable than the original

one, as particles tend to search locally around regions where they were �rst

initialised and could be trapped in local minima. Poor performances of the

model is reported in [155]. However, niching algorithms, where the goal is

to locate multiple solutions, are shown to be among the promising areas for

applying the cognitive-only model [149].

In Social-Only Model, as the name suggests, the cognitive component is

removed from the velocity update equation:

vtid = vt−1
id + c2r2

(
pgd − xt−1

id

)
(4.11)

The best position of the neighbourhood is the focal point for the particles to

be attracted to. It is empirically proven that Social-Only Model demonstrate

faster convergence than the original and Cognitive-Only model [154, 155].

4Ibid

CHAPTER 4. POPULATION-BASED OPTIMISERS 84

Based on this �nding in [144], it is suggested to increase the social pressure

at the cost of cognitive learning in the initial phase of the swarm search to

enhance the migration of the particles to feasible regions.

The fourth model, the Sel�ess Model, is similar to the Social-Only Model

except that a particle is not allowed to be the neighbourhood best position

itself, because the neighbourhood best position must be chosen from a parti-

cle's neighbours. Although this model performs faster than the Social-Only

Model in some instances, Carlisle and Dozier [155] report that it does not

work well in dynamically changing environments.

4.1.2.6 Swarm Size

Increasing the number of particles increases the initial diversity of the swarm

and decreases the iterations needed to �nd the optima, but the computational

complexity of the optimisation is increased. Empirical studies from Brits et

al. and van den Bergh and Engelbrecht [149, 156] had shown that having a

swarm size of 10 to 30 is enough to lead the optimisation towards �nding the

optimal solutions.

However, Bratton and Kennedy [153] suggested a standard for PSO; 50 par-

ticles were used in the tests carried out there.

4.1.2.7 Network Topologies

Particle interaction plays an important role in the PSO optimisation process,

and thus the structure of the social network has an in�uential impact on this

interaction scheme. The following list shows some of the original topologies

investigated [130, 157, 158, 159] (see Fig 4.15):

• ring (local)

• star (global)

5Taken from Engelbrecht [134]

CHAPTER 4. POPULATION-BASED OPTIMISERS 85

Figure 4.1: Network Topologies

(a) Ring/Local (b) Star/Global

(c) Wheel (d) Von Neumann

(e) Pyramid (f) Four Clusters

CHAPTER 4. POPULATION-BASED OPTIMISERS 86

• wheel

• Von Neumann

• pyramid

• four clusters

Considering the above mentioned network structures, there is no best topol-

ogy for all problems. As discussed by Engelbrecht [134], while fully connected

network topologies outperform less connected ones for unimodal problem

space, multi-modal problem space are better optimised with less connected

social networks.

4.1.2.8 Synchronous and Asynchronous Updates

In synchronous update, one snapshot of the search space is considered and

the update for each particle is calculated but not applied. All the changes are

applied at once after the completion of particles' updates. In asynchronous

mode, changes are applied after each particle update.

In an experiment, Carlisle et al. [160] showed that the asynchronous mode is

more useful in neighbourhood best PSO while the synchronous mode is more

useful in global best PSO.

4.1.3 Understanding PSO

The collective in�uence of multiple particles and their stochastic elements

make the theoretical analysis of PSO (shown to be sensitive to parameter

changes) di�cult. A number of theoretical studies have tried to under-

stand the dynamics of PSO, mainly concentrating on particle trajectories

[147, 161, 162, 138, 163], swarm equilibria and formal convergence to local

optima proofs (see chapter 13 of Engelbrecht's Fundamentals of Computa-

tional Swarm Intelligence [134]).

CHAPTER 4. POPULATION-BASED OPTIMISERS 87

Ozcan and Mohan, in their �rst theoretical studies of particle trajectory

[161, 162], concluded that the metaphor of particles �ying through the search

space (introduced by Kennedy and Eberhart [4]) is better changed to sur�ng

the search space on periodic sinusoidal waves, where an optimum is searched

by randomly catching another wave through manipulating its frequency and

amplitude. However, limiting velocity by means of Vmax helps particles to

�jump� onto another wave. In the �rst study (in [161]) the PSO algorithm

without inertia weight is used; in their subsequent work [162], a more general

system (deploying inertia weight) is used for the analysis.

In another analysis [147], Clerc and Kennedy, tried to understand swarms'

behaviour and the result of the their work was the introduction of constriction

coe�cient version of PSO, which keeps velocity within the allowed bounds

without the necessity of using velocity clamping. Equation 4.8 shows the

equation of the velocity update using the constriction coe�cient (χ).

In addition to various attempts to understand PSO algorithm, di�erent vari-

ations of PSO algorithm (e.g. Bare Bones PSO in section 6.1 on page 110)

are used to gain a better understanding of the performance of the algorithm.

4.1.3.1 Random-Restart PSO Algorithms

As stated previously, one of the problem associated with the standard form

of PSO is the early stagnation of particles away from global optima or some-

times even not local optima. In order to prevent this premature stagnation,

some methods are used to �shake� the particles or to induce some random

displacements of particle swarms. The main purpose for adding this random-

ness is to increase diversity in order to explore a larger part of the problem

space. However the unstructured injection of chaos into the swarm may cause

the particles never to converge. The idea of random-restart in PSO was �rst

introduced by Kennedy [4] as craziness. Among the aspects considered in

the restart mechanism are:

• the parameters which are randomised

CHAPTER 4. POPULATION-BASED OPTIMISERS 88

• the time at which restart is scheduled

• the way it is applied

• the particles or parameters which are a�ected in the process

• whether to preserve the memory of the particles through keeping their

personal best values

Removing the memory of the particles prevents them from returning to their

former positions and the diversity of the swarm can be adjusted through

the random initialisation of the position vectors and/or the velocity vectors

[134]. However, keeping personal bests of the particles results in having less

diversity than when particles memory is cleared.

Another factor to consider is the frequency at which re-initialisation is ap-

plied. If re-initialisation happens late, particles may have already converged

while they could possibly �nd better solution(s) if an earlier initialisation is

induced. Although this situation is not a problem, it wastes the computa-

tional time as no improvement is incurred for a number of iterations [134]. If,

in contrast, re-initialisation happens too early, particles are not given enough

time to explore the region they are in before being displaced.

There are di�erent approaches for re-initialisation. Fixed-interval re-initialisation

is one approach. In [164], the velocities of all particles are reinitialised at a

prede�ned interval and in [165], if a particle does not show improvements for

a prede�ned number of iterations, its position and velocity is re-initialised.

This approach, may however, not allow improvement.

In the probabilistic approach, re-initialisation is de�ned by means of a proba-

bility as described in Xie et al. [166] through the use of two random numbers,

cv, cl, for re-initialising velocities and locations respectively; or, as Schutte et

al. [144] suggest, through craziness, which is described as �crazy birds tem-

porarily departing from the �ocks with random direction and magnitude�.

In [167, 168, 165], again re-initialisation is based on convergence where par-

ticles are re-initialised when there is no improvement over time. Following

CHAPTER 4. POPULATION-BASED OPTIMISERS 89

this approach, some convergence tests have been suggested to control the

re-initialisation [138]. Self-organised criticality (SOC) is used to specify the

time when particles are re-initialised [169, 170]. The criticality represents

the closeness of particles to each other. If they are closer than a threshold

distance, ε, their criticality is increased by one. Therefore having a higher

criticality rate for the whole of the swarm indicates the swarm is more uni-

form. When the global criticality reaches the speci�ed limit, the swarm

is re-initialised to ensure diversity. In the approaches introduced, the re-

initialisation phase either re-allocates the particle randomly or pushes it a

little further along the same direction it was moving in.

Deciding which particle to initialise is another issue to consider. However,

former techniques can be used to decide upon the choice of particles to be

re-initialised (e.g. using probability, SOC or etc.)

Random re-initialisation of particles (through position or velocity), can be

managed within the allowed boundary constraints.

4.1.3.2 Cooperative Particle Swarm Optimiser

The notion of cooperation which has been used in many heuristic search

methods has also been applied in PSOs. Here more than one search modules

run on the search space, exchanging information and aiming at exploring the

problem space more e�ciently.

Ant colony optimisation (ACO) [171, 172], tabu search (TS) [173, 174], ge-

netic algorithm [175, 176], stochastic di�usion search [3] and particle swarm

optimisation [177, 178] are among the heuristic search methods that have

investigated the use of the cooperative approach.

In a Cooperative Particle Swarm Optimiser (CPSO) [177], multiple swarms

run in parallel mode while sharing information to explore the search space.

As discussed in [179], there are a number of cooperative PSO algorithms:

• Standard Cooperative PSO (CPSO S) is based on partitioning the space

into sub-spaces (see Fig 4.2). Therefore, instead of having one swarm

CHAPTER 4. POPULATION-BASED OPTIMISERS 90

of s particles trying to optimise an n-dimensional vector, n swarms

of 1-dimensional vectors are used, each optimising one component out

of n. Since the function evaluating the particles still needs to be n-

dimensional (rather than 1D), a context vector is constructed by con-

catenating the global best of each of the n swarms [177]. In order to

update the �tness value of all particles in swarm j, all n−1 components

in the context vector are kept constant (using the global bests of the

other n − 1 swarms), but allowing the j component to be updated by

each particle in swarm j in turn. This model was originally proposed

for the genetic algorithm [180].

Figure 4.2: Standard Cooperative PSO (CPSO S)
Context Vector (Complete solution)

swarm 1

gbest 1 gbest 2 gbest n-1 gbest n

swarm 2

swarm n

swarm n-1

• Hybrid Cooperative PSO (CPSO H) [177, 156] uses two consequent

phases, with the �rst using CPSO S mode for one iteration while in

the second phase, the standard PSO is run for one iteration and so on

(see Fig 4.3). This mode helps utilising the fast convergence of CPSO

S and bene�ting PSO in escaping local minima.

• Concurrent PSO (CONPSO) [178] is another type of cooperative PSO

where two swarm optimisers run in parallel and frequently exchange

their global bests to be compared in order to follow the best one (see

Fig 4.4). In this mode, one swarm uses the standard PSO algorithm and

CHAPTER 4. POPULATION-BASED OPTIMISERS 91

Figure 4.3: Hybrid Cooperative PSO (CPSO H)

Alg (PSO) Alg (CPSO S)
PSO gbest

CPSO S Context Vector

Swarm

the other applies the Fitness-to-Distance Ratio PSO (FDRPSO) [181].

This mode improves the performance of both of the PSO algorithms.

Figure 4.4: Concurrent PSO (CONPSO)

swarm (PSO) swarm (FDRPSO)

gbest A

gbest B

• Hierarchal Cooperative PSO [182] is based on having two swarms, one

using CONPSO and the other using CPSO S models, both searching

the problem space in parallel. This model (with multiple restarts in

some cases) has been shown to outperform CPSO S, CPSO H and

CONPSO models.

• Multi-population cooperative PSO (MCPSO)[183] is a master/slave ap-

proach, where the best of each slave swarm, which works in parallel with

other slaves, reports back to the master swarm (see Fig 4.5). This value

is integrated in the velocity update equation of the master swarm as a

third component.

If swarms are not static and particles are allowed to move from one swarm to

another during the optimisation, another type of PSO, nichePSO [149] which

is a dynamic multi-swarm approach, is used.

• In Guaranteed Convergence PSO (GCPSO) [138], sub-swarms are cre-

ated from the main original swarm, and it is possible for sub-swarms

to attract other particles or to merge if they intersect.

CHAPTER 4. POPULATION-BASED OPTIMISERS 92

Figure 4.5: Multi-population cooperative PSO (MCPSO)

Comparison Module

slave swarm 1

gbest 1 gbest 2 gbest n-1 gbest n

master swarm

slave swarm 2 slave swarm n-1

slave swarm n

gbest

slave processors

• Another dynamic multi-swarm approach is presented in [184], where

each sub-swarm utilises the local best neighbourhood approach and

after a pre-speci�ed number of iterations, particles are randomly asso-

ciated to another sub-swarm, carrying their information along.

• In [185], swarms, which evolve in parallel, are compared after each

iteration. In cases where the attractors of two swarms are close enough

to each other, the swarm with less suitable attractors, re-initialises all

its particles positions and velocities. Although the number of swarms

can change, the number of particles and the number of allowed function

evaluations are constant throughout the optimisation process. The

optimal number of swarms is relevant to the number of optima.

4.1.4 Applications

Despite being relatively new, PSO has been applied to a diverse set of prob-

lems. This section brie�y outlines some PSO applications (a more compre-

hensive set is reported in [186, 187]):

• Antennas design: the design of broadband antenna [101, 188], multi-

band antennas for automotive rescue systems [189], near-�eld antenna

CHAPTER 4. POPULATION-BASED OPTIMISERS 93

measurements [190], etc.

• Biological, medical, and pharmaceutical applications: human tremor

analysis and cancer classi�cation [191], identi�cation of transcription

factor binding sites in DNA, biometrics [192], etc.

• Control: power plants and systems control [193, 194], etc.

• Distribution networks: network recon�guration and expansion [195],

etc.

• Image and video: microwave imaging [196, 197], image registration

[198], etc.

• Neural networks: neural network control for nonlinear processes [199],

design of recurrent neural networks [200], etc.

• Signal processing: speech coding [201], etc.

PSO has also been used in electronics and electromagnetics (e.g. FPGA-

based temperature control [202]), scheduling (e.g. �ow shop scheduling [203])

and robotics (e.g. voice control of robots [204]).

PSO has recently been utilised (along with SDS) by the author for visuali-

sation in [75, 74, 76] where computational creativity in the context of swarm

intelligence is discussed.

4.2 Genetic Algorithm

This section gives a brief account to a simple variant of Genetic Algorithm

(GA), which is used in Chapters 7 and 8.

The Genetic Algorithm is probably the most famous EA. This appendix

introduces a simple real-valued GA which has previously shown to work well

on real-world problems [205, 206]. The GA works in the following way: the

individuals are �rst randomly initialised and their �tness is evaluated through

CHAPTER 4. POPULATION-BASED OPTIMISERS 94

an objective function. Afterwards, in a iterative process, each individual has

a probability of being exposed to recombination or mutation (or both). These

probabilities are pc and pm respectively. The recombination operator used

is arithmetic crossover and the mutation operator used is Cauchy mutation

using an annealing scheme. At the end, in order to comb out the least �t

individual, tournament selection [80] is often utilised.

The reason behind using Cauchy mutation operator vs. the well-known Gaus-

sian mutation operator is the thick trails of the Cauchy distribution that

allows it to generate considerable changes, more frequently, compared to the

Gaussian distribution. The Cauchy distribution is de�ned by:

C (x, α, β) =
1

βπ

(
1 +

(
x−α
β

)2) (4.12)

where α ≤ 0, β > 0, −∞ < x <∞ (α and β are parameters that a�ect the

mean and spread of the distribution). As speci�ed in [206], all of the solution

parameters are subject to mutation and the variance is scaled with 0.1× the

range of the speci�c parameter in question.

In order to decrease the value of β as a function of the elapsed number of

generations t, an annealing scheme was applied (α was set to 0):

β (t) =
1

1 + t
(4.13)

As for the arithmetic crossover, the o�spring is generated as a weighted mean

of each gene of the two parents:

o�springi = r × parent1i + (1− r)× parent2i (4.14)

where o�springi is the i'th gene of the o�spring, and parent1i and parent2i

refer to the i'th gene of the two parents, respectively. The weight r is drawn

from a uniform distribution on the unit interval U (0, 1).

In the experiments reported in Chapters 7 on page 122 and 8 on page 140,

the probability of crossover and mutation of the individuals is set to pc = 0.7

CHAPTER 4. POPULATION-BASED OPTIMISERS 95

and pm = 0.9 respectively. The tournament size of the tournament selection

is set to two, and elitism with an elite size of one is deployed to maintain the

best found solution in the population.

4.3 Di�erential Evolution Algorithm

This section brie�y describes Di�erential Evolution (DE) for use in Chapters

7 and 8.

Di�erential Evolution, one of the most successful evolutionary algorithms

(EAs), is a simple global numerical optimiser over continuous search spaces

which was �rst introduced by Storn and Price [207, 208].

DE is a population based stochastic algorithm, proposed to search for an

optimum value in the feasible solution space. The parameter vectors of the

population are de�ned as follows:

xgi =
[
xgi,1, x

g
i,2, ..., x

g
i,D

]
, i = 1, 2, ..., NP (4.15)

where g is the current generation, D is the dimension of the problem space

and NP is the population size. In the �rst generation, (when g = 0), the ith

vector's jth component could be initialised as:

x0i,j = xmin,j + r (xmax,j − xmin,j) (4.16)

where r is a random number drawn from a uniform distribution on the unit

interval U (0, 1), and xmin, xmax are the lower and upper bounds of the jth

dimension, respectively. The evolutionary process (mutation, crossover and

selection) starts after the initialisation of the population.

Mutation

At each generation g, the mutation operation is applied to each member of

the population xgi (target vector) resulting in the corresponding vector vgi

CHAPTER 4. POPULATION-BASED OPTIMISERS 96

(mutant vector). Among the �ve most frequently used mutation approaches

are the following:

• DE/rand/1

vgi = xgr1 + F
(
xgr2 − x

g
r3

)
(4.17)

• DE/target-to-best/1

vgi = xgi + F (xgbest − x
g
i) + F

(
xgr1 − x

g
r2

)
(4.18)

• DE/best/1

vgi = xgbest + F
(
xgr1 − x

g
r2

)
(4.19)

• DE/best/2

vgi = xgbest + F
(
xgr1 − x

g
r2

)
+ F

(
xgr2 − x

g
r3

)
(4.20)

• DE/rand/2

vgi = xgr1 + F
(
xgr2 − x

g
r3

)
+ F

(
xgr4 − x

g
r5

)
(4.21)

where r1, r2, r3, r4 are di�erent from i and are distinct random integers drawn

from the range [1, NP]. In generation g, the vector with the best �tness

value is xgbest; and F (which is set to 0.5) is a positive control parameter for

constricting the di�erence vectors.

Crossover

Crossover operation improves population diversity through exchanging some

components of vgi (mutant vector) with x
g
i (target vector) to generate u

g
i (trial

vector). This process is led as follows:

CHAPTER 4. POPULATION-BASED OPTIMISERS 97

ugi,j =


vgi,j, if r ≤ CR or j = rd

xgi,j, otherwise

(4.22)

where r is a uniformly distributed random number drawn from the unit

interval U (0, 1), rd is a randomly generated integer from the range [1, D]; this

value guarantees that at least one component of the trial vector is di�erent

from the target vector. The value of CR (set to 0.5), which is another control

parameter, speci�es the level of inheritance from vgi (mutant vector).

Selection

The selection operation decides whether xgi (target vector) or u
g
i (trial vector)

would be able to pass to the next generation (g+1). In case of a minimisation

problem, the vector with a smaller �tness value is admitted to the next

generation:

xg+1
i =


ugi , if f (ugi) ≤ f (xgi)

xgi , otherwise

(4.23)

where f (x) is the �tness function.

Algorithm 4.2 summarises the behaviour of the DE algorithm.

DE, like other evolutionary algorithms, su�ers from premature convergence

where the populations lose their diversity too early and get trapped in local

optima, therefore performing poorly on problems with high dimension and

many local optima.

However, DE is known to be relatively good in comparison to other Evolu-

tionary Algorithms (EAs) and Particle Swarm Optimisation (PSO) at avoid-

ing premature convergence. In order to further reduce the risk of prema-

ture convergence in DE and to preserve population diversity, several meth-

ods have been proposed, among which are: multi-population approaches

CHAPTER 4. POPULATION-BASED OPTIMISERS 98

Algorithm 4.2 DE Pseudo Code

01: Initialise population

02:

03: For (generation = 1 to n)

04: For (agent = 1 to NP)

05: Mutation : Generate Mutant Vector

06: Crossover: Generate Trial Vector

07: Selection: Generate Target Vector

08: End For

09:

10: Find agent with best fitness value

11: End For

[209, 210, 211, 212, 213]; providing extra knowledge about the problem space

[214, 215]; information storage about previously explored areas [216, 217];

utilising adapting and control parameters to ensure population diversity

[218].

4.4 Summary

This chapter gives a background on Particle Swarm Optimisation and a brief

description of Genetic Algorithm and Di�erential Evolution algorithm. The

presented algorithms have many similarities such as the initialisation of the

population and the use of �tness function as a way to evaluate the quality

of each member of the population. The aim of this chapter is to introduce

few algorithms as population-based optimisers and later (in Chapters 7 on

page 122 and 8 on page 140) deploy them for integration with SDS algorithm.

Chapter 5

SDS as Global Optimiser

�Coming together is a beginning, staying together is progress,

and working together is success.�

� Henry Ford

This chapter builds an initial set of experiments aiming to investigate a

scenario where SDS is utilised as a global optimiser; in these experiments,

DE (see Section 4.3 on page 95) provides local search on convergence. The

performance of DE is compared with the coupled SDS-DE algorithm and the

results show the outperformance of the coupled algorithm over the classical

DE algorithm.

5.1 The Coupled Algorithm

In the experiments reported, the optimisation process is initialised by n num-

ber of function evaluations (FEs) performed within the SDS test-di�usion

cycle in order to allocate the resources (agents) to the promising areas of the

search space and subsequently pass on the agents' positions to a Di�erential

Evolution (DE) algorithm to resume the optimisation process. Hence, SDS is

utilised as a global optimiser with DE providing local search on convergence.

99

CHAPTER 5. SDS AS GLOBAL OPTIMISER 100

The goal of this process is to verify whether the information di�usion and

random restart mechanisms deployed in SDS may on their own improve DE

behaviour. These are the results that are primarily reported here.

In this new architecture, a standard set of benchmarks is used to evaluate the

performance of the coupled algorithm. The recruitment mechanism deployed

in the di�usion phase of SDS is used to allocate resources after partially

evaluating the search space.

Each DE agent has three vectors (target, mutant and trial vectors); and each

SDS agent has one hypothesis and one status. In the experiment reported

here (coupled algorithm), as stated before, SDS test-di�usion cycle is run

for n FEs and then DE commences with the optimisation, taking its target

vectors from SDS agents' positions.

The behaviour of the coupled algorithm in its simplest form is presented in

Algorithm 5.1 on page 108.

5.2 Test and Di�usion Phases in the Coupled

Algorithm

During the test-phase of a standard stochastic di�usion search, each agent

has to partially evaluate its hypothesis. In the context of the coupled SDS-

DE algorithm, in order to determine the activity of each agent, a simple test

is used (as illustrated in Algorithm 5.1); the test-phase is simply conducted

by comparing the �tness of each agent against that of a random one. If the

selecting agent has a better �tness value, it will become active; otherwise it

will be �agged inactive.

In the Di�usion Phase, each inactive agent picks another agent randomly. If

the selected agent is active, the selected agent communicates its hypothesis

to the inactive one; if the selected agent is also inactive, the selecting agent

generates a new hypothesis at random from the search space.

As outlined in the pseudo-code of the coupled algorithm (see Algorithm 5.1),

CHAPTER 5. SDS AS GLOBAL OPTIMISER 101

after the initial n function evaluations (during which SDS's test-di�usion

cycles iterate), DE algorithm should run1.

The next section outlines the experiment setup and the results follow.

5.3 Experiments

In this section the performance of one variation of DE algorithm (DE/best/1)

is contrasted against the coupled SDS-DE algorithm (sDE). The measures

used to determine the quality of each algorithms are accuracy and reliability

(see Section 5.3.1 for de�nitions).

5.3.1 Performance Measures

Three di�erent performance measures [134] are used in the experiments con-

ducted in this thesis. These performance measures are accuracy, reliability

and e�ciency.

Accuracy of the swarms is de�ned by the quality of the best position in terms

of its closeness to the optimum position. If knowledge about the optimum

position is known a priori (which is the case here), the following would de�ne

the accuracy:

Accuracy =
∣∣f (ptg)− f (xopt)

∣∣ (5.1)

where ptg is the best position at time t and xopt is the position of the known

optimum solution.

If no information exists about the optimum solution, the �tness of the best

position will be the accuracy of the swarm.

1We believe similar techniques can be applied to other swarm intelligence and evolution-
ary algorithms. For example, in [219], SDS is adopted for continuous global optimisation,
using four benchmarks (each with di�erent required accuracies and di�erent maximum
number of FEs allowed). In that experiment, SPSO [220] is utilised providing local search
on convergence.

CHAPTER 5. SDS AS GLOBAL OPTIMISER 102

Another measure used is reliability which is the percentage of trials where

swarms converge with a speci�ed accuracy; this is de�ned by:

Reliability =
n
′

n
× 100 (5.2)

where n is the total number of trials in the experiment and n
′
is the number

of successful trials.

Finally, e�ciency is the number of iterations or objective function evaluations

needed to converge with a speci�ed accuracy (i.e. 10−8):

E�ciency =
1

n

n∑
i=0

FEs (5.3)

where n is the total number of trials and FEs is the number of function

evaluations before convergence.

5.3.2 Experiment Setup

The algorithms are tested over a number of standard benchmarking functions,

preserving di�erent dimensionality and modality (see Tables 5.1 and 5.2 for

more information on the benchmarks used).

The �rst two functions (Sphere/Parabola and Schwefel 1.2) have a single

minimum and are unimodal functions; Generalised Rosenbrock for dimen-

sion D, where D > 3, is multimodal; Generalised Schwefel 2.6, General-

ized Rastrigin, Ackley, Generalized Griewank, Penalised Function P8 and

Penalised Function P16 are complex high-dimensional multi-modal problems

with many local minima and a single global optimum; Six-hump Camel-back,

Goldstein-Price, Shekel 5, 7 and 10 are lower-dimensional multi-modal prob-

lems with fewer local minima. Goldstein-Price, Shekel 5, 7 and 10 have one

global optimum and Six-hump Camel-back has two global optima symmetric

about the origin.

The experiments are conducted with a population of 100 agents. The halting

criterion for this experiment is when 300, 000 FEs is reached. There are 30

CHAPTER 5. SDS AS GLOBAL OPTIMISER 103

Table 5.1: Benchmark Functions Equations
Function Equation

Sphere/Parabola f1 =
D∑
i=1

x2i

Schwefel 1.2 f2 =
D∑
i=1

(
i∑
j=1

xj)
2

Generalised Rosenbrock f3 =
D−1∑
i=1

{
100

(
xi+1 − x2i

)2
+ (xi − 1)2

}
Generalised Schwefel 2.6 f4 = −

D∑
i=1

xi sin
(√
xi
)

Generalised Rastrigin f5 =
D∑
i=1

{
x2i − 10 cos (2πxi) + 10

}
Ackley f6 = −20 exp

{
−0.2

√
1
D

D∑
i=1

x2i

}
−

exp

{
1
D

D∑
i=1

cos (2πxi)

}
+ 20 + e

Generalised Griewank f7 = 1
4000

D∑
i=1

x2i −
D∏
i=1

cos
(
xi√
i

)
+ 1

Penalized Function P8 f8 = π
D

{
10 sin2 (πy1) +

∑D−1
i=1 (yi − 1)2

{
1 + 10 sin2 (πyi+1

)}
+ (yD − 1)2

}
+
∑D
i=1 µ (xi, 10, 100, 4)

yi = 1 + 1
4
(xi + 1)

µ (xi, a, k,m) =

 k (xi − a)m xi > a
0 −a ≤ xi ≤ a
k (−xi − a)m xi < −a

Penalized Function P16 f9 = 0.1
{
sin2 (3πx1) +

∑D−1
i=1 (xi − 1)2

{
1 + sin2 (3πxi+1

)}
+ (xD − 1)2 ×{

1 + sin2 (2πxD)
}}

+
∑D
i=1 µ (xi, 5, 100, 4)

Six-hump Camel-back f10 = 4x21 − 2.1x41 + 1
3
x61 + x1x2 − 4x22 + 4x42

Goldstein-Price f11 =
{
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)}
×{

30 + (2x1 − 3x2)
2
(
18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)}
Shekel 5 f12 = −

∑5
i=1

{∑4
j=1

(
xj − aij

)2 + ci

}−1

Shekel 7 f13 = −
∑7
i=1

{∑4
j=1

(
xj − aij

)2 + ci

}−1

Shekel 10 f14 = −
∑10
i=1

{∑4
j=1

(
xj − aij

)2 + ci

}−1

independent runs for each benchmark function and the results are averaged

over these independent trials.

The stopping condition for decreasing the error vectors is reaching 80, 000

FEs. DE is run after 100, 000 FEs until the termination criterion which is

300, 000 FEs. These values were selected merely to provide a brief initial

exploration of the behaviour of the new coupled algorithm; no claim is made

for their optimality.

5.3.3 Results

Table 5.3 shows the performance of the coupled algorithm (sDE) alongside

DE algorithm. For each benchmark and algorithm, the above mentioned

CHAPTER 5. SDS AS GLOBAL OPTIMISER 104

Table 5.2: Benchmark Functions Details
Function D Feasible Bounds Optimum Initialisation

f1 Sphere/Parabola 30 (−100, 100)D 0.0D (50, 100)D

f2 Schwefel 1.2 30 (−100, 100)D 0.0D (50, 100)D

f3 Generalized Rosenbrock 30 (−30, 30)D 1.0D (15, 30)D

f4 Generalized Schwefel 2.6 30 (−500, 500)D 420.9687D (250, 500)D

f5 Generalized Rastrigin 30 (−5.12, 5.12)D 0.0D (2.56, 5.12)D

f6 Ackley 30 (−32, 32)D 0.0D (16, 32)D

f7 Generalized Griewank 30 (−600, 600)D 0.0D (300, 600)D

f8 Penalized Function P8 30 (−50, 50)D −1.0D (25, 50)D

f9 Penalized Function P16 30 (−50, 50)D 1.0D (25, 50)D

f10 Six-hump Camel-back 2 (−5, 5)D (−0.0898, 0.7126) , (2.5, 5)D

(0.0898,−0.7126)

f11 Goldstein-Price 2 (−2, 2)D (0,−1) (1, 2)D

f12 Shekel 5 4 (0, 10)D 4.0D (7.5, 10)D

f13 Shekel 7 4 (0, 10)D 4.0D (7.5, 10)D

f14 Shekel 10 4 (0, 10)D 4.0D (7.5, 10)D

table and Figure 5.1 illustrate the accuracy measure.

As Tables 5.3 and 5.4 and show, over all benchmarks, other than f7, DE

algorithm does not signi�cantly outperform the coupled algorithm. On the

other hand, in most cases (f5,6 and f8−14), the coupled algorithm signi�cantly

outperforms the classical DE algorithm.

The Di�usion Phase of SDS algorithm is modi�ed (see Algorithm 5.2) to in-

vestigate the SDS-led random restart e�ect caused by randomising a selection

of agent hypotheses (e�ectively instantiating the population with SDS-led

random-restarts). In other words, after the SDS test-phase, the hypothesis

of each inactive agent is randomised.

As shown in Figure 5.1 and Tables 5.3 and 5.4, although information sharing

plays an important role in the performance of the coupled algorithm, the

signi�cance of the SDS-led restart mechanism (in randomly restarting some

of the agents) in improving the performance of the algorithm cannot be

discarded.

In some cases (f4,5,7), the SDS restart mechanism (sReDE) alone, which is

facilitated by the test-phase of the SDS algorithm, demonstrates a signi�-

CHAPTER 5. SDS AS GLOBAL OPTIMISER 105

Table 5.3: Accuracy Details
Accuracy ± Standard Error is shown with two decimal places after 30 trials of 300,000
FEs. For each benchmark, the best algorithm(s) which is signi�cantly better (see Table
5.4) than the others is highlighted. In cases where more than one algorithm is highlighted
in a row, the highlighted algorithms do not signi�cantly outperform each other.

DE sDE sReDE

SDS-DE

f1 2.80E-78±2.65E-78 1.35E-37±1.06E-37 3.36E-54±2.01E-54

f2 6.31E-02±1.55E-02 8.15E-01±2.00E-01 7.58E+00±1.55E+00

f3 3.45E+01±8.04E+00 3.45E+01±4.52E+00 2.65E+01±4.08E+00

f4 4.59E+02±1.31E+02 8.55E+02±2.44E+02 6.17E+00±1.10E+00

f5 1.75E+02±8.18E+00 5.69E+01±1.80E+00 2.48E+01±1.26E+00

f6 1.87E+01±8.84E-01 2.29E+00±6.48E-02 7.52E-01±1.30E-01

f7 5.79E-02±1.77E-02 1.02E+00±4.68E-01 1.18E-02±2.99E-03

f8 1.34E+01±2.94E+00 3.80E-02±2.20E-02 1.69E-01±8.07E-02

f9 1.62E+00±3.56E-01 9.36E-02±2.50E-02 3.33E-02±1.48E-02

f10 4.90E-01±7.42E-02 1.04E-16±2.06E-17 1.18E-16±2.06E-17

f11 1.57E+02±4.21E+01 0.00E+00±0.00E+00 5.92E-17±2.80E-17

f12 5.05E+00±7.38E-17 1.06E-08±2.37E-09 2.28E+00±4.90E-01

f13 5.27E+00±0.00E+00 2.64E-07±4.22E-08 1.76E+00±4.63E-01

f14 5.36E+00±9.99E-17 2.84E-07±5.17E-08 2.85E+00±5.37E-01

cantly better performance compared to the coupled algorithm. However, in

several cases, the coupled algorithm outperforms the modi�ed one: f2,8 and

f10−14, out of which f2 and f12−14 are performing signi�cantly better.

Table 5.3 indicates that among the highlighted algorithms, out of 14 bench-

marks, sDE exhibits the best performance (as it is among the most signif-

icant) in 9 cases; sReDE and DE are among the best in 7 and 2 cases,

respectively.

The results demonstrate the importance of coupling the SDS-led restart and

the information sharing mechanisms which are both deployed in the SDS

algorithm.

CHAPTER 5. SDS AS GLOBAL OPTIMISER 106

Figure 5.1: SDS as Global Optimiser; Accuracy Plot

●

●

●
●

●

●

●

●

●

●

● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1e
−

08
1e

−
05

1e
−

02
1e

+
01

Benchmark

A
cc

ur
ac

y

● DE
sDE
sDispDE

Algorithm 5.2 Modi�ed Algorithm � SDS Restart coupled with DE
(sReDE)

01: // DIFFUSION PHASE

02: For ag = 1 to No_of_agents

03: If (!ag.activity ())

04: ag.setHypo(randomHypo ())

05: Else

06: ag.setHypo(Gaussian(ag.getHypo(),aErrorV))

07: End If

08: End For

5.4 Summary

This chapter presents the use of SDS as a Global Optimiser, with DE provid-

ing local search on convergence. The performance of DE is compared with

the coupled SDS-DE algorithm and the results show the outperformance of

the coupled algorithm over DE. This highlights the impact of the information

sharing and SDS-led restart mechanisms deployed in SDS on the optimisation

process.

CHAPTER 5. SDS AS GLOBAL OPTIMISER 107

Table 5.4: TukeyHSD Test Results for Accuracy
Based on TukeyHSD Test, if the di�erence between each pair of algorithms is signi�cant,
the pairs are marked. X�o shows that the left algorithm is signi�cantly better than the
right one; and o�X shows that the right algorithm is signi�cantly better than the one, on
the left.

DE - sDE DE - sReDE sDE - sReDE

f1 � � �

f2 � X�o X�o

f3 � � �

f4 � � o�X

f5 o�X o�X o�X

f6 o�X o�X �

f7 X�o � o�X

f8 o�X o�X �

f9 o�X o�X �

f10 o�X o�X �

f11 o�X o�X �

f12 o�X o�X X�o

f13 o�X o�X X�o

f14 o�X o�X X�o

CHAPTER 5. SDS AS GLOBAL OPTIMISER 108

Algorithm 5.1 Coupled Algorithm

01: Initialise Agents

02:

03: x = initialInactiveErrorVector (e.g. 4)

04: y = initialActiveErrorVector (e.g. 1)

05: // x > y

06:

07: n = SDS_FE_Allowed

08:

09: //SDS cycle

10: While (FE <= n)

11: {

12: // Decreasing the error vector over time

13: If (FE < stoppingErrV_DecreasePoint)

14: iErrorV = x - (x*FE) / stoppingErrV_DecPoint

15: aErrorV = y - (y*FE) / stoppingErrV_DecPoint

16: End If

17: // stoppingErrV_DecPoint < SDS_FE_Allowed

18:

19: // TEST PHASE

20: For ag = 1 to NP

21: r_ag = pick -random -agent()

22: If (F(ag) < F(r_ag))

23: ag.setActivity (true)

24: Else

25: ag.setActivity (false)

26: End If

27: End For

28:

29: // DIFFUSION PHASE

30: For ag = 1 to NP

31: If (!ag.activity ())

32: r_ag = pick -random -agent()

33: If (r_ag.activity ())

34: ag.setHypo(

35: Gaussian(r_ag.getHypo(),iErrorV))

36: Else

37: ag.setHypo(randomHypo ())

38: End If

39: End If

40: Else

41: ag.setHypo(Gaussian(ag.getHypo(),aErrorV))

42: End for

43: }

44:

45: // DE

46: While (FE < FE_Allowed)

47: For (Agent = 1 to NP)

48: Mutation : generate mutant vector

49: Crossover: generate trial vector

50: Selection: generate target vector

51: End For

52: Find Agent with best fitness value

53: End For

Chapter 6

Bare Bones with Jumps PSO

�Our life is frittered away by detail ... Simplify, simplify.�

� Henry Thoreau

Despite the simplicity of the update formula in Particle Swarm Algorithm

(see Section 4.1 on page 72), the presence of many moving parts makes dif-

ferent aspects of the algorithm hard to understand (e.g. the e�ects of various

parameters on the trajectory of the particle, particles' oscillation around con-

stantly changing centres, the e�ects of swarm topology on its performance,

etc.). In an attempt by Kennedy [135], a modi�ed algorithm (Bare Bones

PSO) is proposed where the velocity formula is eliminated from the update

equation, aiming to understand some of these questions and identify the

similarity it has with other stochastic population-based optimisers. In this

chapter, after brie�y explaining Bare Bones PSO, two new variants (Bare

Bones with Jumps PSO Models 1 & 2) are introduced and their impact on

improving the optimisation capability of conventional PSOs is investigated.

109

CHAPTER 6. BARE BONES WITH JUMPS PSO 110

6.1 Bare Bones PSO

It is known that particles converge to a weighted average between their per-

sonal best and global (or neighbourhood) best positions [221, 222], but in

order to understand the behaviour of particles, Kennedy [135] proposed a

modi�ed algorithm without the velocity formula in the update equation.

Here is the update formula for the Bare Bones PSO (PSO-BB) algorithm:

xid = g + σidN (0, 1) (6.1)

g =
1

2
(pid + pgd) (6.2)

σid = |pid − pgd| (6.3)

where N (0, 1) is the Gaussian distribution between 0 and 1. This update

equation is used when the probability test � through generating a random

number � is passed (e.g. U (0, 1) < 0.5). Otherwise xid = pid. See Algorithm

6.1.

Algorithm 6.1 Bare Bones PSO (PSO-BB)

r = random number from U(0, 1)
if r < 0.5

xid = pid
else

xid = g + σidN (0, 1)

Other variations of Bare Bones PSO are presented in Section 6.2 and their

performance is contrasted against each other.

6.2 Bare Bones with Jumps PSO

In a similar attempt to bare bones PSO, Blackwell1 also removed the velocity

formula from the update process of the optimising algorithm and introduced

1The work is still in progress.

CHAPTER 6. BARE BONES WITH JUMPS PSO 111

the following formula for what he called Bare Bones with Jumps PSO Model

1 (PSO-BBJ1):

xid = gi + σidN (0, 1) (6.4)

σid = α |pi−1 d − pi+1 d| �for ring topology (6.5)

σid = α |gi − pid| �for star topology (6.6)

where gi is the neighbourhood best of particle i; α is an arbitrary number

(theoretically shown to perform better when it is between 0.7 and 0.8) and

N (0, 1) is the Gaussian distribution between 0 and 1.

In the re-initialisation mechanism which uses a randomly generated number,

if U (0, 1) < 0.01, the particle is re-initialised within its range, U (−Xd, Xd).

See Algorithm 6.2.

Algorithm 6.2 Bare Bones with Jumps PSO 1 (PSO-BBJ1)

r = random number from U(0, 1)
if r < 0.01

xid = U (−Xd, Xd)
else

xid = gi + σidN (0, 1)

This method outperforms standard PSO and shows signi�cant improvement

in �nding the optima (see Section 6.3.2).

In another experiment, a slightly di�erent version � Bare Bones with Jumps

PSO Model 2 (PSO-BBJ2) � has been proposed, with changes in the re-

initialisation process as well as the update equation. In this algorithm (see

Algorithm 6.3), re-initialisation is triggered if U (0, 1) < 0.001. Otherwise

the update equation is called using a newly de�ned Ωid:

CHAPTER 6. BARE BONES WITH JUMPS PSO 112

xid = gi + ΩidN (0, 1)

Ωid = α |gi − xid| (6.7)

where gi is the neighbourhood best of particle i; α is an arbitrary number

which is set to 0.7 in this experiment, andN (0, 1) is the Gaussian distribution

between 0 and 1.

Algorithm 6.3 Bare Bones with Jumps PSO 2 (PSO-BBJ2)

r = random number from U(0, 1)
if r < 0.001

xid = U (−Xd, Xd)
else

xid = gi + ΩidN (0, 1)

This algorithm is empirically shown (see Section 6.3) to outperform the stan-

dard PSO algorithm as well as the previously discussed PSO-BBJ1 algorithm

in most cases. The experiment setup is presented in the following section ac-

companied by the results and the relevant statistical analysis.

6.3 Experiments

In this section, a number of experiments are carried out and the performance

of two variations of PSO algorithms (PSO-BBJ 1 & 2) as well as Bare Bones

PSO (PSO-BB) and standard PSO (PSO-CK) are contrasted. The measures

used to determine the quality of each algorithms are accuracy, e�ciency and

reliability (see Section 5.3.1 on page 101 for de�nitions).

6.3.1 Experiment Setup

These algorithms are tested over a number of benchmarking functions from

Jones et al. [223] and De Jong [224] test suite, preserving di�erent dimen-

CHAPTER 6. BARE BONES WITH JUMPS PSO 113

sionality and modality (see Tables 5.1 on page 103 and 5.2 on page 104).

In order not to initialise the particles on or near a region in the search space

known to have the global optimum, region scaling technique is used [225],

which makes sure particles are initialised at a corner of the search space

where there are no optimal solutions.

The experiments are conducted with a population of 50 particles in global and

local neighbourhoods independently. However, the halting criterion for this

experiment is either to reach the optima (with distances less than 10−8) or

to exceed the 300, 000 function evaluations (FEs). There are 30 independent

runs for each benchmarking function and results are averaged over these

independent trials.

6.3.2 Results

In this experiment two types of neighbourhoods (global and local) are used

and the algorithms (PSO-CK, PSO-BB, PSO-BBJ1 and PSO-BBJ2) are

tested in both neighbourhoods.

The results are shown in the following tables and �gures:

• Global neighbourhood:

� Table 6.1 on page 116(a) re�ects the accuracy of each algorithm

over each function and reliability of each algorithms averaged over

all benchmarks in global neighbourhood. Table 6.1(b) highlights

any signi�cant di�erence in the accuracy of the algorithms over

each function.

� Table 6.2 on page 117(a) shows the e�ciency of each algorithm

over each benchmark. Table 6.2(b) underlines any existing signif-

icant di�erence between any two algorithms over the benchmarks

in the global neighbourhood.

� Figure 6.1 on page 118 shows the plots for the accuracy and e�-

ciency measures

CHAPTER 6. BARE BONES WITH JUMPS PSO 114

• Local neighbourhood:

� Table 6.3 on page 119 displays the results using the same measures

(accuracy & reliability) as Tables 6.1 but in the local neighbour-

hood topology

� Table 6.4 on page 120 displays the results using the same measure

(e�ciency) as Table 6.2 but in a local neighbourhood topology

� Figure 6.2 on page 121 shows the plots for the accuracy and e�-

ciency measures

Observing the reliability of the algorithms both in global and local neigh-

bourhoods (see the last rows of Tables 6.1(a) and 6.3(a)), shows that on

average PSO-BB is the least reliable algorithm (this �nding does not come

as a surprise as PSO-BB was proposed for understanding PSO rather than

being deployed for optimisation problems; the result of this experiment con-

�rms this view empirically). Among other algorithms, PSO-BBJ2 shows the

most reliable performance in both local and global neighbourhood.

PSO-CK and PSO-BBJ1 show contradicting results in di�erent neighbour-

hoods: PSO-BBJ1 is more reliable than PSO-CK in the global neighbour-

hood, but less reliable in the local neighbourhood.

In terms of the accuracy of the algorithms in the global neighbourhood (see

Table 6.1(b)), PSO-BB shows signi�cantly worse accuracy. When there exists

convergence, in most cases, PSO-BBJ1 and PSO-BBJ2 outperform PSO-

CK signi�cantly. Over all benchmarks, PSO-BBJ1 and PSO-BBJ2 do not

outperform each other signi�cantly (except in one case, f11).

As for the e�ciency of the algorithms in the global neighbourhood (see Table

6.2), when there exists a signi�cant di�erence PSO-BBJ2 outperform all

algorithms over all benchmarks signi�cantly. The second best algorithm is

PSO-BBJ1.

In the local neighbourhood (see Table 6.3), compared to other algorithms,

PSO-BB and PSO-BBJ1, are signi�cantly worse in terms of accuracy. When

CHAPTER 6. BARE BONES WITH JUMPS PSO 115

functions with convergence are considered, PSO-BBJ2 outperform other al-

gorithms, but PSO-CK shows better accuracy over all benchmarks.

In terms of e�ciency in the local neighbourhood (see Table 6.4), in functions

with successful convergence, PSO-BBJ1 is the least e�cient and PSO-BBJ2

is the most e�cient algorithms. As for PSO-CK, it is outperformed by PSO-

BB in all signi�cant cases, except in f11.

6.4 Summary

This chapter brie�y describes Bare Bones PSO which was proposed to pro-

vide better understanding of the behaviour of particle swarm algorithms. Al-

though this algorithm does not intend to enhance the optimisation capability

of standard PSO, the new variations proposed in this chapter (Bare Bones

with Jumps PSO 1 & 2) o�er promising results. The results are investigated

using three measures (i.e. accuracy, e�ciency and reliability).

In brief, in terms of accuracy, although PSO-CK demonstrates a better per-

formance when all benchmarks are considered, the accuracy of PSO-BBJ2

compared to other algorithms is signi�cantly better when benchmarks with

successful convergence are considered.

Additionally, PSO-BBJ2 is empirically shown to be both the most e�cient

and the most reliable algorithm in both local and global neighbourhoods.

PSO-BBJ2 shows better reliability in global vs. local neighbourhood, which

is not always the expectation (see section 8.5 on page 149 for some criticisms

on the use of global neighbourhood in PSO).

A theoretical analysis is required (which is an ongoing process) to better

understand how such results are obtained in these variants of minimal PSO

algorithm.

CHAPTER 6. BARE BONES WITH JUMPS PSO 116

Table 6.1: Accuracy Details; Global Neighbourhood
(a) Accuracy± Standard Error is shown with two decimal places after 30 trials of 300,000
function evaluations. Total number of convergence of each algorithm over each benchmark
is shown in brackets after the accuracy and standard error. Total number of convergence
of each algorithm over the benchmarks can be found in the last row.

PSO-CK PSO-BB PSO-BBJ1 PSO-BBJ2

f1 0.0 ±0.0 (30) 0.0 ±0.0 (30) 0.0 ±0.0 (30) 0.0 ±0.0 (30)

f2 0.0 ±0.0 (30) 6.34E+03±4.69E+02 (0) 8.51E-04±7.86E-04 (26) 0.0 ±0.0 (30)

f3 9.14E+00±3.18E+00 (0) 5.86E+01±1.80E+01 (0) 1.08E+01±4.47E+00 (0) 1.28E-06±6.09E-07 (7)

f4 3.60E+03±8.50E+01 (0) 3.46E+03±2.29E+01 (0) 8.32E-02±1.43E-02 (0) 0.0 ±0.0 (30)

f5 6.33E+01±2.57E+00 (0) 1.59E+02±4.93E+00 (0) 9.93E-03±3.37E-03 (0) 0.0 ±0.0 (30)

f6 1.17E+00±1.95E-01 (10) 1.92E+01±8.43E-02 (0) 2.07E-05±1.69E-05 (20) 0.0 ±0.0 (30)

f7 2.88E-02±6.13E-03 (7) 9.40E-02±3.39E-02 (4) 4.42E-02±7.18E-03 (3) 3.37E-02±6.43E-03 (7)

f8 6.22E-02±2.03E-02 (19) 4.16E+00±1.36E+00 (8) 0.0 ±0.0 (30) 0.0 ±0.0 (30)

f9 3.00E-02±1.44E-02 (24) 4.13E+00±3.23E+00 (15) 0.0 ±0.0 (30) 0.0 ±0.0 (30)

f10 0.0 ±0.0 (30) 0.0 ±0.0 (30) 0.0 ±0.0 (30) 0.0 ±0.0 (30)

f11 0.0 ±0.0 (30) 4.86E+01±7.37E+00 (12) 1.89E+01±6.36E+00 (23) 4.32E+01±7.50 (14)

f12 1.85E+00±4.97E-01 (0) 5.05E+00±0.00E+00 (0) 5.05E+00±7.38E-17 (0) 5.05E+00±1.13E-16 (0)

f13 2.39E+00±5.95E-01 (0) 5.27E+00±3.01E-17 (0) 5.35E+00±7.92E-02 (0) 5.27E+00±8.52E-17 (0)

f14 1.11E+00±4.68E-01 (0) 5.36E+00±6.02E-17 (0) 5.36E+00±9.03E-17 (0) 5.36E+00±9.52E-17 (0)∑
(180) (99) (198) (268)

42.68% 23.57% 47.14% 63.81%

(b) Based on TukeyHSD Test, if the di�erence between each pair of algorithms is

signi�cant, the pairs are marked. X�o shows that the left algorithm is signi�cantly better

than the right one; and o�X shows that the right one is signi�cantly better than the left

algorithm.

BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2

f1 � � � � � �

f2 X � o X � o X � o � � �

f3 X � o X � o X � o � � �

f4 X � o X � o � � o � X o � X

f5 X � o X � o X � o � o � X o � X

f6 X � o X � o X � o � o � X o � X

f7 � � � � � �

f8 X � o X � o X � o � � �

f9 � � � � � �

f10 � � � � � �

f11 X � o � X � o o � X � X � o

f12 � � X � o � X � o X � o

f13 � � X � o � X � o X � o

f14 � � X � o � X � o X � o

CHAPTER 6. BARE BONES WITH JUMPS PSO 117

Table 6.2: E�ciency Details; Global Neighbourhood
(a) Mean FEs ± Standard Error is shown with two decimal places after 30 trials of 300,000
function evaluations.

PSO-CK PSO-BB PSO-BBJ1 PSO-BBJ2

f1 23224±194 12262±164 13270±148 22685±119

f2 � 160358±2920 89637±575 191064±1290

f3 � � � 276020±7039

f4 � � � 63399±3805

f5 � 124701±12900 124701±12900 54825±3182

f6 � 41811±870 37004±318 47486±2226

f7 22786±259 11518±136 13807±335 24006±259

f8 44735±567 20194±1701 15013±285 33627±744

f9 49228±1309 39656±3719 18855±981 31147±720

f10 1458±17 516±4 551±5 3515±37

f11 5876±397 61199±11951 663±10 3929±39

f12 � � � �

f13 � � � �

f14 � � � �

(b) Based on TukeyHSD Test, if the di�erence between each pair of algorithms is

signi�cant, the pairs are marked. X�o shows that the left algorithm is signi�cantly better

than the right one; and o�X shows that the right one is signi�cantly better than the left

algorithm.

BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2

f1 X � o X � o � � o � X o � X

f2 NP NP NP X � o o � X o � X

f3 NP NP NP NP NP NP

f4 NP NP NP NP NP NP

f5 NP NP NP X � o NP NP

f6 NP NP NP X � o o � X o � X

f7 X � o X � o � � o � X o � X

f8 X � o X � o � � o � X o � X

f9 � X � o � X � o � �

f10 X � o X � o o � X � o � X o � X

f11 o � X � � X � o X � o �

f12 NP NP NP NP NP NP

f13 NP NP NP NP NP NP

f14 NP NP NP NP NP NP

CHAPTER 6. BARE BONES WITH JUMPS PSO 118

Figure 6.1: PSO Bare Bones Variants; Global Neighbourhood Plots

● ●

●

●

●

●

●
●

●

● ●

● ●
●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1e
−

08
1e

−
05

1e
−

02
1e

+
01

1e
+

04

(a) Accuracy − Global Neighbourhood

Benchmark

A
cc

ur
ac

y

● CK
BB
BBJ1
BBJ2

● ●

● ●

● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
10

00
00

20
00

00
30

00
00

(b) Efficiency − Global Neighbourhood

Benchmark

F
un

ct
io

n
E

va
ul

at
io

n

● CK
BB
BBJ1
BBJ2

CHAPTER 6. BARE BONES WITH JUMPS PSO 119

Table 6.3: Accuracy Details; Local Neighbourhood
(a) Accuracy ± Standard Error is shown with two decimal places after 30 trials of 300,000
function evaluations. Total number of convergence of each algorithm over each benchmark
is shown in brackets after the accuracy and standard error. Total number of convergence
of each algorithm over the benchmarks can be found in the last row.

PSO-CK PSO-BB PSO-BBJ1 PSO-BBJ2

f1 0.0 ±0.0 (30) 0.0 ±0.0 (30) 0.0 ±0.0 (30) 0.0 ±0.0 (30)

f2 7.84E-02±1.09E-02 (0) 9.66E+01±8.68E+00 (0) 3.93E+02±4.38E+01 (0) 1.87E-01±3.02E-02 (0)

f3 1.33E+01±3.73E+00 (0) 1.27E+01±5.50E-01 (0) 2.88E+01±3.20E+00 (0) 2.59E+01±5.73E+00 (0)

f4 4.14E+03±7.11E+01 (0) 3.26E+03±3.10E+01 (0) 1.92E+03±6.89E+01 (0) 0.0 ±0.0 (30)

f5 5.87E+01±1.88E+00 (0) 2.46E+01±3.04E+00 (0) 9.22E+01±4.47E+00 (0) 0.0 ±0.0 (30)

f6 0.0 ±0.0 (30) 1.96E+01±2.24E-02 (0) 1.89E-06±1.55E-06 (26) 0.0 ±0.0 (30)

f7 1.07E-03±6.10E-04 (27) 1.41E-05±1.04E-05 (21) 2.48E-04±2.46E-04 (26) 1.19E-02±2.96E-03 (12)

f8 0.0 ±0.0 (30) 2.76E-02±1.92E-02 (28) 0.0 ±0.0 (30) 0.0 ±0.0 (30)

f9 0.0 ±0.0 (30) 5.27E-02±5.27E-02 (29) 3.62E-07±2.84E-07 (28) 0.0 ±0.0 (30)

f10 0.0 ±0.0 (30) 8.16E-02±4.55E-02 (27) 0.0 ±0.0 (30) 0.0 ±0.0 (30)

f11 0.0 ±0.0 (30) 7.92E+01±2.71E+01 (10) 1.27E-05±1.27E-05 (29) 2.79E+01±7.03E+00 (19)

f12 3.70E-06±1.27E-07 (1) 5.05E+00±0.00E+00 (0) 5.05E+00±0.00E+00 (0) 5.05E+00±4.26E-17 (0)

f13 1.22E-04±0.00E+00 (0) 5.27E+00±0.00E+00 (0) 5.10E+00±1.76E-01 (0) 5.27E+00±0.00E+00 (0)

f14 1.26E-04±1.12E-16 (0) 5.36E+00±5.22E-17 (0) 5.18E+00±1.79E-01 (0) 5.36E+00±1.09E-16 (0)∑
(208) (145) (199) (241)

49.52% 24.52% 47.38% 57.38%

(b) Based on TukeyHSD Test, if the di�erence between each pair of algorithms is

signi�cant, the pairs are marked. X�o shows that the left algorithm is signi�cantly better

than the right one; and o�X shows that the right one is signi�cantly better than the left

algorithm.

BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2

f1 � � � � � �

f2 o � X X � o X � o X � o X � o �

f3 o � X � � � X � o �

f4 X � o X � o o � X X � o o � X o � X

f5 o � X X � o o � X X � o X � o o � X

f6 X � o X � o X � o � � �

f7 � o � X � o � X � X � o

f8 � � � � � �

f9 � � � � � �

f10 � � � � � �

f11 X � o � X � o � � �

f12 � � X � o � X � o X � o

f13 � � X � o � X � o X � o

f14 � � X � o � X � o X � o

CHAPTER 6. BARE BONES WITH JUMPS PSO 120

Table 6.4: E�ciency Details; Local Neighbourhood
(a) Mean FEs ± Standard Error is shown with two decimal places after 30 trials of 300,000
function evaluations.

PSO-CK PSO-BB PSO-BBJ1 PSO-BBJ2

f1 47589±97 98383±327 67968±213 73090±196

f2 � � � �

f3 � � � �

f4 � � � 139118±3975

f5 � � � 134816±2801

f6 � 189139±4687 175902±944 118098±389

f7 84612±4962 146979±4494 72048±332 95680±4051

f8 79067±765 121186±1035 69658±489 103658±1287

f9 61328±374 122631±853 75080±392 86281±480

f10 5389±100 1891±31 2161±161 4935±53

f11 46300±2012 9030±2367 2536±75 5063±51

f12 � � � 8895±0

f13 � � � �

f14 � � � �

(b) Based on TukeyHSD Test, if the di�erence between each pair of algorithms is

signi�cant, the pairs are marked. X�o shows that the left algorithm is signi�cantly better

than the right one; and o�X shows that the right one is signi�cantly better than the left

algorithm.

BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2

f1 o � X o � X o � X X � o X � o o � X

f2 NP NP NP NP NP NP

f3 NP NP NP NP NP NP

f4 NP NP NP NP NP NP

f5 NP NP NP NP NP NP

f6 NP NP NP X � o X � o X � o

f7 o � X � � X � o X � o -

f8 o � X X � o o � X X � o X � o o � X

f9 o � X o � X o � X X � o X � o o � X

f10 X � o X � o � � o � X o � X

f11 X � o X � o X � o � � �

f12 NP NP NP NP NP NP

f13 NP NP NP NP NP NP

f14 NP NP NP NP NP NP

CHAPTER 6. BARE BONES WITH JUMPS PSO 121

Figure 6.2: PSO Bare Bones Variants; Local Neighbourhood Plots

●

●

●

●

●

●

●

● ● ● ●

●

● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1e
−

08
1e

−
05

1e
−

02
1e

+
01

1e
+

04

(a) Accuracy − Local Neighbourhood

Benchmark

A
cc

ur
ac

y

● CK
BB
BBJ1
BBJ2

●

●
●

●

●

●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
10

00
00

20
00

00
30

00
00

(b) Efficiency − Local Neighbourhood

Benchmark

F
un

ct
io

n
E

va
ul

at
io

n

● CK
BB
BBJ1
BBJ2

Chapter 7

Merging SDS with PSO and

DE

�Not everything that counts can be counted, and not everything

that can be counted counts.�

� Albert Einstein

This chapter explores the �rst attempts on the integration of SDS with

PSO, and SDS with DE, with the intention of utilising the information shar-

ing mechanism in SDS. This chapter reports the outcome of the research

[226, 227, 228] which applies the resource allocation mechanism deployed

in Stochastic Di�usion Search to the Particle Swarm Optimiser and Dif-

ferential Evolution metaheuristics for the �rst time, e�ectively merging a

nature inspired swarm intelligence algorithm (SDS) with other swarm intel-

ligence algorithms, PSO and DE independently. The results reported herein

suggest that the hybrid algorithm, exploiting information sharing between

particles/agents, has the potential to improve the optimisation capability of

conventional PSOs and classical DE.

The experiments conducted in this chapter seek to investigate whether the

information di�usion mechanism deployed in SDS may on its own improve

PSO or DE behaviour. It is these results that are primarily reported.

122

CHAPTER 7. MERGING SDS WITH PSO AND DE 123

In this new architecture, a standard set of benchmarks are used to evaluate

the performance of the hybrid algorithm. The resource allocation (or recruit-

ment) sides of SDS are used to assist allocating resources (e.g. particles of

the swarm, members of the DE population, etc.) after partially evaluating

the search space.

7.1 Merging SDS with PSO

In the hybridised algorithm of SDS and PSO, each PSO particle has a current

position, a memory (personal best position) and a velocity; each SDS agent,

on the other hand, has a hypothesis and a status.

In the experiment reported here, every PSO particle is an SDS agent too �

together termed pAgents. Within each pAgent, the SDS hypothesis is de�ned

by the PSO particle, and an additional Boolean variable (status) determines

whether the pAgent is active or inactive (see Figure 7.1).

Figure 7.1: Architecture of pAgent

pAgent

SDS Agent

Status

Active / Inactive

Hypothesis

PSO Particle

The behaviour of the hybrid algorithm in its simplest form is presented in

Algorithm 7.1 on page 131.

In the context of the hybrid algorithm, there are a number of di�erent tests

that could be performed in order to determine the activity of each pAgent. A

very simple test is illustrated in Algorithm 7.1. Here, the test-phase is sim-

ply conducted by comparing the �tness of each pAgent's particle's personal

best against that of a random pAgent; if the selecting pAgent has a better

�tness value, it will become active, otherwise it will be �agged inactive. On

CHAPTER 7. MERGING SDS WITH PSO AND DE 124

average, this mechanism will ensure that 50% of pAgents remain active from

one iteration to another. In standard SDS such high average activity would

not be useful as it entails most agents will continue to exploit their current

hypothesis rather than explore the search space, however in the hybrid al-

gorithm the randomised subsequent behaviour of each pAgent o�sets this

e�ect.

As outlined in the pseudo-code of the hybrid algorithm (see Algorithm 7.1),

after each n number of PSO function evaluations, one full SDS cycle is exe-

cuted. A full SDS cycle includes:

• one Test Phase which decides about the status of each pAgent, one

after another

• one Di�usion Phase which shares information according to the algo-

rithm presented

The hybrid algorithm is called SDSnPSO, where n refers to the number of

PSO function evaluations before an SDS cycle should run.

7.1.1 Experiments

In this section, a number of experiments are carried out and the performance

of PSO is contrasted against the hybrid algorithm, SDSnPSO. The mea-

sures used to determine the quality of each algorithms are accuracy, e�ciency

and reliability (see Section 5.3.1 on page 101 for de�nitions).

7.1.1.1 Experiment Setup

The algorithms are tested over a number of benchmarking functions from

Jones et al. [223] and De Jong [224] test suite, preserving di�erent dimen-

sionality and modality (see Tables 5.1 on page 103 and 5.2 on page 104, where

benchmark function equations, feasible bounds, the number of dimensions in

which the benchmarks are used in the experiments, the optimum of each

CHAPTER 7. MERGING SDS WITH PSO AND DE 125

function which is known a priori and also the boundaries where particles are

�rst initialised are presented).

In order not to initialise the particles on or near a region in the search space

known to have the global optimum, the region scaling technique is used [225]

which makes sure particles are initialised at a corner of the search space

where there are no optimal solutions.

The experiments are conducted with a population of 50 particles in the global

neighbourhood. The halting criterion for this experiment is either to reach

the optima (with distances less than 10−8) or to exceed the 300, 000 func-

tion evaluations (FEs). There are 30 independent runs for each benchmark

function and the results are averaged over these independent trials.

In this section, SDSnPSO is presented with few variations of parameter, n,

(the number of PSO function evaluation before an SDS cycle is performed),

n = 1000, 3000, and 30, 000. These values were selected merely to provide

a brief initial exploration of the behaviour of the new hybrid algorithm over

three relatively widely separated parameter values; no claim is made for their

optimality.

7.1.1.2 Results

Table 7.1 on page 132 and Figure 7.2 on page 133 illustrate the performance

of the various hybrid algorithms alongside PSO-CK. For each benchmark and

each algorithm, the table shows the accuracy, e�ciency and reliability.

Although the focus of this study is not �nding the best n for SDSnPSO (for

this set of benchmarks), n = 3000 shows better results compared to other

variants. The results table suggests that over-running the SDS cycle (e.g.

when n = 1000) might move the swarm away from convergence. On the

other hand, reducing information sharing (e.g. when n = 30, 000) appears

to reduce the positive e�ect that SDS has on the overall behaviour of the

swarm.

As Table 7.1 shows (for statistical details, see Tables 7.3 on page 137 and 7.4

on page 138), there is a trade-o� between the reliability and the e�ciency

CHAPTER 7. MERGING SDS WITH PSO AND DE 126

measures of SDSnPSO and PSO. Adding SDS, decreases the e�ciency, but

increases the reliability. This can be viewed in f1−2 and f6−9. In terms of the

total number of convergences, SDSnPSO (n = 3000), outperforms PSO (a

more detailed comparison and statistical analysis of the results are presented

in section 7.3).

7.2 Merging SDS with DE

In the hybridised algorithm of SDS and DE, each DE agent has three vectors

(target, mutant and trial vectors); and each SDS agent has one hypothesis

and one status. In the experiment reported here (hybrid algorithm), every

member of DE population is an SDS agent too � together termed SDEAgents.

In SDEAgents, each SDS hypothesis is de�ned by a DE agent, and an addi-

tional Boolean variable (status) determining whether the SDEAgent is active

or inactive (see Figure 7.3). The behaviour of the hybrid algorithm in its sim-

plest form is presented in Algorithm 7.2 on page 134.

Figure 7.3: Architecture of SDEAgent

Status

Active / Inactive

SDS Agent

SDEAgent

DE agent

Hypothesis

Similarly to the hybrid SDS-PSO algorithm, in the context of the hybrid SDS-

DE algorithm, there are many di�erent tests that could be performed in order

to determine the activity of each SDEAgent. A simple test is illustrated in

Algorithm 7.2. Here, the test-phase is simply conducted by comparing the

�tness of each SDEAgent's target vector against that of a random SDEAgent;

CHAPTER 7. MERGING SDS WITH PSO AND DE 127

if the selecting SDEAgent has a better �tness value, it will become active,

otherwise it will be �agged inactive.

As outlined in the pseudo-code of the hybrid algorithm (see Algorithm 7.2),

after each n generations, one full SDS cycle is executed. The hybrid algorithm

is called SDSnDE, where n refers to the number of generations before an

SDS cycle should run.

7.2.1 Experiments

In this section, a number of experiments are carried out and the performance

of one variation of DE algorithm (DE/best/1), which is described in 4.3 on

page 95, is contrasted against the hybrid algorithm, SDSnDE. The measures

used to determine the quality of each algorithms are accuracy and reliability

(see Section 5.3.1 on page 101 for de�nitions).

7.2.1.1 Experiment Setup

This experiment uses the same benchmarks introduced earlier (see Tables 5.1

on page 103 and 5.2 on page 104). In order not to initialise the DE agents

on or near a region in the search space known to have the global optimum,

the region scaling technique is used here too.

The experiments are conducted with a population of 100 agents. The halting

criterion for this experiment is when the number of generations reaches 2, 000.

There are 30 independent runs for each benchmark function and the results

are averaged over these independent trials.

In this section, SDSnDE is presented with few variations of parameter, n

(the number of generations before an SDS cycle is performed): n = 5, 50, and

200. These values were selected merely to provide a brief initial exploration

of the behaviour of the new hybrid algorithm over three relatively widely

separated parameter values; no claim is made for their optimality.

CHAPTER 7. MERGING SDS WITH PSO AND DE 128

7.2.1.2 Results

Table 7.2 on page 135 and Figure 7.4 on page 136 show the accuracy perfor-

mance of the various hybrid algorithms alongside the DE algorithm.

Similarly to the previous experiment, the focus of this experiment is not

�nding the best n for SDSnDE (for this set of benchmarks), but rather

investigate the e�ect of the SDS algorithm on the performance of the DE

algorithm.

As Table 7.5 on page 139 shows, over all benchmarks other than f2 in (DE−
H5), the DE algorithm does not signi�cantly outperform any of the hybrid

algorithms SDSnDE (n = 5, 50, 200). On the other hand, in most cases

(e.g. f3−6, f8 and f10−14), the hybrid algorithms outperform the classical DE

algorithm signi�cantly.

As detailed in Table 7.2, in f1−3, f11, the performance of H5, which has

the highest rate of information exchange, is weaker than the other hybrid

algorithms with lower rate information sharing. This implies that the per-

formance of some problems might be negatively a�ected by excessive infor-

mation exchange (e.g. in f1, FH5 > FH50 > FH200, where F is the �tness

value).

However, in another set of problems, a higher rate of information exchange

(more communication between the agents) results in better outcomes (e.g.

f4−6, f8−9, f12−14). More speci�cally, in f4−6 and f12−14 less communica-

tion between the agents corresponds to a poorer performance of the hybrid

algorithms (FH5 < FH50 < FH200).

This demonstrates the importance of deploying the right frequency of com-

munication and information exchange, depending on the problem.

7.3 Discussion

To further analyse the role of SDS in the hybrid algorithms, the Di�usion

Phase of the SDS algorithm is modi�ed (see Algorithm 7.3) to investigate

CHAPTER 7. MERGING SDS WITH PSO AND DE 129

the SDS-led random restart e�ect caused by randomising a selection of agent

hypotheses after a number of function evaluations / iterations. In other

words, after the SDS test-phase, the hypothesis of each inactive hybrid agent

is randomised.

Algorithm 7.3 Modi�ed Hybrid Algorithm

01 // DIFFUSION PHASE

02 For ag = 1 to No_of_agents

03 If (!ag.activity ())

04 ag.setHypo(randomHypo ())

05 End If

06 End For

7.3.1 Modi�ed SDSnPSO Algorithm

The performance of the modi�ed hybrid algorithm can be contrasted against

PSO using the three performance measures (accuracy, e�ciency and reliabil-

ity) de�ned in Section 6.3.1 on page 112. TukeyHSD test is used for accuracy

and e�ciency measures (see Tables 7.3 on page 137 and 7.4 on page 138).

In terms of accuracy, Tables 7.1 and 7.3 illustrate that no algorithm outper-

forms all benchmarks. However, Table 7.4 shows that in the case of successful

convergence, whenever there is a signi�cant di�erence between any pair of the

algorithms, the e�ciency of H3M is signi�cantly worse than PSO-CK and the

hybrid algorithms (H1, H3 & H30); and as the last row of Table 7.1 proves,

the control algorithm is less reliable than PSO and the hybrid algorithms

(H1, H3 & H30). As the e�ciency and reliability of the control experiment

(see the last column in Table 7.1) is worse than that of the hybrid algorithm,

we can conclude that the SDS information sharing mechanism must play an

essential role in improving the performance of the hybrid algorithm.

7.3.2 Modi�ed SDSnDE Algorithm

Similarly to SDSnPSO, in order to further analyse the role of SDS in the

SDSnDE hybrid algorithm, the di�usion phase of SDS algorithm is modi�ed

CHAPTER 7. MERGING SDS WITH PSO AND DE 130

(see Algorithm 7.3) to investigate the SDS-led restart e�ect, where after the

SDS test-phase, the hypothesis of each inactive SDEAgent is randomised.

As detailed in Table 7.2 on page 135, although information sharing plays an

important role in the performance of the hybrid DE algorithm, the signi�-

cance of SDS-led random restart (in randomly restarting some of the agents)

in improving the performance of DE algorithm cannot be discarded.

In few cases (f3,4,8), solely the restart (H50M), which is facilitated by the

test-phase of the SDS algorithm, demonstrates a slightly better performance

compared to the hybrid algorithm (see Table 7.2). However, in the ma-

jority of cases, the hybrid algorithms outperform the modi�ed algorithm:

f1,2, f5−7, f9, f12−14, out of which f9 and f12−14 are performing signi�cantly

better (see Table 7.5 on page 139). Also it is shown that the algorithm with

modi�ed di�usion phase is shown to be less reliable than its corresponding

hybrid algorithm.

The results show the importance of coupling the SDS-led restart mechanism

(dispensation mechanism) and the communication of agents which are both

deployed in SDS algorithm.

7.4 Summary

This chapter presented an overview on the potential of merging PSO with

SDS, and DE with SDS. Here, SDS is primarily used as an e�cient re-

source allocation mechanism responsible for facilitating communication be-

tween PSO particles or DE agents.

Results reported in this chapter have demonstrated that the hybrid algo-

rithms outperform the performance of standard PSO and (one variation of)

classical DE architectures, even when applied to problems with low-cost �t-

ness function evaluations (the benchmarks presented).

The next chapter uses the �ndings detailed herein to introduce a generalised

hybridisation strategy for using SDS-led information sharing mechanism in

population-based algorithms.

CHAPTER 7. MERGING SDS WITH PSO AND DE 131

Algorithm 7.1 Hybrid Algorithm SDSnPSO

01: Initialise pAgents

02:

03: While (stopping condition is not met)

04: For all pAgents

05: Evaluate fitness value of each particle

06:

07: If (evaluation counter % n == 0)

08: // START SDS

09: // TEST PHASE

10: For ag = 1 to No_of_pAgents

11: r_ag = pick -random -pAgent ()

12: If (ag.pbestFitness () <=

13: r_ag.pbestFitness ())

14: ag.setActivity (true)

15: Else

16: ag.setActivity (false)

17: End If

18: End For

19:

20: // DIFFUSION PHASE

21: For ag = 1 to No_of_pAgents

22: If (!ag.activity ())

23: r_ag = pick -random -pAgent ()

24: If (r_ag.activity ())

25: ag.setHypo(r_ag.getHypo ())*

26: Else

27: ag.setHypo(randomHypo ())

28: End If

29: End For

30: End If

31: // END SDS

32:

33: If (current fitness < pbest)

34: pbest = current fitness

35: If (pbest < neighbourhood best)

36: neighbourhood best = pbest

37: Update particle velocity

38: Update particle position

39: End

40: End

* In setHypo () and getHypo(), Hypo refers to

the pAgent 's hypothesis (PSO particle).

CHAPTER 7. MERGING SDS WITH PSO AND DE 132

Table 7.1: Accuracy and E�ciency Details
Accuracy ± Standard Error is shown with two decimal places after 30 trials of 300,000
function evaluations. Mean FEs ± Standard Error of successful trials are also shown in the
second row of each benchmark alongside with the reliability of the algorithm; when there
is no convergence, this row is removed. Total number of convergence of each algorithm
over the benchmarks can be found in the last row.

H
1
:
S
D
S
n
P
S
O

H
3
:
S
D
S
n
P
S
O

H
3
0
:
S
D
S
n
P
S
O

H
3
M
:
M
o
d
i�
e
d
H
3

P
S
O
-
C
K

n
=

1
,0
0
0

n
=

3
,0
0
0

n
=

3
0
,0
0
0

n
=

3
,0
0
0

f
1

0
.0
±
0
.0

0
.0
±
0
.0

0
.0
±
0
.0

0
.0
±
0
.0

0
.0
±
0
.0

2
3
2
7
3
±
3
2
1
(1
0
0
%
)

4
0
2
6
5
±
1
0
0
6
(1
0
0
%
)

3
2
8
4
2
±
7
3
6
(1
0
0
%
)

2
2
3
8
6
±
2
6
5
(1
0
0
%
)

2
0
2
9
6
3
±
4
9
2
9
(1
0
0
%
)

f
2

0
.0
±
0
.0

1
.8
7
E
-0
8
±
8
.9
0
E
-0
9

0
.0
±
0
.0

0
.0
±
0
.0

2
.3
0
E
-0
1
±
2
.0
7
E
-0
2

1
8
3
4
5
0
±
1
6
5
5
(1
0
0
%
)

2
4
4
9
6
9
±
4
5
7
1
(9
3
.3
3
%
)

2
1
2
7
0
3
±
3
1
7
2
(1
0
0
%
)

1
8
4
9
6
2
±
2
0
1
3
(1
0
0
%
)

-

f
3

5
.5
3
E
+
0
0
±
8
.1
5
E
-0
1

1
.2
3
E
+
0
0
±
3
.6
9
E
-0
1

1
.6
3
E
+
0
0
±
3
.8
8
E
-0
1

1
.4
3
E
+
0
0
±
3
.4
8
E
-0
1

6
.4
5
E
+
0
1
±
9
.9
9
E
+
0
0

f
4

3
.8
3
E
+
0
3
±
9
.3
5
E
+
0
1

3
.3
0
E
+
0
3
±
1
.2
0
E
+
0
2

2
.5
9
E
+
0
3
±
8
.2
5
E
+
0
1

2
.9
6
E
+
0
3
±
1
.2
7
E
+
0
2

1
.0
6
E
+
0
3
±
3
.8
1
E
+
0
1

f
5

6
.0
4
E
+
0
1
±
3
.4
7
E
+
0
0

3
.8
4
E
+
0
1
±
2
.8
2
E
+
0
0

9
.5
5
E
+
0
0
±
9
.4
9
E
-0
1

1
.5
6
E
+
0
1
±
1
.0
2
E
+
0
0

3
.7
6
E
+
0
0
±
3
.2
5
E
-0
1

f
6

6
.7
8
E
-0
1
±
1
.4
2
E
-0
1

7
.2
4
E
-0
1
±
1
.5
7
E
-0
1

1
.0
4
E
-0
8
±
6
.6
1
E
-1
0

8
.8
6
E
-0
2
±
6
.2
1
E
-0
2

3
.6
1
E
-0
6
±
3
.9
6
E
-0
7

4
6
7
2
8
±
3
4
0
8
(5
3
.3
3
%
)

1
6
3
5
3
9
±
9
3
5
6
(5
3
.3
3
%
)

6
7
1
5
5
±
1
9
8
9
(9
6
.6
7
%
)

7
7
0
5
9
±
5
3
5
0
(9
3
.3
3
%
)

-

f
7

1
.7
0
E
-0
2
±
2
.9
0
E
-0
3

5
.9
2
E
-0
2
±
1
.3
4
E
-0
2

1
.9
3
E
-0
2
±
3
.5
9
E
-0
3

2
.2
1
E
-0
2
±
3
.6
1
E
-0
3

1
.3
5
E
-0
2
±
2
.4
5
E
-0
3

2
3
8
6
5
±
7
1
3
(2
6
.6
7
%
)

4
1
6
4
1
±
2
9
2
4
(1
6
.6
7
%
)

3
3
1
3
1
±
1
1
1
8
(3
3
.3
3
%
)

2
2
8
1
8
±
5
0
7
(2
6
.6
7
%
)

2
3
6
4
7
9
±
1
1
1
7
7
(2
6
.6
7
%
)

f
8

5
.1
9
E
-0
2
±
3
.0
6
E
-0
2

1
.3
8
E
-0
2
±
6
.5
4
E
-0
3

0
.0
±
0
.0

1
.7
3
E
-0
2
±
1
.4
1
E
-0
2

0
.0
±
0
.0

3
3
9
3
4
±
1
8
0
3
(8
3
.3
3
%
)

5
8
0
0
5
±
2
4
3
6
(8
6
.6
7
%
)

4
3
0
1
9
±
1
3
3
8
(1
0
0
%
)

3
7
7
3
4
±
1
6
2
6
(9
3
.3
3
%
)

1
1
8
0
9
0
±
2
8
6
6
(1
0
0
%
)

f
9

1
.3
2
E
-0
2
±
6
.2
4
E
-0
3

1
.0
3
E
-0
2
±
5
.7
2
E
-0
3

3
.3
0
E
-0
3
±
3
.3
0
E
-0
3

0
.0
±
0
.0

0
.0
±
0
.0

2
9
5
4
3
±
1
4
9
5
(8
6
.6
7
%
)

5
6
0
7
1
±
2
7
9
5
(9
0
%
)

3
8
9
4
6
±
1
3
1
9
(9
6
.6
7
%
)

3
2
6
8
4
±
2
8
0
8
(1
0
0
%
)

1
5
2
0
5
0
±
2
9
5
1
(1
0
0
%
)

f
1
0

0
.0
±
0
.0

0
.0
±
0
.0

0
.0
±
0
.0

0
.0
±
0
.0

0
.0
±
0
.0

3
6
0
7
±
6
1
(1
0
0
%
)

3
4
7
0
±
8
1
(1
0
0
%
)

3
4
9
8
±
6
5
(1
0
0
%
)

3
6
6
1
±
7
4
(1
0
0
%
)

3
5
5
1
±
7
9
(1
0
0
%
)

f
1
1

0
.0
±
0
.0

0
.0
±
0
.0

0
.0
±
0
.0

0
.0
±
0
.0

0
.0
±
0
.0

3
8
8
0
±
6
3
(1
0
0
%
)

3
5
3
4
±
5
7
(1
0
0
%
)

3
8
3
2
±
7
8
(1
0
0
%
)

3
9
8
4
±
7
9
(1
0
0
%
)

3
9
2
1
±
9
4
(1
0
0
%
)

f
1
2

3
.4
4
E
+
0
0
±
5
.4
4
E
-0
1

3
.2
6
E
+
0
0
±
6
.2
5
E
-0
1

4
.1
0
E
+
0
0
±
6
.0
6
E
-0
1

3
.5
2
E
+
0
0
±
5
.9
6
E
-0
1

8
.4
7
E
-0
1
±
3
.5
2
E
-0
1

f
1
3

3
.0
5
E
+
0
0
±
6
.1
8
E
-0
1

2
.8
6
E
+
0
0
±
6
.2
2
E
-0
1

2
.0
9
E
+
0
0
±
5
.6
1
E
-0
1

2
.8
7
E
+
0
0
±
6
.2
1
E
-0
1

3
.5
2
E
-0
1
±
2
.4
4
E
-0
1

f
1
4

1
.4
7
E
+
0
0
±
5
.5
2
E
-0
1

2
.7
6
E
+
0
0
±
6
.4
2
E
-0
1

1
.5
3
E
+
0
0
±
5
.7
0
E
-0
1

2
.6
5
E
+
0
0
±
6
.5
7
E
-0
1

9
.7
0
E
-0
1
±
4
.0
9
E
-0
1

∑
(1
9
5
)

(1
9
3
)

(2
1
8
)

(2
1
4
)

(1
5
8
)

4
6
.4
3
%

4
5
.9
5
%

5
1
.9
0
%

5
0
.9
5
%

3
7
.6
2
%

CHAPTER 7. MERGING SDS WITH PSO AND DE 133

Figure 7.2: SDSnPSO Accuracy and E�ciency Plots

● ●

●

●

●

●

●
●

●

● ●

● ●
●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1e
−

08
1e

−
05

1e
−

02
1e

+
01

1e
+

04

(a) Accuracy Details

Benchmark

A
cc

ur
ac

y

● CK
H1
H3
H30
H3M

●

●

●

●
● ●

● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
10

00
00

20
00

00
30

00
00

(b) Efficiency Details

Benchmark

F
un

ct
io

n
E

va
ul

at
io

n

● CK
H1
H3
H30
H3M

CHAPTER 7. MERGING SDS WITH PSO AND DE 134

Algorithm 7.2 Hybrid Algorithm, SDSnDE

01: Initialise SDEAgents

02:

03: For (generation = 1 to generationsAllowed)

04:

05: For (SDEAgent = 1 to NP)

06: Mutation : generate mutant vector

07: Crossover: generate trial vector

08: Selection: generate target vector for next generation

09: End For

10:

11: If (generation counter MOD n == 0)

12: // START SDS

13: // TEST PHASE

14: For ag = 1 to NP

15: r_ag = pick -random -SDEAgent ()

16: If (ag.targetVecFitness ()<r_ag.targetVecFitness ())

17: ag.setActivity (true)

18: Else

19: ag.setActivity (false)

20: End If

21: End For

22:

23: // DIFFUSION PHASE

24: For ag = 1 to No_of_SDEAgents

25:

26: If (!ag.activity ())

27: r_ag = pick -random -SDEAgent ()

28: If (r_ag.activity ())

29: ag.setHypo(r_ag.getHypo ())*

30: Else

31: ag.setHypo(randomHypo ())

32: End If

33: End If

34:

35: End For

36: End If

37: // END SDS

38:

39: Find SDEAgent with best fitness value

40:

41: End For

* In setHypo () and getHypo(), Hypo refers to

the SDEAgent 's hypothesis.

CHAPTER 7. MERGING SDS WITH PSO AND DE 135

Table 7.2: Accuracy and Reliability Details
Accuracy ± Standard Error is shown with two decimal places after 30 trials of 2,000
generations. Total number of convergence of each algorithm over each benchmark is shown
in brackets after the accuracy and standard error. The reliability of each algorithm over
all the benchmarks is given in the last row of the table. For each benchmark, algorithms
which are signi�cantly better (see Table 7.5) than the others are highlighted. Note that
the highlighted algorithms do not signi�cantly outperform each another.

H
5
:
S
D
S
n
D
E

H
5
0
:
S
D
S
n
D
E

H
2
0
0
:
S
D
S
n
D
E

H
5
0
M
:
M
o
d
i�
e
d
H
5
0

D
E

n
=
5

n
=
5
0

n
=
2
0
0

n
=
5
0

f 1
1
.0
6
E
-1
0
7
±
7
.9
2
E
-1
0
8
(
3
0
)

5
.2
9
E
-1
0
±
4
.7
2
E
-1
0
(
2
8
)

5
.5
2
E
-9
2
±
4
.0
3
E
-9
2
(
3
0
)

4
.7
0
E
-1
0
4
±
3
.1
1
E
-1
0
4
(
3
0
)

2
.0
3
E
-8
5
±
1
.6
1
E
-8
5
(
3
0
)

f 2
1
.2
0
E
-0
3
±
2
.6
0
E
-0
4
(
0
)

1
.2
1
E
+
0
1
±
1
.8
8
E
+
0
0
(
0
)

2
.5
5
E
-0
5
±
7
.2
7
E
-0
6
(
0
)

1
.4
8
E
-0
4
±
3
.8
6
E
-0
5
(
0
)

8
.5
8
E
-0
4
±
2
.4
2
E
-0
4
(
0
)

f 3
3
.6
6
E
+
0
1
±
8
.2
3
E
+
0
0
(
0
)

4
.4
0
E
+
0
1
±
6
.4
6
E
+
0
0
(
0
)

1
.7
1
E
+
0
0
±
5
.3
6
E
-
0
1
(
0
)

3
.8
7
E
+
0
0
±
2
.2
9
E
+
0
0
(
0
)

1
.2
6
E
+
0
0
±
3
.2
2
E
-
0
1
(
0
)

f 4
5
.0
0
E
+
0
2
±
1
.2
3
E
+
0
2
(
0
)

3
.0
2
E
-
0
2
±
8
.2
8
E
-
0
3
(
0
)

4
.8
3
E
-
0
1
±
4
.3
7
E
-
0
1
(
0
)

6
.2
3
E
-
0
1
±
2
.3
9
E
-
0
1
(
0
)

2
.5
9
E
-
0
2
±
9
.2
6
E
-
0
3
(
0
)

f 5
1
.6
1
E
+
0
2
±
8
.4
9
E
+
0
0
(
0
)

2
.6
7
E
-
0
1
±
8
.1
5
E
-
0
2
(
2
)

1
.3
4
E
+
0
1
±
7
.4
9
E
+
0
0
(
0
)

2
.7
9
E
+
0
1
±
1
.7
4
E
+
0
0
(
0
)

2
.4
1
E
+
0
1
±
1
.0
0
E
+
0
1
(
9
)

f 6
1
.4
5
E
+
0
1
±
1
.3
4
E
+
0
0
(
0
)

2
.3
6
E
-
0
6
±
1
.1
0
E
-
0
6
(
0
)

1
.0
2
E
-
0
1
±
7
.0
0
E
-
0
2
(
1
7
)

3
.2
3
E
-
0
1
±
1
.1
1
E
-
0
1
(
1
9
)

1
.4
5
E
-
0
1
±
1
.3
4
E
-
0
1
(
2
1
)

f 7
5
.2
6
E
-0
2
±
1
.0
5
E
-0
2
(
1
)

3
.8
5
E
-0
2
±
1
.4
3
E
-0
2
(
6
)

1
.9
9
E
-0
2
±
4
.4
0
E
-0
3
(
5
)

2
.8
2
E
-0
2
±
6
.7
6
E
-0
3
(
4
)

7
.4
2
E
-0
2
±
5
.5
0
E
-0
2
(
2
)

f 8
1
.3
1
E
+
0
1
±
3
.0
7
E
+
0
0
(
3
)

5
.6
6
E
-
1
2
±
3
.1
1
E
-
1
2
(
3
0
)

1
.9
6
E
-
0
2
±
1
.2
8
E
-
0
2
(2
4
)

1
.0
5
E
-
0
2
±
5
.7
7
E
-
0
3
(
2
5
)

7
.0
0
E
-
0
3
±
4
.8
6
E
-
0
3
(
2
8
)

f 9
3
.2
4
E
+
0
0
±
2
.4
1
E
+
0
0
(
8
)

1
.5
1
E
-1
0
±
9
.0
8
E
-1
1
(
2
9
)

5
.2
7
E
-0
1
±
3
.6
8
E
-0
1
(
1
9
)

1
.0
3
E
-0
2
±
5
.7
2
E
-0
3
(
2
6
)

3
.5
0
E
+
0
1
±
1
.7
3
E
+
0
1
(
2
3
)

f 1
0

1
.9
0
E
-0
1
±
6
.4
1
E
-0
2
(
2
3
)

2
.4
8
E
-
0
4
±
2
.3
4
E
-
0
4
(
2
8
)

4
.4
4
E
-
1
7
±
1
.6
5
E
-
1
7
(
3
0
)

5
.9
2
E
-
1
7
±
1
.8
2
E
-
1
7
(
3
0
)

4
.4
4
E
-
1
7
±
1
.6
5
E
-
1
7
(
3
0
)

f 1
1

2
.5
5
E
+
0
2
±
5
.9
7
E
+
0
1
(
1
)

1
.1
3
E
-
0
8
±
1
.1
3
E
-
0
8
(
2
9
)

0
.0
0
E
+
0
0
±
0
.0
0
E
+
0
0
(
3
0
)

2
.9
6
E
-
1
7
±
2
.9
6
E
-
1
7
(
3
0
)

0
.0
0
E
+
0
0
±
0
.0
0
E
+
0
0
(
3
0
)

f 1
2

5
.0
5
E
+
0
0
±
6
.7
3
E
-1
7
(
0
)

1
.2
5
E
+
0
0
±
4
.7
7
E
-
0
1
(
2
4
)

3
.0
2
E
+
0
0
±
5
.4
3
E
-0
1
(
1
4
)

3
.3
7
E
+
0
0
±
5
.3
1
E
-0
1
(
7
)

4
.8
0
E
+
0
0
±
2
.5
2
E
-0
1
(
2
)

f 1
3

5
.2
7
E
+
0
0
±
0
.0
0
E
+
0
0
(
0
)

7
.0
3
E
-
0
1
±
3
.3
3
E
-
0
1
(
2
3
)

1
.2
8
E
+
0
0
±
4
.3
3
E
-
0
1
(
1
1
)

3
.7
8
E
+
0
0
±
5
.5
6
E
-0
1
(
0
)

4
.8
3
E
+
0
0
±
3
.0
9
E
-0
1
(
1
)

f 1
4

5
.3
6
E
+
0
0
±
6
.0
2
E
-1
7
(
0
)

3
.5
7
E
-
0
1
±
2
.4
8
E
-
0
1
(
2
7
)

5
.8
1
E
-
0
1
±
3
.2
6
E
-
0
1
(
1
3
)

4
.1
9
E
+
0
0
±
4
.8
6
E
-0
1
(
0
)

4
.8
2
E
+
0
0
±
2
.9
9
E
-0
1
(
0
)

∑
6
6

2
2
6

1
9
3

1
7
1

1
7
6

1
5
.7
1
%

5
3
.8
1
%

4
5
.9
5
%

4
0
.7
1
%

4
1
.9
0
%

CHAPTER 7. MERGING SDS WITH PSO AND DE 136

Figure 7.4: SDSnDE Accuracy Plot

●

●

●

●

●

●

●

●

●

●

● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1e
−

08
1e

−
05

1e
−

02
1e

+
01

Benchmark

A
cc

ur
ac

y

● DE
H5
H50
H200
H50M

CHAPTER 7. MERGING SDS WITH PSO AND DE 137

Table 7.3: TukeyHSD Test Results for Accuracy
Based on TukeyHSD Test, if the di�erence between each pair of algorithms is signi�cant,
the pairs are marked. X�o shows that the left algorithm is signi�cantly better than the
right one; and o�X shows that the right algorithm is signi�cantly better than the one, on
the left. Benchmarks with no signi�cance between algorithms are removed.

H
1
-

C
K

H
3
-

C
K

H
3
0
-

C
K

H
3
M
-

C
K

H
3
-

H
1

H
3
0
-

H
1

H
3
M
-

H
1

H
3
0
-

H
3

H
3
M
-

H
3

H
3
M
-

H
3
0

f 1
-

-
-

o
�
X

-
-

-
-

-
-

f 2
-

-
-

o
�
X

-
-

o
�
X

-
o
�
X

o
�
X

f 3
-

-
-

o
�
X

-
-

x
-

o
�
X

o
�
X

f 4
X
�
o

X
�
o

X
�
o

X
�
o

X
�
o

-
X
�
o

-
X
�
o

X
�
o

f 5
X
�
o

X
�
o

X
�
o

X
�
o

X
�
o

X
�
o

X
�
o

-
-

X
�
o

f 6
-

X
�
o

X
�
o

X
�
o

X
�
o

X
�
o

X
�
o

-
-

-

f 7
o
�
X

-
-

-
X
�
o

X
�
o

X
�
o

-
-

-

f 1
2

-
-

-
X
�
o

-
-

X
�
o

-
X
�
o

X
�
o

f 1
3

-
-

-
X
�
o

-
-

X
�
o

-
-

X
�
o

CHAPTER 7. MERGING SDS WITH PSO AND DE 138

Table 7.4: TukeyHSD Test Results for E�ciency
Based on TukeyHSD Test, if the di�erence between each pair of algorithms is signi�cant,

the pairs are marked. X�o shows that the left algorithm is signi�cantly better than the

right one; and o�X shows that the right algorithm is signi�cantly better than the one, on

the left. Benchmarks with no convergence are removed.

H
1
-

C
K

H
3
-

C
K

H
3
0
-

C
K

H
3
M
-

C
K

H
3
-

H
1

H
3
0
-

H
1

H
3
M
-

H
1

H
3
0
-

H
3

H
3
M
-

H
3

H
3
M
-

H
3
0

f 1
o
�
X

o
�
X

-
o
�
X

-
X
�
o

o
�
X

X
�
o

o
�
X

o
�
X

f 2
o
�
X

o
�
X

-
X
�
o

X
�
o

X
�
o

f 6
o
�
X

o
�
X

o
�
X

X
�
o

X
�
o

-

f 7
-

-
-

o
�
X

-
-

o
�
X

-
o
�
X

o
�
X

f 8
o
�
X

o
�
X

-
o
�
X

X
�
o

X
�
o

o
�
X

-
o
�
X

o
�
X

f 9
o
�
X

-
-

o
�
X

X
�
o

X
�
o

o
�
X

-
o
�
X

o
�
X

f 1
0

-
-

-
-

-
-

-
-

-
-

f 1
1

x
-

-
-

o
�
X

o
�
X

o
�
X

-
-

-

CHAPTER 7. MERGING SDS WITH PSO AND DE 139

Table 7.5: TukeyHSD Test Results for Accuracy
Based on TukeyHSD Test, if the di�erence between each pair of algorithms is signi�cant,
the pairs are marked. X�o shows that the left algorithm is signi�cantly better than the
right one; and o�X shows that the right algorithm is signi�cantly better than the one, on
the left.

D
E
-

H
5

D
E
-

H
5
0

D
E
-

H
2
0
0

D
E
-

H
5
0
M

H
5
-

H
5
0

H
5
-

H
2
0
0

H
5
-

H
5
0
M

H
5
0
-

H
2
0
0

H
5
0
-

H
5
0
M

H
2
0
0
-

H
5
0
M

f 1
�

�
�

�
�

�
�

�
�

�

f 2
X
�
o

�
�

�
o
�
X

o
�
X

o
�
X

�
�

�

f 3
�

o
�
X

o
�
X

o
�
X

o
�
X

o
�
X

o
�
X

�
�

�

f 4
o
�
X

o
�
X

o
�
X

o
�
X

�
�

�
�

�
�

f 5
o
�
X

o
�
X

o
�
X

o
�
X

�
�

�
�

�
�

f 6
o
�
X

o
�
X

o
�
X

o
�
X

�
�

�
�

�
�

f 7
�

�
�

�
�

�
�

�
�

�

f 8
o
�
X

o
�
X

o
�
X

o
�
X

�
�

�
�

�
�

f 9
�

�
�

X
�
o

�
�

X
�
o

�
X
�
o

X
�
o

f 1
0

o
�
X

o
�
X

o
�
X

o
�
X

�
�

�
�

�
�

f 1
1

o
�
X

o
�
X

o
�
X

o
�
X

�
�

�
�

�
�

f 1
2

o
�
X

o
�
X

o
�
X

�
X
�
o

X
�
o

X
�
o

�
X
�
o

�

f 1
3

o
�
X

o
�
X

o
�
X

�
�

X
�
o

X
�
o

X
�
o

X
�
o

�

f 1
4

o
�
X

o
�
X

�
�

�
X
�
o

X
�
o

X
�
o

X
�
o

�

Chapter 8

Generalised Hybridisation

Strategy

�We can only see a short distance ahead, but

we can see plenty there that needs to be done.�

� Alan Turing

This chapter uses the ideas introduced in previous chapter (see Chapter 7 on

page 122) to propose a generalised hybridisation strategy that is applicable

to any population-based optimiser. The generalised hybridisation strategy is

subsequently tested on a harder and more recent set of benchmarks (other

than those used in the previous chapter) and a larger set of algorithms. The

results of the experiments are followed by a discussion on the performance

of the hybrid algorithms.

8.1 Hybridisation Strategy

The initial motivating thesis justifying the hybridisation of SDS and the

population-based algorithms (via what we call Hybridisation Strategy) is the

140

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 141

partial function evaluation deployed in SDS, which may mitigate the high

computational overheads entailed when deploying these algorithms onto a

problem with a costly (and decomposable) �tness function. However, be-

fore commenting on and exploring this area � which remains an ongoing

research � an initial set of experiments (with cheap �tness functions) are con-

ducted, aiming to investigate if the information di�usion mechanism deployed

in SDS may on its own improve the behaviour of population-based algorithms

(for more details about these algorithms see Sections 4.1 on page 72, 4.3 on

page 95 and 4.2 on page 93).

As mentioned earlier (see Chapter 3 on page 44), each SDS agent has a hy-

pothesis and a status. In the hybrid algorithms, every member of the SI

and EA population is an SDS agent too � together termed hybrid agents

(hAgents). More speci�cally, in the hybrid algorithms, SDS hypotheses con-

tain the solution vectors of the member of the populations, and an additional

Boolean variable (status) determines whether the hAgent is active or inactive

(see Figure 8.1).

Figure 8.1: Architecture of Hybrid Agent
hAgent

SDS Agent

Status

Active / Inactive

Hypothesis

PSO Particle DE Agent

GA Agent
or another agent

The behaviour of the hybrid algorithm in its simplest form is presented in

Algorithm 8.1 on page 152.

The hybridisation strategy was �rst investigated on a standard PSO algo-

rithm (see Section 7.1 or [226]) and a variant of classical DE (see Section 7.2

or [227]) in order to investigate the information sharing mechanism of SDS

on the performance of the PSO particles and DE agents. The positive e�ects

of the hybridisation strategy on the behaviour of PSO and DE, provided the

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 142

motivation to examine the strategy on a new set of swarm intelligence and

evolutionary algorithms and a di�erent set of benchmarks.

Looking at Algorithm 8.1, lines 1− 7 and 34− 36 represent the code related

to the population-based algorithms; and lines 9− 32 represent the SDS part

of the strategy. Once the SDS part is implemented, it can be applied to the

population-based algorithms.

Since the Generalised Hybridisation Strategy does not have an impact on

the implementation aspect of the algorithms intended to use this strategy,

the integration process is smooth, allowing researchers to focus on analysing

the �nal results; in other words, once the Generalised Hybridisation Strategy

is implemented and �plugged into� one algorithm, the same implementation

can be plugged into other algorithms.

8.2 Test and Di�usion Phases in the Hybrid

Algorithms

In the test-phase of a standard stochastic di�usion search, each agent par-

tially evaluates its hypothesis. The guiding heuristic is that hypotheses that

are promising are maintained and those that appear unpromising are dis-

carded. In the context of the hybrid algorithms presented here, di�erent

tests could be conducted in order to determine the activity of each hAgent.

One test is illustrated in Algorithm 8.1 on page 152 (see Lines: 12-19). Here,

the Test Phase is simply performed by comparing the �tness of each hAgent

against that of a random one (excluding itself); if the selecting hAgent has

a better �tness value, it will become active, otherwise it is �agged inactive.

In the Di�usion Phase (see Algorithm 8.1, Lines: 22-30), each inactive hA-

gent picks another hAgent randomly. If the selected hAgent is active, it

communicates its hypothesis to the inactive one; if the selected hAgent is in-

active too, the selecting hAgent generates a new hypothesis at random from

the search space.

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 143

As outlined in the pseudo-code of the hybrid algorithm (see Algorithm 8.1),

after each n generations, one full SDS cycle is executed.

8.3 Experiments

In this section, a number of experiments are carried out and the performance

of a standard PSO [153], one variation of DE (DE/best/1) and one simple

type of real-valued GA algorithms are contrasted against their hybrid algo-

rithm counterparts (SDSnPSO, SDSnDE, SDSnGA). The aim in evaluating

a number of population-based algorithms is to demonstrate the generality

of the hybridisation strategy. The measure used to determine the quality of

each algorithms is accuracy (see Section 5.3.1 on page 101 for the de�nition).

8.3.1 Experiment Setup

In order to examine the Generalised Hybridisation Strategy, the experiments

use a set of test functions that were designed for the Special Session on Real

Parameter Optimization organised as part of the 2005 IEEE Congress on

Evolutionary Computation (CEC 2005), reported in [229], where a complete

description of these benchmarks are provided:

• Unimodal Functions (5):

� F1: Shifted Sphere Function

� F2: Shifted Schwefel's Problem 1.2

� F3: Shifted Rotated High Conditioned Elliptic Function

� F4: Shifted Schwefel's Problem 1.2 with Noise in Fitness

� F5: Schwefel's Problem 2.6 with Global Optimum on Bounds

• Multimodal Functions1 (9):

1Hybrid Composition Functions are not used in this work.

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 144

� Basic Functions (7):

∗ F6: Shifted Rosenbrock's Function

∗ F7: Shifted Rotated Griewank's Function without Bounds

∗ F8: Shifted Rotated Ackley's Function with Global Optimum on

Bounds

∗ F9: Shifted Rastrigin's Function

∗ F10: Shifted Rotated Rastrigin's Function

∗ F11: Shifted Rotated Weierstrass Function

∗ F12: Schwefel's Problem 2.13

� Expanded Functions (2):

∗ F13: Expanded Extended Griewank's plus Rosenbrock's Function

(F8F2)

∗ F14: Shifted Rotated Expanded Sca�er's F6

All benchmarks have been shifted in order to ensure there are no optima in

the centre of the search space.

The experiments are conducted with the generic population size of 50, 100

and 100 for PSO particles, DE and GA agents respectively; the halting cri-

terion for this experiment is exceeding 300, 000 function evaluations (FEs)

and with regards to PSO, in addition to the mentioned criterion, if the algo-

rithm reaches the optima (with distances less than 10−8), it terminates; the

dimensionality of the problems is 30 [153, 206].

In [226, 227], the impact of using di�erent n values, after which the SDS cycle

begins, is reported, showing the e�ect of having frequent or less frequent SDS

cycles on the performance of the hybrid algorithms. In this work, one n value

(n = 50) is used, aiming to provide a general yet clear idea on the performance

of the hybrid algorithms, which use the Generalised Hybridisation Strategy:

SDSnPSO, SDSnDE, SDSnGA; no claims were made for the optimality of the

frequency rate used; sRePSO, sReDE and sReGA represent algorithms that

just use the sds-led Restart mechanism, without information sharing (for

this mode, the di�usion phase is modi�ed. See Algorithm 7.3 on page 129).

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 145

There are 30 independent runs for each benchmark function and the results

are averaged over these independent trials.

8.3.2 Results

Tables 8.1(a), 8.2(a) and 8.3(a) on pages 153, 154, 155 respectively) show the

performance of PSO, DE and GA algorithms alongside their hybrid counter-

parts integrated with SDS.

In these tables, over each benchmark, algorithms which are signi�cantly bet-

ter (see Tables 8.1(b), 8.2(b), 8.3(b)) than the one(s) with the least accuracy,

are highlighted.

Figure 8.2 on page 156 shows the accuracy plots of each one of the above

mentioned set of algorithms.

Although the value of n, which determines the frequency of running SDS

cycles is important, but the emphasis in this chapter is rather on investigating

the general e�ect of the hybridisation strategy on the performance of these

population-based algorithms.

Below, the hybrid algorithms are contrasted against their vanilla counter-

parts and in Section 8.4, their performance without the information sharing

mechanism is discussed.

As Table 8.1(b) shows, over all benchmarks, other than f7, PSO does not sig-

ni�cantly outperform the hybrid algorithm (SDSnPSO). On the other hand,

in the rest of the cases with a signi�cant di�erence (e.g. f2, f4, f8,9 and

f11−14), the hybrid algorithm outperforms the standard PSO algorithm sig-

ni�cantly. Table 8.1(a) also con�rms that whenever there is a signi�cant

di�erence in the performance of the standard and hybrid algorithm, the hy-

brid algorithm is (among) the best in most cases (SDSnPSO column has the

most highlighted records).

Table 8.2(b) demonstrates that whenever there is a signi�cant di�erence be-

tween classical DE and the hybrid algorithms (SDSnDE), the hybrid algo-

rithm signi�cantly outperforms the classical one (f2,3, f7 and f9−14). Table

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 146

8.2(a) also con�rms that the hybrid algorithm has the highest record of being

(among) the best algorithm(s).

Table 8.3(b) shows that the hybrid algorithm demonstrates 71% outperfor-

mance when there exists a signi�cant di�erence between the hybrid algorithm

(SDSnGA) and the vanilla real-valued GA (e.g. in f2, f4,5, f7, f14). Although

the hybrid algorithm does not overwhelmingly outperform the vanilla GA, it

holds its place as the algorithm with the highest number of best performances

(see Table 8.3(a)).

As stated above, the results from Tables 8.1, 8.2, 8.3 show the e�ects of gen-

eralised hybridisation strategy in the hybrid algorithms using the information

sharing mechanism deployed in SDS.

8.4 Discussion

The resource allocation process underlying standard SDS o�ers three closely

coupled mechanisms to the algorithm's search component to speed its con-

vergence to global optima.

• the �rst component is `e�cient, non-greedy information sharing' in-

stantiated via positive feedback of potentially good hypotheses between

agents.

• the second component is the SDS-led random-restart deployed as part

of the di�usion phase.

• the third component which is not used explicitly in this work is random

`partial hypothesis evaluation', whereby a complex, computationally

expensive objective function is broken down into `k independent partial-

functions', each of which, when evaluated, o�ers partial information

on the absolute quality of current algorithm search parameters. It

is this mechanism of iterated selection of a random partial function

that ensures a standard SDS does not prematurely converge on local

minimum. In current tests, this component is not explicitly exploited.

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 147

The resource allocation and restart components of SDS in the hybrid al-

gorithm are executed in the Di�usion Phase, where information is shared

(di�used) among hAgents (see Algorithm 3.3 on page 63). The analysis of

the performance of the hybrid algorithm (see results above) demonstrates

that adding the SDS resource allocation and SDS-led restart mechanisms to

the swarm intelligence and evolutionary algorithms used in this work im-

proves the overall performance of the algorithm (i.e. it enhances algorithm

accuracy, as de�ned herein).

To further analyse the role of SDS in the hybrid algorithms, the Di�usion

Phase of the SDS algorithm is modi�ed (see Algorithm 7.3 on page 129)

investigating the restart e�ect caused by randomising a selection of agent

hypotheses after a number of iterations (e�ectively instantiating the swarm

intelligence and evolutionary algorithms with SDS-led random-restarts). In

other words, after the SDS test-phase, the hypothesis of each inactive hAgent

is randomised.

As detailed in Tables 8.1 on page 153, 8.2 on page 154, 8.3 on page 155,

although information sharing plays an important role in the performance

of the hybrid algorithms, the signi�cance of SDS-led restart mechanism (in

randomly restarting some of the agents) in improving the performance of the

algorithms cannot be discarded.

Other than f11 in Table 8.1(b) where sRePSO (using restart-only mechanism)

signi�cantly outperforms sPSO (the hybrid algorithm), in the rest of the

experiments (be it PSO or DE and GA), when there exists a signi�cant

di�erence, the hybrid algorithms signi�cantly outperform the restart-only

hybrid algorithms.

Although the algorithms with restart-only mechanism are generally outper-

formed by the hybrid algorithms, they still compete with the vanilla swarm

intelligence and evolutionary algorithms. For instance, in PSO, out of 10 sig-

ni�cant di�erences, sRePSO signi�cantly outperforms PSO in 8 cases (80%);

in DE, the outperformance is marginal, where sReDE outperforms in 57%

of the cases; in GA however, sReGA is outperformed by GA which performs

70% better. The results show the importance of coupling the restart mecha-

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 148

nism and the communication of agents which are both deployed in the SDS

algorithm.

The third SDS component feature, which is currently only implicitly ex-

ploited by the hybrid algorithm, is `randomised partial hypothesis evalua-

tion'. In the Mining Game (see Section 3.1 on page 45), �At the start of

the mining process each miner maintains a [randomly allocated] hypothesis

- their current belief of `best hill' to mine�; and each miner mines one small

randomly selected area of this hill rather than the entirety of it (i.e. reveal-

ing a partial estimate of the gold content of the entire hill); following this

approach, each miner forms a partial view of the gold content of their hill

hypothesis (which is merely part of the overall mountain range: the entire

search space).

In typical optimisation algorithms, the search process iterates the evaluation

of one point in the n-dimensional search space (iterating an objective function

evaluation). In swarm intelligence and evolutionary algorithms' population,

in addition to this information, each agent has implicit partial knowledge

about the search space (from its former experience and/or other agents).

In PSO, this implicit partial knowledge is derived from the fact that each

particle has implicit knowledge of a discrete sub-space (or dSubS) comprising

the historical evidence implicit in the prior [m] objective-function evaluations

it has performed. Thus, since the memory of each particle maintains the best

point found so far, each particle, covering its dSubS, has partial knowledge

of the full search space [226].

In DE or GA, this implicit partial knowledge (coming from other agents) is

derived from the mutation, crossover and selection mechanisms. Therefore, as

long as each agent �nds its current position by using this implicit knowledge,

it should have a partial knowledge of the full problem space [227]. In the

hybrid algorithms each hAgent maintains a �tness value which is the best

objective function value it has currently found, based on its exploration of the

search space so far. Thus constituted, each hAgent's target vector (in case of

the DE algorithm, or personal best in case of the PSO) de�nes a `partial view'

of the entire search space (via the partial interaction it has with the rest of the

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 149

population (e.g. through mutation, crossover and selection). Hence, when

the �tness values of two hAgents are compared in the test-phase of the hybrid

algorithms, two partial views of the entire search space are contrasted. This

is analogous to the `test' process of the Mining Game as, in both processes,

agents become active or inactive contingent upon the agent's evaluation of a

randomised partial view of the entire search space.

In both the Mining Game and the new hybrid algorithms, the notion of

partial-function evaluation di�ers importantly from that traditionally de-

ployed in a simple discrete partial function SDS, where, for a given set of pa-

rameter values (the agent hypothesis) a complex objective function is broken

into m components, only one randomly selected of which will be evaluated

and the subsequent agent-activity is based on this. Clearly, as this process

merely evaluates 1/m of the total number of computations required for the

full hypothesis evaluation, it concomitantly o�ers a potentially signi�cant

performance increase. Whereas in the hybrid algorithms, the objective func-

tion is evaluated in-toto, using a given set of parameter values (the agent's

hypothesis) and the subsequent agent-activity is based on this. In the former

case, the agent exploits knowledge of the partial objective function and in the

process gains a potential partial-function performance dividend; in the latter

the agent merely exploits partial knowledge of the search space without the

concomitant explicit partial-function performance increase.

Ongoing work on computationally more complex benchmark problems, seeks

to exploit this `partial-function dividend' with the hybrid algorithms; if suc-

cessful, this o�ers further, potentially signi�cant, performance improvements

for the new hybrid algorithms.

8.5 Observations

One of the di�erences between the hybrid algorithm using PSO in this chapter

and the former one is visible in the test-phase. In the previous chapter, if a

particle's pbest is better than or equal to another randomly selected particle,

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 150

the selecting particle becomes inactive; however, in this chapter, the test-

phase also dictates that if the selecting hAgent's solution vector is better

than (but not equal to) a randomly selected hAgent, it is �agged active.

This strategy is adopted in order to allow more particles to be inactive and

possibly explore the search space rather than their current hypotheses.

Additionally, during the test-phase, the selecting hAgent should select an-

other hAgent randomly from all other hAgents, excluding itself, a criterion

which was not in place in Section 7.1 on page 123 for the hybrid algorithms

using PSO (SDSnPSO).

This chapter uses local neighbourhood PSO to respond to criticism that

might arise due to the use of global neighbourhood PSO (deployed in the

former chapter and [226]). Global neighbourhood PSO is not favoured be-

cause of premature convergence as stated by one of the inventors of PSO,

James Kennedy [220]:

�it might be time to mount a sword-swinging crusade against

any use of the gbest topology. How did this happen? It is the

worst way to do it, completely unnecessary. I will not tolerate

anybody who uses that topology complaining about �premature

convergence�.�

In brief, the following distinguishes the experiments run in this chapter from

the ones in the previous chapter:

• A generalised hybridisation strategy is designed to consider any population-

based algorithm

• Standard local neighbourhood is used for PSO, which is more preferred

than global neighbourhood [220]

• Di�erent frequencies of running SDS cycles are abstracted

• During communication, both in test and di�usion phases, hAgents pick

any other hAgents randomly, excluding the self

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 151

• All algorithms use the same test mechanism to determine their status

• A more recent and harder set of benchmarks is used (i.e. CEC'05).

8.6 Summary

This chapter has presented a strategy for the integration of population-

based algorithms (e.g. swarm intelligence and evolutionary algorithms) with

Stochastic Di�usion Search (SDS), using the Generalised Hybridisation Strat-

egy which bene�ts from the deployed SDS-led resource allocation and restart

mechanisms.

It is shown that facilitating communication between population-based agents

is the responsibility of SDS via its resource allocation mechanism. Addi-

tionally, an initial discussion of the similarity between the hypothesis test

employed in the hybrid algorithms and the test-phase in SDS algorithm was

presented.

This chapter has demonstrated that the hybrid algorithms, even when ap-

plied to problems with low-cost �tness function evaluations (the benchmarks

presented), outperform the performance of few population-based algorithms.

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 152

Algorithm 8.1 Generalised Hybridisation Strategy � Hybrid Algorithm

01: Initialise hAgents

02:

03: For (generation = 1 to generationsAllowed)

04:

05: For (hAgent = 1 to NP)

06: Run one iteration of population -based algorithms

07: End For

08:

09: If (generation counter % n == 0)

10: // START SDS

11: // TEST PHASE

12: For ag = 1 to NP

13: r_ag = pick -random -hAgent ()

14: If (ag.fitness () < r_ag.fitness ())

15: ag.setActivity (true)

16: Else

17: ag.setActivity (false)

18: End If

19: End For

20:

21: // DIFFUSION PHASE

22: For ag = 1 to No_of_hAgents

23: If (!ag.activity ())

24: r_ag = pick -random -hAgent ()

25: If (r_ag.activity ())

26: ag.setHypo(r_ag.getHypo ())*

27: Else

28: ag.setHypo(randomHypo ())**

29: End If

30: End For

31: End If

32: // END SDS

33:

34: Find hAgent with best fitness value

35:

36: End For

* In setHypo () and getHypo(), `Hypo ' refers to

the hAgent 's hypothesis.

** `randomHypo ()' uses the entire search space to

reinitialise the agent.

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 153

Table 8.1: Generalised Hybridisation Strategy on PSO

(a) Accuracy ± Standard Error is shown with two decimal places. For each benchmark,

algorithms which are signi�cantly better (see Table 8.1(b)) than the one with the least

accuracy, are highlighted. Note that the highlighted algorithms do not signi�cantly

outperform one another.

PSO sPSO sRePSO

SDSnPSO

f1 9.52E-10±7.90E-12 9.61E-10±7.43E-12 9.60E-10±1.46E-11

f2 1.64E-01±2.67E-02 3.42E-03±5.67E-04 5.63E-02±1.29E-02

f3 1.50E+06±1.04E+05 1.40E+06±1.24E+05 1.62E+06±1.01E+05

f4 7.37E+03±3.91E+02 7.53E+02±6.32E+01 1.71E+03±1.39E+02

f5 5.63E+03±1.89E+02 5.06E+03±1.89E+02 4.94E+03±1.54E+02

f6 2.27E+01±5.64E+00 4.28E+01±1.06E+01 1.38E+02±3.43E+01

f7 9.31E-03±1.27E-03 2.46E-02±3.34E-03 2.79E-02±4.09E-03

f8 2.09E+01±1.20E-02 2.01E+01±9.00E-03 2.09E+01±9.43E-03

f9 9.24E+01±3.73E+00 1.17E+01±8.30E-01 1.59E+01±7.86E-01

f10 1.16E+02±4.11E+00 1.05E+02±5.18E+00 9.08E+01±3.63E+00

f11 3.00E+01±4.31E-01 2.50E+01±6.93E-01 2.11E+01±4.18E-01

f12 9.42E+03±1.18E+03 4.89E+03±8.58E+02 1.19E+04±1.67E+03

f13 4.72E+00±1.68E-01 2.93E+00±1.08E-01 2.66E+00±1.12E-01

f14 1.26E+01±6.18E-02 1.22E+01±7.35E-02 1.21E+01±5.87E-02

(b) Based on TukeyHSD Test, if the di�erence between each pair of algorithms is

signi�cant, the pairs are marked. X�o shows that the left algorithm is signi�cantly better

than the right one; and o�X shows that the right one is signi�cantly better than the left

algorithm.

PSO-sPSO PSO-sRePSO sPSO-sRePSO

f1 � � �

f2 o � X o � X �

f3 � � �

f4 o � X o � X X � o

f5 � o � X �

f6 � X � o X � o

f7 X � o X � o �

f8 o � X � X � o

f9 o � X o � X �

f10 � o � X �

f11 o � X o � X o � X

f12 o � X � X � o

f13 o � X o � X �

f14 o � X o � X �

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 154

Table 8.2: Generalised Hybridisation Strategy on DE

(a) Accuracy ± Standard Error is shown with two decimal places. For each benchmark,

algorithms which are signi�cantly better (see Table 8.2(b)) than the one with the least

accuracy, are highlighted. Note that the highlighted algorithms do not signi�cantly

outperform one another.

DE sDE sReDE

SDSnDE

f1 1.57E-13±2.09E-14 5.68E-14±0.00E+00 9.50E+03±5.36E+03

f2 1.39E-01±4.12E-02 4.55E-03±1.04E-03 8.09E-02±2.13E-02

f3 1.58E+07±1.78E+06 2.59E+06±2.06E+05 2.15E+06±2.08E+05

f4 7.78E-01±1.33E-01 3.04E-01±5.30E-02 2.48E+00±4.04E-01

f5 1.94E+03±1.62E+02 2.15E+03±1.37E+02 2.48E+03±1.40E+02

f6 4.96E+01±2.01E+01 1.30E+01±3.72E+00 1.21E+01±3.00E+00

f7 5.40E-01±8.11E-02 1.54E-01±3.49E-02 1.67E-02±2.79E-03

f8 2.10E+01±9.01E-03 2.10E+01±6.45E-03 2.10E+01±9.36E-03

f9 2.84E+01±1.34E+00 4.88E+00±4.68E-01 4.61E+01±9.35E+00

f10 1.88E+02±3.79E+00 6.25E+01±3.59E+00 1.05E+02±1.23E+01

f11 3.85E+01±1.16E+00 2.62E+01±1.28E+00 3.85E+01±1.04E+00

f12 6.74E+05±1.30E+04 5.25E+04±4.20E+03 7.46E+05±9.66E+03

f13 8.52E+00±5.33E-01 1.98E+00±8.00E-02 2.06E+00±7.09E-02

f14 1.35E+01±3.45E-02 1.28E+01±7.22E-02 1.34E+01±4.78E-02

(b) Based on TukeyHSD Test, if the di�erence between each pair of algorithms is

signi�cant, the pairs are marked. X�o shows that the left algorithm is signi�cantly better

than the right one; and o�X shows that the right one is signi�cantly better than the left

algorithm.

DE-sDE DE-sReDE sDE-sReDE

f1 � � �

f2 o � X � �

f3 o � X o � X �

f4 � X � o X � o

f5 � X � o �

f6 � � �

f7 o � X o � X �

f8 � � �

f9 o � X � X � o

f10 o � X o � X X � o

f11 o � X � X � o

f12 o � X X � o X � o

f13 o � X o � X �

f14 o � X � X � o

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 155

Table 8.3: Generalised Hybridisation Strategy on GA

(a) Accuracy ± Standard Error is shown with two decimal places. For each benchmark,

algorithms which are signi�cantly better (see Table 8.3(b)) than the one with the least

accuracy, are highlighted. Note that the highlighted algorithms do not signi�cantly

outperform one another.

GA sGA sReGA

SDSnGA

f1 3.27E-01±3.27E-01 1.83E+01±9.09E+00 1.27E+03±2.77E+02

f2 1.22E+04±5.75E+02 9.50E+03±5.16E+02 1.69E+04±7.05E+02

f3 1.37E+07±1.10E+06 1.17E+07±9.76E+05 3.75E+07±2.96E+06

f4 5.02E+04±2.10E+03 2.27E+04±8.08E+02 2.11E+04±4.33E+02

f5 2.03E+04±5.23E+02 1.23E+04±2.36E+02 1.49E+04±3.90E+02

f6 1.07E+04±9.81E+03 4.45E+05±3.11E+05 1.17E+08±2.64E+07

f7 5.83E+03±1.21E+02 7.49E+01±4.39E+00 3.13E+02±1.50E+01

f8 2.04E+01±2.25E-02 2.09E+01±1.18E-02 2.09E+01±1.65E-02

f9 2.52E+01±1.48E+00 1.98E+01±1.33E+00 4.60E+01±2.77E+00

f10 1.26E+02±5.94E+00 1.19E+02±4.04E+00 1.28E+02±5.35E+00

f11 1.17E+01±5.11E-01 2.24E+01±9.18E-01 2.87E+01±1.07E+00

f12 9.72E+03±1.30E+03 3.92E+04±6.37E+03 2.41E+05±1.88E+04

f13 2.59E+00±8.48E-02 2.52E+00±9.39E-02 3.62E+00±2.31E-01

f14 1.38E+01±6.22E-02 1.31E+01±6.68E-02 1.31E+01±5.42E-02

(b) Based on TukeyHSD Test, if the di�erence between each pair of algorithms is

signi�cant, the pairs are marked. X�o shows that the left algorithm is signi�cantly better

than the right one; and o�X shows that the right one is signi�cantly better than the left

algorithm.

GA-sGA GA-sReGA sGA-sReGA

f1 � X � o X � o

f2 o � X X � o X � o

f3 � X � o X � o

f4 o � X o � X �

f5 o � X o � X X � o

f6 � X � o X � o

f7 o � X o � X X � o

f8 X � o X � o �

f9 � X � o X � o

f10 � � �

f11 X � o X � o X � o

f12 � X � o X � o

f13 � X � o X � o

f14 o � X o � X �

CHAPTER 8. GENERALISED HYBRIDISATION STRATEGY 156

Figure 8.2: Generalised Hybridisation Strategy Plot

●

●

●

● ●

●

●

●

● ●
●

●

●
●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1e
−

08
1e

−
05

1e
−

02
1e

+
01

1e
+

04
(a) SDSnPSO

Benchmark

A
cc

ur
ac

y

● PSO
sPSO
sRePSO

●

●

●

●

●

●

●

● ●

●

●

●

● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1e
−

08
1e

−
04

1e
+

00
1e

+
04

(b) SDSnDE

Benchmark

A
cc

ur
ac

y

● DE
sDE
sReDE

●

●

●

●
●

● ●

● ●

●

●

●

●

●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1e
−

08
1e

−
04

1e
+

00
1e

+
04

1e
+

08

(c) SDSnGA

Benchmark

A
cc

ur
ac

y

● GA
sGA
sReGA

Chapter 9

Conclusions and Future Work

�When you call me that, smile.�

� Owen Wister

This chapter concludes the thesis by providing a summary of the study and

making recommendations for future research.

9.1 Summary

In this study, after giving a brief background on arti�cial intelligence, swarm

intelligence, optimisation and search, Stochastic Di�usion Search (SDS) is

presented in Chapter 3 on page 44, followed by an introduction to three well

known population-based optimisers: Particle Swarm Optimisation (PSO),

Genetic Algorithm (GA) and Di�erential Evolution algorithm (DE) in Chap-

ter 4 on page 72.

Following the literature review, SDS algorithm has been further investigated

as a global optimiser, with di�erential evolution algorithm (DE) providing

local search on convergence. The performance of DE is compared with the

coupled SDS-DE algorithm and the results show the outperformance of the

157

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 158

coupled algorithm over classical DE. This highlights the impact of the in-

formation sharing and SDS-led restart mechanisms deployed in SDS on the

optimisation process.

Next, after presenting Bare Bones PSO, which was initially proposed to pro-

vide better understanding of the behaviour of particle swarm algorithms,

two new minimised variants of standard PSO are introduced � Bare Bones

with Jumps PSO Models 1 & 2 (PSO-BBJ 1 & 2) � and their performance

is compared against standard PSO and Bare Bones PSO, using three dif-

ferent measures: accuracy, e�ciency and reliability, which are de�ned in

section 5.3.1 on page 101. In terms of accuracy, although standard PSO

demonstrates a better performance when all benchmarks are considered, the

accuracy of PSO-BBJ2 compared to other algorithms is signi�cantly better

when benchmarks with successful convergence are considered. Additionally,

PSO-BBJ2 is empirically shown to be both the most e�cient and the most re-

liable algorithm in both local and global neighbourhoods. PSO-BBJ2 shows

better reliability in global vs. local neighbourhood.

This study mainly focuses on the information sharing impact of SDS on

swarm intelligence and evolutionary algorithms. It investigates whether the

information di�usion mechanism deployed in SDS may on its own improve

the behaviour of population-based algorithms.

This research initially aimed at investigating the integration of SDS with

PSO, utilising the resource allocation mechanism of SDS to facilitate com-

munication between PSO particles. The promising results of this integration

provided the motivation to extend the scope of the research and apply the

generalised SDS-led resource allocation mechanism (using the Generalised

Hybridisation Strategy) to other population-based algorithms.

The resulting hybridisation strategy, utilises the information sharing mecha-

nism in SDS for exchanging information between the members of population-

based optimisers. The performance of the hybridisation strategy is investi-

gated on more than one set of state-of-the-art benchmarks and applied to

a number of population-based algorithms (e.g. PSO, DE and GA) with

promising results: Out of 25 cases where the di�erence between the hybrid

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 159

algorithms and their classical counterparts were signi�cant, the hybrid algo-

rithms outperformed in 22 cases, demonstrating 88% outperformance.

The resource allocation process underlying standard SDS o�ers three closely

coupled mechanisms to the algorithm's search component to speed its con-

vergence to global optima: e�cient, non-greedy information sharing (instan-

tiated via positive feedback of potentially good hypotheses between agents);

SDS-led random-restart which is deployed as part of the di�usion phase; and

random `partial hypothesis evaluation', which is not used explicitly in this

work.

The resource allocation and restart components of SDS in the hybrid al-

gorithm are executed in the Di�usion Phase, where information is di�used

among the hybrid agents.

In order to verify the role of information sharing mechanism, a number of

control experiments, which lack this mechanism, were conducted. The per-

formance of the control algorithms, which only deploy the SDS-led random

restart mechanism, are examined and the performance of the control al-

gorithms that are majorly outperformed by the hybrid algorithms, demon-

strates the positive impact of using the information exchange strategy de-

ployed in SDS (out of 21 cases where the di�erence between the hybrid algo-

rithms and their control counterparts were signi�cant, the hybrid algorithms

outperformed in 20 cases, demonstrating 95% outperformance). Thus, the

hybrid algorithms, using the Generalised Hybridisation Strategy outperform

the population-based algorithms used.

The easy-to-implement structure of the Generalised Hybridisation Strat-

egy allows researchers to adopt the strategy and run experiments on the

population-based algorithms of their choice by simply adding a few lines of

code.

Other than the potential contribution of this hybridisation strategy to the

concept of information exchange within the �elds of population-based opti-

misers, and the signi�cantly promising results it delivers, the applicability of

the Generalised Hybridisation Strategy (in theory) to any population-based

algorithm, makes it an attractive research topic to pursue further in future.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 160

9.2 Future Work

The time spent on this piece of work proved to the author that there are

far more questions emerging than answers; many potential directions can be

pursued from here, some of which are summarised:

• Adopting vs. generating hypothesis: investigating the impact of adopt-

ing a random hypothesis (from the population of already existing hA-

gents) during the di�usion phase, instead of generating a random hy-

pothesis (by randomly choosing a position within the search space)

• Atomic vs. Full SDS Cycle:

In the presented hybridisation strategy, after a certain number of gen-

erations the SDS cycle is run, which means that SDS goes through the

test phase and considers all agents, then the di�usion phase considers

the entire population of agents. This full cycle of test-di�usion phase

is called Full SDS Cycle. Instead of iterating through Full SDS Cy-

cles, running `Atomic SDS Cycle' remains a future research. In this

arrangement, after each n FEs, two agents are randomly picked for

communication; before the communication phase, their status should

be decided. One method for labelling them active or inactive is to pick

another agent for each one of the existing agents; if the selected agent

has a better �tness value, the selecting agent is labelled inactive, other-

wise active. Once their status is determined, the same principle of SDS

di�usion is applicable. While using the same principle of di�usion in

SDS, this approach allows exploring a di�erent method of exchanging

information.

• Analysing the performance of SDS as a continuous optimiser using dif-

ferent benchmarks, and investigating the quality of the solution found

before and after running the local search

• Further investigation of the behaviour of Bare Bones with Jumps algo-

rithms

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 161

• Observing other forms of information exchange and their e�ects on the

optimisation performance of population-based algorithms

• Analysing the behaviour of active and inactive hybrid agents separately

at di�erent stages of the optimisation process to better understand the

underlying activities of the population in the hybrid algorithms

• Investigating the multi-swarm approaches and using SDS for resource

allocation among the swarms. The following criteria might be con-

sidered: partitioning the search space (with partitions having �xed or

varying positions; and homogeneous or heterogeneous sizes); allocat-

ing particles to swarms (same or di�erent number of particles for each

partition); search space coverage where all parts of the search space

is covered either uniquely by one swarm or at least by one swarm; or

random parts of the search are covered). See Figure 9.1

• Investigating the performance of the hybrid algorithms on some real-

world problems; further theoretical work seeks to develop the core ideas

presented in this work on problems with signi�cantly more computa-

tionally expensive (and decomposable) objective functions

Figure 9.1: Possible Multi-Swarm Approaches

{Coverage

Size

Position

H
om

og
en

eo
us

In
co
m
pl
et
e

C
o
n
st
a
n
t

C
om

plete

H
eterogeneous

V
a
ryin

g{
{

Bibliography

[1] J. Digalakis and K. Margaritis, �An experimental study of bench-

marking functions for evolutionary algorithms,� International Journal,

vol. 79, pp. 403�416, 2002.

[2] D. Whitley, S. Rana, J. Dzubera, and K. E. Mathias, �Evaluating evolu-

tionary algorithms,� Arti�cial Intelligence, vol. 85, no. 1-2, pp. 245�276,

1996.

[3] J. Bishop, �Stochastic searching networks,� (London, UK), pp. 329�331,

Proc. 1st IEE Conf. on Arti�cial Neural Networks, 1989.

[4] J. Kennedy and R. C. Eberhart, �Particle swarm optimization,� in Pro-

ceedings of the IEEE International Conference on Neural Networks,

vol. IV, (Piscataway, NJ), pp. 1942�1948, IEEE Service Center, 1995.

[5] D. Crevier, AI: the tumultuous history of the search for arti�cial intel-

ligence. Basic Books, Inc., 1993.

[6] S. J. Russell and P. Norvig, Arti�cial intelligence : a modern approach.

Prentice Hall series in arti�cial intelligence, Upper Saddle River, N.J.:

Prentice Hall, 2nd ed., 2003.

[7] J. E. CHaugeland, Arti�cial Intelligence: The Very Idea. Cambridge,

Massachusetts: MIT Press, 1985.

[8] R. Kurzweil, The Age of Intelligent Machines. Cambridge, Mas-

sachusetts: MIT Press, 1990.

162

BIBLIOGRAPHY 163

[9] E. Charniak and D. McDermott, Introduction to Arti�cial Intelligence.

Reading, Massachusetts: Addison-Wesley, 1985.

[10] D. Poole, A. K. Mackworth, and R. Goebel, Computational intelligence:

A logical approach. Oxford, UK: Oxford University Press, 1998.

[11] A. Turing, �Computing machinery and intelligence,� Mind, vol. 59,

pp. 433�460, 1950.

[12] L. Spector, �Evolution of arti�cial intelligence,� Arti�cial Intelligence,

vol. 170, no. 18, pp. 1251�1253, 2006.

[13] Kybernetes, The Turing Test. Emerald Group Publishing Limited,

2010.

[14] J. Fodor and A. Pylyshyn, �Connectionism and cognitive architecture:

A critical analysis,� Cognition, vol. 28, pp. 3�71, 1988.

[15] J. Pollack, �Connectionism: past, present, and future,� Arti�cial Intel-

ligence Review, vol. 3, no. 1, pp. 3�20, 1989.

[16] H. Dreyfus and S. Dreyfus, �Making a mind versus modeling the brain:

Arti�cial intelligence back at a branchpoint,� Daedalus, vol. 117, no. 1,

pp. 15�43, 1988.

[17] W. S. McCullah and W. Pitts, �A logical calculus of ideas immanent in

nervous activity,� Bulletin of Mathematical Biophysics, vol. 5, pp. 115�

133, 1943.

[18] J. Mira, �Symbols versus connections: 50 years of arti�cial intelligence,�

Neurocomputing, vol. 71, no. 4-6, pp. 671�680, 2008.

[19] D. Hebb, �The organisation of behaviour,� 1949.

[20] R. Kempter, W. Gerstner, and J. Van Hemmen, �Hebbian learning and

spiking neurons,� Physical Review E, vol. 59, no. 4, p. 4498, 1999.

[21] N. Doidge, The brain that changes itself: Stories of personal triumph

from the frontiers of brain science. Penguin Group USA, 2007.

BIBLIOGRAPHY 164

[22] W. Ashby, Design for a Brain. Chapman and Hall London, 1960.

[23] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the The-

ory of Brain Mechanisms. Spartan Books, Washington, DC, 1962.

[24] M. Minsky and S. Papert, �Perceptrons,� 1969.

[25] M. Lungarella, F. Iida, J. Bongard, and R. Pfeifer, 50 years of arti�-

cial intelligence: essays dedicated to the 50th anniversary of arti�cial

intelligence. Springer, 2007.

[26] P. Jackson, Introduction to expert systems. Addison-Wesley Longman

Publishing Co., Inc., 1990.

[27] R. Lindsay, B. Buchanan, E. Feigenbaum, J. Lederberg, P. Singapore,

and S. Toronto, �Applications of arti�cial intelligence for organic chem-

istry: The dendral project,� Structure, vol. 2, no. 2.7, pp. 2�8, 1980.

[28] R. Lindsay, B. Buchanan, E. Feigenbaum, and J. Lederberg, �Dendral:

a case study of the �rst expert system for scienti�c hypothesis forma-

tion,� Arti�cial Intelligence, vol. 61, no. 2, pp. 209�261, 1993.

[29] E. Shortli�e and B. Buchanan, Rule-based expert systems: the MYCIN

experiments of the Stanford Heuristic Programming Project. Addison-

Wesley, 1984.

[30] R. Duda, J. Gaschnig, and P. Hart, �Model design in the prospector

consultant system for mineral exploration,� Expert systems in the mi-

croelectronic age, pp. 153�167, 1979.

[31] J. Feldman and B. A, �Connectionist models and their properties,�

Cognitive Science, vol. 6, pp. 205�254, 1982.

[32] J. Hop�eld, �Neural networks and physical systems with emergent col-

lective computational abilities,� Proceedings of the national academy of

sciences, vol. 79, no. 8, p. 2554, 1982.

BIBLIOGRAPHY 165

[33] D. Parker, �Learning-logic (TR-47),� Center for Computational Re-

search in Economics and Management Science, MU, Cambridge, Mas-

sachusetts, 1985.

[34] P. Werbos, Beyond regression: New tools for prediction and analysis in

the behavioral sciences. Harvard University, 1974.

[35] Y. Le Cun, �A learning procedure for asymmetric threshold networks,�

Proc. Cognitiva, vol. 85, pp. 599�604, 1985.

[36] J. Hop�eld and D. Tank, �'Neural' computation of decisions in opti-

mization problems,� Biological cybernetics, vol. 52, no. 3, pp. 141�152,

1985.

[37] L. Steels and R. Brooks, The arti�cial life route to arti�cial intelli-

gence: Building embodied, situated agents. Lawrence Erlbaum Asso-

ciates, 1995.

[38] R. Pfeifer, J. Bongard, and S. Grand, How the body shapes the way we

think: a new view of intelligence. The MIT Press, 2007.

[39] C. Langton, Arti�cial life: An overview. The MIT Press, 1998.

[40] M. Wooldridge, �An introduction to multiagent systems. 2002,� West

Sussex, England: John Wiley and Sons Ltd, vol. 348, 2002.

[41] B. Chaib-Draa, B. Moulin, R. Mandiau, and P. Millot, �Trends in

distributed arti�cial intelligence,� Arti�cial Intelligence Review, vol. 6,

no. 1, pp. 35�66, 1992.

[42] N. Nilsson, �Two heads are better than one,� Sigart Newsletter, vol. 73,

p. 43, 1980.

[43] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from

natural to arti�cial systems. Oxford University Press, USA, 1999.

[44] J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelligence. San

Francisco ; London: Morgan Kaufmann Publishers, 2001.

BIBLIOGRAPHY 166

[45] J. G. Saxe, D. Lathen, and B. Chief, �The Blind Man and the Ele-

phant,� The Poems of John Godfrey Saxe, 1882.

[46] E. Bonabeau, M. Dorigo, and G. Theraulaz, �Inspiration for optimiza-

tion from social insect behaviour,� Nature, vol. 406, p. 3942, 2000.

[47] B. Holldobler and E. O. Wilson, The Ants. Springer-Verlag, 1990.

[48] L. J. Goodman and R. C. Fisher, The Behaviour and Physiology of

Bees. Oxon, UK: CAB International, 1991.

[49] T. D. Seeley, The Wisdom of the Hive. Harvard University Press, 1995.

[50] E. Wilson, Sociobiology: The new synthesis. Belknap Press, 1975.

[51] K. de Meyer, S. Nasuto, and J. Bishop, �Stochastic di�usion optimisa-

tion: the application of partial function evaluation and stochastic re-

cruitment in swarm intelligence optimisation,� Springer Verlag, vol. 2,

Chapter 12 in Abraham, A. and Grosam, C. and Ramos, V. (eds),

"Swarm intelligence and data mining", 2006.

[52] M. Moglich, U. Maschwitz, and B. Holldobler, �Tandem calling: A

new kind of signal in ant communication,� Science, vol. 186, no. 4168,

pp. 1046�1047, 1974.

[53] R. Chadab and C. Rettenmeyer, �Mass recruitment by army ants,�

Science, vol. 188, pp. 1124�1125, 1975.

[54] N. Monmarche, G. Venturini, and M. Slimane, �On how pachycondyla

apicalis ants suggest a new search algorithm,� Future Generation Com-

puter Systems, vol. 16, no. 9, pp. 937�946, 2000.

[55] J. Deneubourg, J. Pasteels, and J. Verhaeghe, �Probabilistic behaviour

in ants: a strategy of errors?,� in Journal of Theoretical Biology,

vol. 105, pp. 259�271, Elsevier, 1983.

BIBLIOGRAPHY 167

[56] H. Fan, Z. Hua, J. Li, and D. Yuan, �Solving a shortest path problem

by ant algorithm,� in Machine Learning and Cybernetics, 2004. Pro-

ceedings of 2004 International Conference on, vol. 5, pp. 3174�3177

vol.5, 2004.

[57] C. W. Reynolds, �Flocks, herds, and schools: A distributed behavioral

model,� Computer Graphics, vol. 21, no. 4, pp. 25�34, 1987.

[58] E. Shaw, �Fish in schools,� Natural History, vol. 84, no. 8, pp. 40�46,

1975.

[59] V. Sche�er, �Spires of Form: Glimpses of Evolution,� 1983.

[60] B. Partridge, �The structure and function of �sh schools,� Scienti�c

American, vol. 246, no. 6, pp. 114�123, 1982.

[61] T. Back, Evolutionary Algorithms in Theory and Practice. New York:

Oxford University Press, 1996.

[62] J. H. Holland, �Adaptation in natural and arti�cial systems,� Ann Ar-

bor, MI, University of Michigan press, 1975.

[63] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley Longman Publishing Co., Inc. Boston,

MA, USA, 1989.

[64] M. Dorigo, Optimization, learning and natural algorithms. PhD thesis,

Milano: Politecnico di Italy, 1992.

[65] M. Dorigo, V. Maniezzo, and A. Colorni, �Positive feedback as a search

strategy,� Dipartimento di Elettronica e Informatica, Politecnico di,

1991.

[66] M. Dorigo, G. D. Caro, and L. M. Gambardella, �Ant algorithms for

discrete optimization,� Arti�cial Life, vol. 5, no. 2, pp. 137�172, 1999.

[67] A. Colorni, M. Dorigo, V. Maniezzo, et al., �Distributed optimization

by ant colonies,� in Proceedings of the �rst European conference on

arti�cial life, vol. 142, pp. 134�142, 1991.

BIBLIOGRAPHY 168

[68] A. Colorni, M. Dorigo, and V. Maniezzo, �An investigation of some

properties of an ant algorithm,� in Proceedings of the Parallel Prob-

lem Solving from Nature Conference (PPSN 92), pp. 509�520, Elsevier

Publishing, 1992.

[69] M. Dorigo, V. Maniezzo, and A. Colorni, �Ant system: optimization by

a colony of cooperating agents,� Systems, Man, and Cybernetics, Part

B: Cybernetics, IEEE Transactions on, vol. 26, no. 1, pp. 29�41, 1996.

[70] V. Maniezzo and A. Colorni, �The ant system applied to the quadratic

assignment problem,� Knowledge and Data Engineering, IEEE Trans-

actions on, vol. 11, no. 5, pp. 769�778, 1999.

[71] L. Gambardella, E. Taillard, and M. Dorigo, �Ant colonies for the qap,�

IDSIA, Lugano, Switzerland, Tech. Rep. IDSIA, pp. 97�4, 1997.

[72] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of

Machine Intelligence. Piscataway, NJ: IEEE Press, 1995.

[73] M. M. Millonas, �Swarms,� Phase Transitions, and Collective Intelli-

gence. In Proceedings of Arti�cial Life III, 1994.

[74] M. M. al-Rifaie, M. Bishop, and A. Aber, �Creative or not? birds and

ants draw with muscles,� in AISB 2011: Computing and Philosophy,

(University of York, York, U.K.), pp. 23�30, 2011. ISBN: 978-1-908187-

03-1.

[75] M. M. al-Rifaie, A. Aber, and M. Bishop, �Cooperation of nature and

physiologically inspired mechanisms in visualisation,� in Biologically-

Inspired Computing for the Arts: Scienti�c Data through Graph-

ics (A. Ursyn, ed.), IGI Global, United States, 2012. ISBN13:

9781466609426, ISBN10: 1466609427.

[76] M. M. al-Rifaie, M. Bishop, and S. Caines, �Creativity and autonomy in

swarm intelligence systems,� in Cognitive Computation: Computational

Creativity, Intelligence and Autonomy (M. Bishop and Y. Erden, eds.),

Springer, 2012. DOI: 10.1007_s12559-012-9130-y.

BIBLIOGRAPHY 169

[77] M. Mitchell, An introduction to genetic algorithms, 1996. MIT press.

[78] D. E. Knuth, The art of computer programming. Vol. 3, Sorting and

Searching. Addison-Wesley Reading, MA, 1973.

[79] A. Neumaier, �Complete search in continuous global optimization and

constraint satisfaction,� Acta Numerica, vol. 13, no. 1, pp. 271�369,

2004.

[80] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of evolutionary

computation. IOP Publishing Ltd., 1997.

[81] J. Holland, �Outline for a logical theory of adaptive systems,� Journal

of the ACM (JACM), vol. 9, no. 3, pp. 297�314, 1962.

[82] J. Holland and J. Reitman, �Cognitive systems based on adaptive al-

gorithms,� ACM SIGART Bulletin, no. 63, pp. 49�49, 1977.

[83] K. De Jong, �Are genetic algorithms function optimizers?,� Parallel

problem solving from nature, vol. 2, pp. 3�14, 1992.

[84] K. De Jong, �Genetic algorithms are not function optimizers,� Founda-

tions of genetic algorithms, vol. 2, pp. 5�17, 1993.

[85] L. Fogel, �Autonomous automata,� Industrial Research, vol. 4, no. 2,

pp. 14�19, 1962.

[86] L. Fogel, On the organization of intellect. PhD thesis, UCLA- Engi-

neering, 1964.

[87] X. Yao and Y. Liu, �Fast evolutionary programming,� in Proceedings of

the Fifth Annual Conference on Evolutionary Programming, pp. 451�

460, Citeseer, 1996.

[88] I. Rechenberg, Evolutionsstrategie: Optimierung technischer Sys-

teme nach Prinzipien der biologischen Evolution, Fromman-Holzboog.

Stuttgart. German, 1973.

BIBLIOGRAPHY 170

[89] I. Rechenberg, Evolutionsstrategie'94, volume 1 of Werkstatt Bionik

und Evolutionstechnik. Frommann-Holzboog, Stuttgart, 1994.

[90] H. Schwefel, Evolutionsstrategie und numerische Optimierung, Technis-

che Universität Berlin, Fachbereich Verfahrenstechnik, Dr.-Ing. PhD

thesis, Dissertation, 1975.

[91] H. Schwefel, �Evolution and optimum seeking,� in Sixth-Generation

Computer Technology Series, Wiley, New York, 1995.

[92] K. de Meyer, J. M. Bishop, and S. J. Nasuto, �Stochastic di�usion:

Using recruitment for search,� Evolvability and interaction: evolution-

ary substrates of communication, signalling, and perception in the dy-

namics of social complexity (ed. P. McOwan, K. Dautenhahn & CL

Nehaniv) Technical Report, vol. 393, pp. 60�65, 2003.

[93] S. J. Nasuto, Resource Allocation Analysis of the Stochastic Di�usion

Search. PhD thesis, University of Reading, Reading, UK, 1999.

[94] S. J. Nasuto and J. M. Bishop, �Convergence analysis of stochastic dif-

fusion search,� Parallel Algorithms and Applications, vol. 14(2), 1999.

[95] D. R. Myatt, J. M. Bishop, and S. J. Nasuto, �Minimum stable con-

vergence criteria for stochastic di�usion search,� Electronics Letters,

vol. 40, no. 2, pp. 112�113, 2004.

[96] S. J. Nasuto, J. M. Bishop, and S. Lauria, �Time complexity of stochas-

tic di�usion search,� Neural Computation, vol. NC98, 1998.

[97] M. M. al-Rifaie and M. Bishop, �The mining game: a brief introduction

to the stochastic di�usion search metaheuristic,� The Society for the

Study of Arti�cial Intelligence and the Simulation of Behaviour Quar-

terly (AISBQ), vol. 130, 2010.

[98] M. J. Krieger, J. B. Billeter, and L. Keller, �Ant-like task allocation

and recruitment in cooperative robots.,� Nature, vol. 406, no. 6799,

pp. 992�5, 2000.

BIBLIOGRAPHY 171

[99] K. de Meyer, Foundations of Stochastic Di�usion Search. PhD thesis,

PhD thesis, University of Reading, Reading, UK, 2003.

[100] R. Whitaker and S. Hurley, �An agent based approach to site selection

for wireless networks,� in 1st IEE Conf. on Arti�cial Neural Networks,

(Madrid Spain), ACM Press Proc ACM Symposium on Applied Com-

puting, 2002.

[101] Y. Jin, �A comprehensive survey of �tness approximation in evolution-

ary computation,� In: Soft Computing, vol. 9, pp. 3�12, 2005.

[102] J. Branke, C. Schmidt, and H. Schmeck, �E�cient �tness estimation

in noisy environments,� In Spector, L., ed.: Genetic and Evolutionary

Computation Conference, Morgan Kaufmann, 2001.

[103] M. A. el Beltagy and A. J. Keane, �Evolutionary optimization for com-

putationally expensive problems using gaussian processes,� in Proc. Int.

Conf. on Arti�cial Intelligence'01, pp. 708�714, CSREA Press, 2001.

[104] J. Bishop and P. Torr, �The stochastic search network,� in Neural Net-

works for Images, Speech and Natural Language, (Chapman & Hall,

New York), pp. 370�387, 1992.

[105] K. de Meyer, M. Bishop, and S. Nasuto, �Small world e�ects in lattice

stochastic di�usion search,� in Proc. ICANN 2002, (Madrid, Spain),

pp. 147�152, Lecture Notes in Computer Science, 2415, 2002.

[106] S. Christensen and F. Oppacher, �What can we learn from no free

lunch? a �rst attempt to characterize the concept of a searchable

function,� in Proceedings of the Genetic and Evolutionary Computa-

tion Conference, pp. 1219�1226, 2001.

[107] S. J. Nasuto and M. J. Bishop, �Steady state resource allocation analy-

sis of the stochastic di�usion search,� Arxiv preprint cs/0202007, 2002.

[108] K. de Meyer, �Explorations in stochastic di�usion search: Soft-

and hardware implementations of biologically inspired spiking neuron

BIBLIOGRAPHY 172

stochastic di�usion networks,� Tech. Rep. KDM/JMB/2000/1, Univer-

sity of Reading, 2000.

[109] S. Nasuto and M. Bishop, �Stabilizing swarm intelligence search via

positive feedback resource allocation,� in Nature Inspired Cooperative

Strategies for Optimization (NICSO), Springer, 2007.

[110] D. Myatt, S. Nasuto, and J. Bishop, �Alternative recruitment strategies

for stochastic di�usion search,� Arti�cial Life X, Bloomington USA,

2006.

[111] J. Bishop, �Coupled stochastic di�usion processes,� in Proc. School

Conference for Annual Research Projects (SCARP), Reading, UK,

pp. 185�187, 2003.

[112] D. Myatt and J. Bishop, �Data driven stochastic di�usion networks for

robust high-dimensionality manifold estimation - more fun than you

can shake a hyperplane at,� in Proc. School Conference for Annual

Research Projects (SCARP), Reading, UK, 2003.

[113] M. A. Fischler and R. C. Bolles, �Random sample consensus: a

paradigm for model �tting with applications to image analysis and

automated cartography,� Communications of the ACM, vol. 24, no. 6,

pp. 381�395, 1981.

[114] J. Bishop, Anarchic Techniques for Pattern Classi�cation. PhD thesis,

University of Reading, Reading, UK, 1989.

[115] E. Grech-Cini, Locating Facial Features. PhD thesis, University of

Reading, Reading, UK, 1995.

[116] I. Aleksander and T. Stonham, �Computers and digital techniques

2(1),� Lect. Notes Art. Int 1562, pp. 29�40, 1979.

[117] P. Beattie and J. Bishop, �Self-localisation in the senario autonomous

wheelchair,� Journal of Intellingent and Robotic Systems, vol. 22,

pp. 255�267, 1998.

BIBLIOGRAPHY 173

[118] S. J. Nasuto, K. Dautenhahn, and J. Bishop, �Communication as an

emergent methaphor for neuronal operation,� Lect. Notes Art. Int 1562,

pp. 365�380, 1999.

[119] A. Hernandez-Carrascal and S. Nasuto, �A SWARM INTELLIGENCE

METHOD FOR FEATURE TRACKING IN AMV DERIVATION,�

Ninth International Wind Workshop, 2008.

[120] M. M. al-Rifaie, A. Aber, and R. Raisys, �Swarming robots and possible

medical applications,� in International Society for the Electronic Arts

(ISEA 2011), (Istanbul, Turkey), 2011.

[121] M. M. al-Rifaie, A. Aber, and M. Bishop, �Swarms search for cancer-

ous lesions: Arti�cial intelligence use for accurate identi�cation of bone

metastasis on bone scans,� The European Federation of National As-

sociations of Orthopaedics and Traumatology (EFORT), 13th EFORT

Congress, Berlin, Germany, 2012.

[122] K. de Meyer, �Explorations in stochastic di�usion search: Soft-

and hardware implementations of biologically inspired spiking neu-

ron stochastic di�usion networks,� tech. rep., Technical Report KD-

M/JMB/2000, 2000.

[123] R. Eberhart and J. Kennedy, �A new optimizer using particle swarm

theory,� in Proceedings of the sixth international symposium on micro

machine and human science, vol. 43, New York, NY, USA: IEEE, 1995.

[124] F. Heppner and U. Grenander, �A stochastic nonlinear model for co-

ordinated bird �ocks.,� American Association for the Advancement of

Science, Washington, DC(USA)., 1990.

[125] M. Mataric, Interaction and Intelligent Behavior. PhD thesis, Depart-

ment of Electrical, Electronics and Computer Engineering, MIT, USA,

1994.

[126] O. B. Bayazit, J.-M. Lien, and N. M. Amato, �Roadmap-based �ocking

for complex environments,� in PG '02: Proceedings of the 10th Paci�c

BIBLIOGRAPHY 174

Conference on Computer Graphics and Applications, (Washington, DC,

USA), p. 104, IEEE Computer Society, 2002.

[127] C. H. Janson, �Experimental evidence for spatial memory in forag-

ing wild capuchin monkeys,cebus apella,� Animal Behaviour, vol. 55,

pp. 1229�1243, 1998.

[128] J. Kennedy, �Thinking is social: Experiments with the adaptive culture

model,� Journal of Con�ict Resolution, vol. 42, pp. 56�76, 1998.

[129] L. Festinger, �A theory of social comparison processes,� Human rela-

tions, vol. 7, no. 2, pp. 117�140, 1954.

[130] R. C. Eberhart, P. K. Simpson, and R. Dobbins, Computational Intel-

ligence PC Tools. Boston: Academic Press, 1996.

[131] J. Kennedy, R. C. Eberhart, and Y. Shi, �Swarm intelligence,� San

Francisco: Morgan Kau�man, 2001.

[132] S. A. Kau�man, The Origins of Order: Self-organization and Selection

in Evolution (1993). New York: Oxford University Press, 1993.

[133] S. A. Kau�man, At home in the universe: The search for the laws of

self-organization and complexity. New York: Oxford University Press,

1995.

[134] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence.

Wiley, 2006.

[135] J. Kennedy, �Bare bones particle swarms,� in Proceedings of Swarm

Intelligence Symposium, 2003 (SIS'03), pp. 80�87, IEEE, 2003.

[136] R. Rucker, Seek! New York: Four Walls Eight Windows, 1999.

[137] T. Blackwell and D. Bratton, �Examination of particle tails,� in Journal

of Arti�cial Evolution and Applications, Hindawi Publishing Corpora-

tion, 2008.

BIBLIOGRAPHY 175

[138] F. V. den Bergh, An analysis of particle swarm optimizers. PhD thesis,

University of Pretoria, South Africa, 2002.

[139] T. Krink, J. S. Vesterstrom, and J. Riget, �Particle swarm optimisa-

tion with spatial particle extension,� in Proceedings of the Evolutionary

Computation on 2002. CEC '02., (Washington, DC, USA), pp. 1474�

1479, IEEE Computer Society, 2002.

[140] M. Omran, A. Salman, and A. P. Engelbrecht, �Image classi�cation

using particle swarm optimization,� in Proceedings of the 4th Asia-

paci�c Conference on Simulated Evolution and Learning, pp. 370�374,

2002.

[141] Y. Shi and R. C. Eberhart, �Parameter selection in particle swarm

optimization,� Lecture notes in computer science, pp. 591�600, 1998.

[142] Eberhart and Y. Shi, �Particle swarm optimization: developments, ap-

plications and resources,� in Proceedings of the 2001 Congress on Evo-

lutionary Computation, 2001., vol. 1, pp. 81�86 vol. 1, 2001.

[143] Y. Shi and R. C. Eberhart, �A modi�ed particle swarm optimizer,�

in Proceedings of the IEEE International Conference on Evolutionary

Computation, (Piscataway, NJ), pp. 69�73, IEEE Press, 1998.

[144] J. F. Schutte and A. A. Groenwold, �Sizing design of truss structures

using particle swarms,� Structural and Multidisciplinary Optimization,

vol. 25, pp. 261�269, October 2003.

[145] P. C. Fourie and A. A. Groenwold, �The particle swarm optimization

algorithm in size and shape optimization,� Structural and Multidisci-

plinary Optimization, vol. 23, no. 4, pp. 259�267, 2002.

[146] M. Clerc, �The swarm and the queen: towards a deterministic and

adaptive particle swarm optimization,� in Proceedings of the 1999

Congress on Evolutionary Computation, 1999. CEC 99., vol. 3, p. 1957

Vol. 3, 1999.

BIBLIOGRAPHY 176

[147] M. Clerc and J. Kennedy, �The particle swarm-explosion, stability, and

convergence in amultidimensional complex space,� Evolutionary Com-

putation, IEEE Transactions on, vol. 6, no. 1, pp. 58�73, 2002.

[148] J. C. Anthony, Applying the Particle Swarm Optimizer to Non-

Stationary Environments. PhD thesis, Auburn University, 2002.

[149] R. Brits, A. P. Engelbrecht, and F. van den Bergh, �A niching parti-

cle swarm optimizer,� Proceedings of the 4th Asia-Paci�c Conference

on Simulated Evolution and Learning (SEAL'02), vol. 2, pp. 692�696,

2002.

[150] R. Brits, �Niching strategies for particle swarm optimization,� Mas-

ter's thesis, Department of Computer Science, University of Pretoria,

Pretoria, South Africa, 2002.

[151] R. J. W. Hodgson, �Partical swarm optimization applied to the atomic

cluster optimization problem,� in GECCO 2002, pp. 68�73, 2002.

[152] A. P. Engelbrecht and A. Ismail, �Training product unit neural net-

works,� Stability and Control: Theory and Applications, vol. 2, no. 1-2,

pp. 59�74, 1999.

[153] D. Bratton and J. Kennedy, �De�ning a standard for particle swarm op-

timization,� in Proc of the Swarm Intelligence Symposium, (Honolulu,

Hawaii, USA), pp. 120�127, IEEE, 2007.

[154] J. Kennedy, �The particle swarm: social adaptation of knowledge,�

Evolutionary Computation, 1997., IEEE International Conference on,

pp. 303�308, 1997.

[155] A. Carlisle and G. Dozier, �Adapting particle swarm optimization to

dynamic environments,� International Conference on Arti�cial Intelli-

gence, vol. 1, pp. 429�434, 2000.

[156] F. van den Bergh and A. P. Engelbrecht, �E�ects of swarm size on

cooperative particle swarm optimisers,� Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO), 2001.

BIBLIOGRAPHY 177

[157] J. Kennedy, �Small worlds and mega-minds: e�ects of neighborhood

topology on particle swarm performance,� in In: Proceedings of the

1999, Congress of Evolutionary Computation, vol. 3, pp. 1931�1938,

IEEE Press, 1999.

[158] J. Kennedy and R. Mendes, �Population structure and particle swarm

performance,� in Proceedings of the 2002 Congress of the Evolutionary

Computation on 2002. CEC '02., (Washington, DC, USA), pp. 1671�

1676, IEEE Computer Society, 2002.

[159] R. Mendes, P. Cortez, M. Rocha, and J. Neves, �Particle swarms

for feedforward neural network training,� in Proceedings of the 2002

Congress of the Evolutionary Computation on 2002. CEC '02, vol. 2,

(Honolulu, Havai, USA), pp. 1895�1899, International Joint Conference

On Neural Networks (IJCNN), 2002.

[160] A. Carlisle and G. Dozier, �An o�-the-shelf pso,� Proceedings of the

Workshop on Particle Swarm Optimization, vol. 1, pp. 1�6, 2001.

[161] E. Ozcan and C. K. Mohan, �Analysis of a simple particle swarm op-

timization system,� Intelligent Engineering Systems Through Arti�cial

Neural Networks, vol. 8, pp. 253�258, 1998.

[162] E. Ozcan and C. K. Mohan, �Particle swarm optimization: sur�ng the

waves,� Proceedings of the 1999 Congress on Evolutionary Computa-

tion, 1999. CEC 99., vol. 3, 1999.

[163] F. van den Bergh and E. A. P., �A study of particle swarm optimization

particle trajectories,� Information Sciences, vol. 176, no. 8, pp. 937�

971, 2006.

[164] X. F. Xie, W. J. Zhang, and Z. L. Yang, �Hybrid particle swarm op-

timizer with mass extinction,� IEEE 2002 International Conference

on Communications, Circuits and Systems and West Sino Expositions,

vol. 2, 2002.

BIBLIOGRAPHY 178

[165] X. F. Xie, W. J. Zhang, and Z. L. Yang, �Adaptive particle swarm opti-

mization on individual level,� Signal Processing, 2002 6th International

Conference on, vol. 2, 2002.

[166] X. F. Xie, W. J. Zhang, and Z. L. Yang, �A dissipative particle swarm

optimization,� Arxiv preprint cs.NE/0505065, 2005.

[167] A. GIUNTA, V. BALABANOV, D. HAIM, B. GROSSMAN, W. MA-

SON, L. WATSON, and R. HAFTKA, �Multidisciplinary optimisation

of a supersonic transport using design of experiments theory and re-

sponse surface modelling,� Aeronautical Journal, vol. 101, no. 1008,

pp. 347�356, 1997.

[168] G. Venter and J. Sobieszczanski-Sobieski, �Particle swarm optimiza-

tion,� American Institute of Aeronautics and Astronautics (AIAA),

vol. 41, no. 8, pp. 1583�1589, 2003.

[169] M. Lovbjerg, �Improving particle swarm optimization by hybridization

of stochastic search heuristics and self-organized criticality,� 2002.

[170] M. Lovbjerg and T. Krink, �Extending particle swarm optimisers with

self-organized criticality,� Proceedings of the 2002 Congress on Evolu-

tionary Computation, 2002. CEC'02., vol. 2, 2002.

[171] M. Middendorf, F. Reischle, and H. Schmeck, �Information exchange

in multi colony ant algorithms,� LECTURE NOTES IN COMPUTER

SCIENCE, pp. 645�652, 2000.

[172] M. Middendorf, F. Reischle, and H. Schmeck, �Multi colony ant algo-

rithms,� Journal of Heuristics, vol. 8, no. 3, pp. 305�320, 2002.

[173] T. G. Crainic, M. Toulouse, and M. Gendreau, �Synchronous tabu

search parallelization strategies for multicommodity location-allocation

with balancing requirements,� OR Spectrum, vol. 17, no. 2, pp. 113�

123, 1995.

BIBLIOGRAPHY 179

[174] T. G. Crainic and M. Gendreau, �Cooperative parallel tabu search

for capacitated network design,� Journal of Heuristics, vol. 8, no. 6,

pp. 601�627, 2002.

[175] E. Cantu-Paz, �A survey of parallel genetic algorithms,� Calculateurs

Paralleles, Reseaux et Systems Repartis, vol. 10, no. 2, pp. 141�171,

1998.

[176] M. Nowostawski and R. Poli, �Parallel genetic algorithm taxonomy,� in

Knowledge-Based Intelligent Information Engineering Systems, 1999.

Third International Conference, pp. 88�92, 1999.

[177] F. van den Bergh and A. P. Engelbrecht, �A cooperative approach to

particle swarm optimization,� Evolutionary Computation, IEEE Trans-

actions on, vol. 8, no. 3, pp. 225�239, 2004.

[178] S. Baskar and P. N. Suganthan, �A novel concurrent particle swarm

optimization,� in Congress on Evolutionary Computation, 2004.

CEC2004., vol. 1, 2004.

[179] M. el Abd and M. S. Kamel, �A taxonomy of cooperative particle swarm

optimizers,� International Journal of Computational Intelligence Re-

search, vol. 4, no. 2, pp. 137�144, 2008.

[180] M. A. Potter and K. A. D. Jong, �A cooperative coevolutionary

approach to function optimization,� LECTURE NOTES IN COM-

PUTER SCIENCE, pp. 249�249, 1994.

[181] T. Peram, K. Veeramachaneni, and C. K. Mohan, �Fitness-distance-

ratio based particle swarm optimization,� in Swarm Intelligence Sym-

posium, 2003. SIS'03. Proceedings of the 2003 IEEE, pp. 174�181, 2003.

[182] M. el Abd and M. Kamel, �A hierarchal cooperative particle swarm

optimizer,� in In Proc. IEEE swarm intelligence symposium, 2006.

[183] B. Niu, Y. Zhu, and X. He, �Multi-population cooperative particle

swarm optimization,� LECTURE NOTES IN COMPUTER SCIENCE,

vol. 3630, pp. 874�883, 2005.

BIBLIOGRAPHY 180

[184] J. J. Liang and P. N. Suganthan, �Dynamic multi-swarm particle swarm

optimizer,� in Swarm Intelligence Symposium, 2005. SIS 2005. Proceed-

ings 2005 IEEE, pp. 124�129, 2005.

[185] T. Blackwell and J. Branke, �Multi-swarm optimization in dy-

namic environments,� LECTURE NOTES IN COMPUTER SCI-

ENCE, vol. 3005, pp. 489�500, 2004.

[186] R. Poli, �Analysis of the publications on the applications of particle

swarm optimisation,� Journal of Arti�cial Evolution and Applications,

vol. 2008, p. 3, 2008.

[187] R. Poli, �An analysis of publications on particle swarm optimization

applications,� Essex, UK: Department of Computer Science, University

of Essex, 2007.

[188] Y. Kim, S. Keely, J. Ghosh, and H. Ling, �Application of arti�cial

neural networks to broadband antenna design based on a parametric

frequency model,� Antennas and Propagation, IEEE Transactions on,

vol. 55, no. 3, pp. 669�674, 2007.

[189] R. Azaro, F. De Natale, M. Donelli, A. Massa, and E. Zeni, �Op-

timized design of a multifunction/multiband antenna for automotive

rescue systems,� Antennas and Propagation, IEEE Transactions on,

vol. 54, no. 2, pp. 392�400, 2006.

[190] J. Perez and J. Basterrechea, �Comparison of di�erent heuristic opti-

mization methods for near-�eld antenna measurements,� Antennas and

Propagation, IEEE Transactions on, vol. 55, no. 3, pp. 549�555, 2007.

[191] S. Selvan, C. Xavier, N. Karssemeijer, J. Sequeira, R. Cherian, and

B. Dhala, �Parameter estimation in stochastic mammogram model

by heuristic optimization techniques,� Information Technology in

Biomedicine, IEEE Transactions on, vol. 10, no. 4, pp. 685�695, 2006.

[192] K. Veeramachaneni, L. Osadciw, and P. Varshney, �An adaptive mul-

timodal biometric management algorithm,� Systems, Man, and Cy-

BIBLIOGRAPHY 181

bernetics, Part C: Applications and Reviews, IEEE Transactions on,

vol. 35, no. 3, pp. 344�356, 2005.

[193] J. Heo, K. Lee, and R. Garduno-Ramirez, �Multiobjective control of

power plants using particle swarm optimization techniques,� Energy

Conversion, IEEE Transactions on, vol. 21, no. 2, pp. 552�561, 2006.

[194] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi,

�A particle swarm optimization for reactive power and voltage control

considering voltage security assessment,� Power Systems, IEEE Trans-

actions on, vol. 15, no. 4, pp. 1232�1239, 2000.

[195] S. Kannan, S. Slochanal, and N. Padhy, �Application and comparison of

metaheuristic techniques to generation expansion planning problem,�

Power Systems, IEEE Transactions on, vol. 20, no. 1, pp. 466�475,

2005.

[196] M. Donelli and A. Massa, �Computational approach based on a particle

swarm optimizer for microwave imaging of two-dimensional dielectric

scatterers,� Microwave Theory and Techniques, IEEE Transactions on,

vol. 53, no. 5, pp. 1761�1776, 2005.

[197] T. Huang and A. Mohan, �A microparticle swarm optimizer for the

reconstruction of microwave images,� Antennas and Propagation, IEEE

Transactions on, vol. 55, no. 3, pp. 568�576, 2007.

[198] M. Wachowiak, R. Smolíková, Y. Zheng, J. Zurada, and A. El-

maghraby, �An approach to multimodal biomedical image registra-

tion utilizing particle swarm optimization,� Evolutionary Computation,

IEEE Transactions on, vol. 8, no. 3, pp. 289�301, 2004.

[199] Y. Song, Z. Chen, and Z. Yuan, �New chaotic pso-based neural net-

work predictive control for nonlinear process,� Neural Networks, IEEE

Transactions on, vol. 18, no. 2, pp. 595�601, 2007.

[200] C. Juang, �A hybrid of genetic algorithm and particle swarm optimiza-

tion for recurrent network design,� Systems, Man, and Cybernetics,

BIBLIOGRAPHY 182

Part B: Cybernetics, IEEE Transactions on, vol. 34, no. 2, pp. 997�

1006, 2004.

[201] G. Venayagamoorthy and W. Zha, �Comparison of nonuniform optimal

quantizer designs for speech coding with adaptive critics and particle

swarm,� Industry Applications, IEEE Transactions on, vol. 43, no. 1,

pp. 238�244, 2007.

[202] C. Juang and C. Hsu, �Temperature control by chip-implemented adap-

tive recurrent fuzzy controller designed by evolutionary algorithm,�

Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 52,

no. 11, pp. 2376�2384, 2005.

[203] B. Liu, L. Wang, and Y. Jin, �An e�ective pso-based memetic algorithm

for �ow shop scheduling,� Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, vol. 37, no. 1, pp. 18�27, 2007.

[204] A. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi, �A particle-

swarm-optimized fuzzy-neural network for voice-controlled robot sys-

tems,� Industrial Electronics, IEEE Transactions on, vol. 52, no. 6,

pp. 1478�1489, 2005.

[205] R. Thomsen, �Flexible ligand docking using evolutionary algorithms:

investigating the e�ects of variation operators and local search hybrids,�

Biosystems, vol. 72, no. 1-2, pp. 57�73, 2003.

[206] J. Vesterstrom and R. Thomsen, �A comparative study of di�erential

evolution, particle swarm optimization, and evolutionary algorithms on

numerical benchmark problems,� in Evolutionary Computation, 2004.

CEC2004. Congress on, vol. 2, pp. 1980�1987, 2004.

[207] R. Storn and K. Price, �Di�erential evolution - a simple

and e�cient adaptive scheme for global optimization over

continuous spaces,� 1995. TR-95-012, [online]. Available:

http://www.icsi.berkeley.edu/ storn/litera.html.

BIBLIOGRAPHY 183

[208] R. Storn and K. Price, �Di�erential evolution - a simple and e�cient

heuristic for global optimization over continuous spaces,� J. Global Op-

tim., vol. 11, pp. 341�359, 1997.

[209] D. Tasoulis, N. Pavlidis, V. Plagianakos, and M. Vrahatis, �Paral-

lel di�erential evolution,� in Congress on Evolutionary Computation

CEC2004., vol. 2, pp. 2023�2029, IEEE, 2004.

[210] K. Kozlov and A. Samsonov, �New migration scheme for parallel dif-

ferential evolution,� in Proceedings of the international conference on

bioinformatics of genome regulation and structure, pp. 141�144, 2006.

[211] M. Tasgetiren and P. Suganthan, �A multi-populated di�erential evolu-

tion algorithm for solving constrained optimization problem,� in IEEE

Congress on Evolutionary Computation CEC2006., pp. 33�40, IEEE,

2006.

[212] R. Mendes and A. Mohais, �DynDE: a di�erential evolution for dy-

namic optimization problems,� in The 2005 IEEE Congress on Evolu-

tionary Computation CEC2005., vol. 3, pp. 2808�2815, IEEE, 2005.

[213] J. Brest, A. Zamuda, B. Boskovic, M. Maucec, and V. Zumer, �Dy-

namic optimization using self-adaptive di�erential evolution,� in IEEE

Congress on Evolutionary Computation, 2009. CEC'09., pp. 415�422,

IEEE, 2009.

[214] T. Smuc, �Improving convergence properties of the di�erential evolu-

tion algorithm,� in Proceedings of the MENDEL 2002 - 8th Interna-

tional Conference on Soft Computing, pp. 80�86, 2002.

[215] M. Weber, F. Neri, and V. Tirronen, �Parallel Random Injection Di�er-

ential Evolution,� Applications of Evolutionary Computation, pp. 471�

480, 2010.

[216] J. Zhang and A. Sanderson, �JADE: adaptive di�erential evolution with

optional external archive,� Evolutionary Computation, IEEE Transac-

tions on, vol. 13, no. 5, pp. 945�958, 2009.

BIBLIOGRAPHY 184

[217] V. Huang, P. Suganthan, A. Qin, and S. Baskar, �Multiobjective dif-

ferential evolution with external archive and harmonic distance-based

diversity measure,� School of Electrical and Electronic Engineering

Nanyang, Technological University Technical Report, 2005.

[218] D. Zaharie, �Control of population diversity and adaptation in di�eren-

tial evolution algorithms,� in Proceedings of the MENDEL 2003 - 9th

International Conference on Soft Computing, pp. 41�46, 2003.

[219] M. Omran, I. Moukadem, S. al-Sharhan, and M. Kinawi, �Stochas-

tic di�usion search for continuous global optimization,� International

Conference on Swarm Intelligence (ICSI 2011), Cergy, France, 2011.

[220] M. Clerc, �From theory to practice in particle swarm optimization,�

Handbook of Swarm Intelligence, pp. 3�36, 2010.

[221] I. C. Trelea, �The particle swarm optimization algorithm: conver-

gence analysis and parameter selection,� Information Processing Let-

ters, vol. 85, no. 6, pp. 317�325, 2003.

[222] Y. L. Zheng, L. H. Ma, L. Y. Zhang, and J. X. Qian, �On the conver-

gence analysis and parameter selection in particle swarm optimization,�

International Conference on Machine Learning and Cybernetics, vol. 3,

2003.

[223] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, �Lipschitzian op-

timization without the lipschitz constant,� J. Optim. Theory Appl.,

vol. 79, no. 1, pp. 157�181, 1993.

[224] K. A. D. Jong, An analysis of the behavior of a class of genetic adaptive

systems. PhD thesis, University of Michigan, Ann Arbor, MI, USA,

1975.

[225] D. Gehlhaar and D. Fogel, �Tuning evolutionary programming for con-

formationally �exible molecular docking,� in Evolutionary Program-

ming V: Proc. of the Fifth Annual Conference on Evolutionary Pro-

gramming, pp. 419�429, 1996.

BIBLIOGRAPHY 185

[226] M. M. al-Rifaie, M. Bishop, and T. Blackwell, �An investigation into the

merger of stochastic di�usion search and particle swarm optimisation,�

in GECCO '11: Proceedings of the 2011 GECCO conference companion

on Genetic and evolutionary computation, (Dublin, Ireland), pp. 37�44,

ACM, 2011.

[227] M. M. al-Rifaie, M. Bishop, and T. Blackwell, �Resource allocation

and dispensation impact of stochastic di�usion search on di�erential

evolution algorithm; in,� in Nature Inspired Cooperative Strategies for

Optimisation (NICSO 2011), Springer, 2011.

[228] M. M. al-Rifaie, M. Bishop, and T. Blackwell, �Information sharing im-

pact of stochastic di�usion search on di�erential evolution algorithm,�

in Journal of Memetic Computing: Nature Inspired Cooperative Strate-

gies for Optimization (D. Pelta and et al, eds.), Springer Berlin Hei-

delberg, 2012. submitted.

[229] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger,

and S. Tiwari, �Problem de�nitions and evaluation criteria for the

CEC 2005 special session on real-parameter optimization,� tech. rep.,

Nanyang Technological University, Singapore and Kanpur Genetic Al-

gorithms Laboratory, IIT Kanpur, 2005.

Appendix A

Publications

The following publications were derived from or in�uenced by this work.

• M. M. al-Rifaie and M. Bishop, The mining game: a brief introduction

to the stochastic di�usion search metaheuristic, The Society for the

Study of Arti�cial Intelligence and the Simulation of Behaviour Quar-

terly (AISBQ), vol. 130, 2010.

• M. M. al-Rifaie, M. Bishop, and A. Aber, Creative or not? birds and

ants draw with muscles, In Proc of the AISB 2011: Computing and

Philosophy, University of York, York, U.K., pp. 23-30, 2011. ISBN:

978-1-908187- 03-1.

• M. M. al-Rifaie, A. Aber, and M. Bishop, Cooperation of nature and

physiologically inspired mechanisms in visualisation, Chapter In Biologically-

Inspired Computing for the Arts: Scienti�c Data through Graphics (A.

Ursyn, ed.), IGI Global, United States, 2012. ISBN13: 9781466609426,

ISBN10: 1466609427.

• M. M. al-Rifaie, M. Bishop, and T. Blackwell, An investigation into the

merger of stochastic di�usion search and particle swarm optimisation,

In Proc of the GECCO '11: Proceedings of the 2011 GECCO conference

companion on Genetic and evolutionary computation, Dublin, Ireland,

pp. 37-44, ACM, 2011.

186

APPENDIX A. PUBLICATIONS 187

• M. M. al-Rifaie, A. Aber, and R. Raisys, Swarming robots and possi-

ble medical applications, In Proc of the International Society for the

Electronic Arts (ISEA 2011), Istanbul, Turkey, 2011.

• M. M. al-Rifaie, M. Bishop, and T. Blackwell, Resource allocation and

dispensation impact of stochastic di�usion search on di�erential evo-

lution algorithm, In Proc of the Nature Inspired Cooperative Strategies

for Optimisation (NICSO 2011), Studies in Computational Intelligence.

Springer, 2011.

• M. M. al-Rifaie, M. Bishop, and T. Blackwell, An investigation into the

use of swarm intelligence for an evolutionary algorithm optimisation,

In Proc of the International Conference on Evolutionary Computation

Theory and Application (ECTA 2011), Paris, France, 2011.

• M. M. al-Rifaie and M. Bishop, and T. Blackwell, Information Ex-

change In Population-Based Algorithms, The Society for the Study

of Arti�cial Intelligence and the Simulation of Behaviour Quarterly

(AISBQ), vol. 134, 2011.

• A. Aber, M. M. al-Rifaie and M. Bishop, Swarms Search for Cancerous

Lesions: Arti�cial Intelligence Use for Accurate Identi�cation of Bone

Metastasis on Bone Scans, The European Federation of National As-

sociations of Orthopaedics and Traumatology (EFORT), 13th EFORT

Congress, Berlin, Germany, 2012.

• M. M. al-Rifaie, M. Bishop, and S. Caines, Creativity and Autonomy

in Swarm Intelligence Systems, In Journal of Cognitive Computation:

Computational Creativity, Intelligence and Autonomy (M. Bishop and

Y. Erden, eds.), Springer, 2012.

• M. M. al-Rifaie, M. Bishop, and T. Blackwell, Information sharing im-

pact of stochastic di�usion search on di�erential evolution algorithm,

In Journal of Memetic Computing (D. Pelta and et al, eds.), Studies

in Computational Intelligence and Complexity. Springer., 2012. (sub-

mitted)

Appendix B

The Blind Men and the

Elephant

It was six wise men of Indostan

To learning much inclined,

Who went to see the Elephant � (though all of them were blind),

That each by observation�might satisfy his mind.

The First approached the Elephant,

And happening to fall

Against his broad and sturdy side�At once began to bawl:

�God bless me! But the Elephant�Is very like a wall!

The Second, feeling of the tusk,

Cried, �Ho! What have we here?

So very round and smooth and sharp � To me `tis mighty clear

This wonder of an Elephant � Is very like a spear.

The Third approached the animal,

And happening to take

The squirming trunk within his hands, � Thus boldly up and

spake:

�I see,� quote he, �the Elephant�Is very like a snake!�

The fourth reached out his eager hand,

188

APPENDIX B. THE BLIND MEN AND THE ELEPHANT 189

Figure B.1: The blind men and the elephant

Source: From Charles Maurice Stebbins & Mary H. Coolidge, Golden Treasury Readers:

Primer, American Book Co. (New York), p. 89

And felt about the knee:

"What most this wondrous beast is like, is mighty plain," quoth

he;

"Tis clear enough the elephant is very like a tree."

The Fifth who chanced to touch the ear,

Said: �Even the blindest man

Can tell what this resembles most; � Deny the fact who can,

This marvel of an Elephant � Is very like a fan!�

The Sixth no sooner had begun

About the beast to grope,

Than seizing on the swinging tail �That fell within his scope,

�I see�, said he, �the Elephant � Is very like a rope!

And so these men of Indostan Disputed loud and long, Each in his

own opinion �Exceeding sti� and strong Though each was partly

in the right �And all were in the wrong!

John Godfrey Saxe

Appendix C

The Restaurant Game

�A group of delegates attends a long conference in an unfamiliar town. Each

night they have to �nd somewhere to dine. There is a large choice of restau-

rants, each of which o�ers a large variety of meals. The problem the group

faces is to �nd the best restaurant, that is the restaurant where the max-

imum number of delegates would enjoy dining. Even a parallel exhaustive

search through the restaurant and meal combinations would take too long to

accomplish. To solve the problem delegates decide to employ a Stochastic

Di�usion Search.

Each delegate acts as an agent maintaining a hypothesis identifying the best

restaurant in town. Each night each delegate tests his hypothesis by dining

there and randomly selecting one of the meals on o�er. The next morning

at breakfast every delegate who did not enjoy his meal the previous night,

asks one randomly selected colleague to share his dinner impressions. If the

experience was good, he also adopts this restaurant as his choice. Otherwise

he simply selects another restaurant at random from those listed in `Yellow

Pages'.

Using this strategy it is found that very rapidly signi�cant number of dele-

gates congregate around the best restaurant in town.� [51]

There is however a pitfall in this metaphor which is illustrated in the following

scenario:

190

APPENDIX C. THE RESTAURANT GAME 191

In a pathological case, consider two diners (D1 and D2) with two restaurants

(R1 and R2) in the town, each serving just one meal. Also it is known that:

• diner D1 likes both of the meals at restaurant R1 and R2,

• but diner D2 only enjoys the meal at restaurant R2.

In this case, if

• diner D1 initially chooses restaurant R1 for his meal

• and diner D2 chooses R2,

neither will ever leave the restaurants of their choice.

Therefore, since diner D1 never leaves R1, the diners will never converge on

restaurant R2, where most of the diners enjoy having their meals in.

	Introduction
	Objectives and Methodology
	Chapter Overview

	Artificial Intelligence and Swarm Intelligence
	Artificial Intelligence
	Connectionist vs. Symbolic AI
	Multi-Agent Systems

	Swarm Intelligence
	Swarm Intelligence in Nature
	Communication in Ants and Bees
	Flocking, Schooling and Herding

	Swarm Intelligence Algorithms

	Optimisation
	Optimisation and Search
	Global Optimisation
	Evolutionary Optimisation

	Summary

	Stochastic Diffusion Search
	The Mining Game
	Refinements in the Metaphor

	SDS Architecture
	Search Example One
	Search Example Two
	Initialisation and Termination
	Partial Function Evaluation
	Convergence
	Resource Allocation and Stability

	Variations in SDS and Recruitment Strategies
	Passive Recruitment Mode
	Active Recruitment Mode
	Dual Recruitment Mode
	Context Sensitive Mechanism
	Context Free Mechanism
	Synchronous and Asynchronous Update
	Composite Hypotheses
	Data Driven SDS
	Coupled SDS

	Applications

	Population-Based Optimisers
	Particle Swarm Optimisation
	PSO Algorithm
	Standard PSO
	Stopping Condition
	Particles Initialisation
	Interactivity and Diversity

	PSO Parameters and Variations
	Velocity Clamping
	Inertia Weight
	Acceleration Coefficients
	Constriction Coefficient
	Velocity Models
	Swarm Size
	Network Topologies
	Synchronous and Asynchronous Updates

	Understanding PSO
	Random-Restart PSO Algorithms
	Cooperative Particle Swarm Optimiser

	Applications

	Genetic Algorithm
	Differential Evolution Algorithm
	Summary

	SDS as Global Optimiser
	The Coupled Algorithm
	Test and Diffusion Phases in the Coupled Algorithm
	Experiments
	Performance Measures
	Experiment Setup
	Results

	Summary

	Bare Bones with Jumps PSO
	Bare Bones PSO
	Bare Bones with Jumps PSO
	Experiments
	Experiment Setup
	Results

	Summary

	Merging SDS with PSO and DE
	Merging SDS with PSO
	Experiments
	Experiment Setup
	Results

	Merging SDS with DE
	Experiments
	Experiment Setup
	Results

	Discussion
	Modified SDSnPSO Algorithm
	Modified SDSnDE Algorithm

	Summary

	Generalised Hybridisation Strategy
	Hybridisation Strategy
	Test and Diffusion Phases in the Hybrid Algorithms
	Experiments
	Experiment Setup
	Results

	Discussion
	Observations
	Summary

	Conclusions and Future Work
	Summary
	Future Work

	Publications
	The Blind Men and the Elephant
	The Restaurant Game

