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Abstract

Swarm intelligence via its infamous struggle to identify
a suitable balance between exploration and exploitation
phases, provides a valuable mean to approach artificial
creativity. This work deploys two swarm intelligence al-
gorithms, one simulating the behaviour of birds flock-
ing and fish schooling (Particle Swarm Optimisation)
and the other mimicking the behaviour of ants forag-
ing (Stochastic Diffusion Search) in order to lay the
foundation for a discussion addressing the concepts of
freedomandconstraintwithin the topic of creativity in
general, and more specifically their impact on the artifi-
cial creativity of the underlying systems. An analogy is
drawn on mapping these two ‘prerequisites’ of creativ-
ity onto the two well-known aforementioned phases of
exploration and exploitation in swarm intelligence algo-
rithms. This is accompanied by the visualisation of the
behaviour of the swarms whose performance are eval-
uated in the context of the arguments presented. Addi-
tionally in the spirit of Searle’s definition of weak and
strong artificial intelligence, a discussion on weak vs.
strong artificial creativity in swarm intelligence systems
is presented.

1 Introduction
Communication – social interaction or information ex-
change – observed in social insects and social animals plays
a significant role in all swarm intelligence algorithms, in-
cluding SDS and PSOs. Although in nature it is not only
the syntactical information that is exchanged between the
individuals but also semantic rules and beliefs about how to
process this information (Kennedy, Eberhart, and Shi 2001),
in typical swarm intelligence algorithms only the syntactical
exchange of information is taken into account.

In the study of the interaction of social insects, two im-
portant elements are the individuals and the environment,
which result in two integration schemes: the first is the way
in which individuals self-interact (interact with each other)
and the second is the interaction of the individuals with the
environment (Bonabeau, Dorigo, and Theraulaz 2000). Self-
interaction between individuals is carried out through re-
cruitment strategies and it has been demonstrated that, typ-
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ically, various recruitment strategies are used by ants (Holl-
dobler and Wilson 1990) and honey bees. These recruitment
strategies are used to attract other members of the society to
gather around one or more desired areas, either for foraging
purposes or for moving to a new nest site.

The parable of the ‘Blind Men and the Elephant’ sug-
gests how social interactions can lead to more intelligent be-
haviour; this famous tale, set in verse by John Godfrey Saxe
(Saxe, Lathen, and Chief 1882) in the 19th century, charac-
terises six blind men approaching an elephant. They end up
having six different ideas about the elephant, as each person
has experienced only one aspect of the elephant’s body: wall
(elephant’s side), spear (tusk), snake (trunk), tree (knee), fan
(ear) and rope (tail). The moral of the story is to show how
people build their beliefs by drawing them from incomplete
information, derived from incomplete knowledge about the
world (Kennedy, Eberhart, and Shi 2001). If the blind men
had been communicating about what they were experienc-
ing, they would have possibly come up with the conclusion
that they were exploring the heterogeneous qualities that
make up an elephant.

This paper uses two swarm intelligence algorithms
(i.e. Particle Swarm Optimisation and Stochastic Diffusion
Search) to present its argument. The scientific merits and
technical details of the two swarm intelligence algorithms
as well as their integration strategy are discussed in an
earlier research (al-Rifaie, Bishop, and Blackwell 2011;
al-Rifaie, Aber, and Bishop 2012).

The performance of the swarms herein illustrates the im-
pact of freedom and constraint on the concept of ‘creativity’.
This work also addresses the issue of weak verses strong ar-
tificial creativity.

2 On Creativity, Art and Freedom

For many years there has been discussions on the relation-
ship between art, creativity and freedom; a debate elegantly
encapsulated in the famous German prose by Ludwig Hevesi
at the entrance of the Secession Building in Vienna:

“Der Zeit ihre Kunst
Der Kunst ihre Freiheit”

That is: “To Time its Art; To Art its Freedom”.



Which, centuries after, resonates an earlier observation
from Aristotle (384-322 BCE) (Etzioni et al. 2007) empha-
sising the importance of freedom (here, having “a tincture of
madness”) in presenting a creative act.

“There was never a genius without a tincture of
madness.”

On the other hand Margaret Boden, in (Boden 2010),
more recently argues that creativity has an ambiguous re-
lationship with freedom:

“A style is a (culturally favoured) space of struc-
tural possibilities: not a painting, but a way of painting.
Or a way of sculpting, or of composing fugues .. [] .. It’s
partly because of these [thinking] styles that creativity
has an ambiguous relationship with freedom.”

Considering the many factors constituting the evaluation
of what is deemed ‘creative’, raises core issues regarding
how humans evaluate creativity; their aesthetic capacity and
potentially that of other animals (e.g. as exhibited in, say,
mate-selection). Galanter (Galanter 2011) suggests that per-
haps the ‘computational equivalent’ of a bird or an insect
(e.g. in evaluating mate selection) is all that is required for
[computational] aesthetic evaluation:

“This provides some hope for those who would fol-
low a psychological path to computational aesthetic
evaluation, because creatures with simpler brains than
man practice mate selection.”

In this context, as suggested in (Dorin and Korb 2011), the
tastes of the individual in male bowerbirds are made visible
when they gather collections of bones, glass, pebbles, shells,
fruit, plastic and metal scraps from their environment, and
arrange them to attract females (Borgia 1995):

“They perform a mating dance within a specially
prepared display court. The characteristics of an in-
dividual’s dance or artefact display are specific to the
species, but also to the capabilities and, apparently, the
tastes of the individual.”

However the question of whether‘mate selection be-
haviour in animals implies making a judgement analogous
to aesthetic judgement in humans’is perhaps (pace Nagel’s
famous discussion ‘What is it like to be a bat? ’(Nagel
1974)) a fundamentally unanswerable question.

In contrast, the role of education (or training) in recognis-
ing ‘good’ and ‘bad’, ‘creative’ and ‘non-creative’ has been
experimentally probed. A suggestive study investigating this
topic by Watanabe (Watanabe 2009) gathers a set of chil-
dren’s paintings, and then adult humans are asked to label
the “good” from the “bad”. Pigeons are then trained through
operant conditioning to only peck at good paintings. After
the training, when pigeons are exposed to a novel set of al-
ready judged children’s paintings, they show their abilityin
the correct classification of the paintings.

This emphasises the role of learning training and raises
the question on whether humans are fundamentally trained
(or “biased”) to distinguish good and/or creative work.

Another tightly related topic to swarm intelligence in this
context is the creativity of social systems. Bown in (Bown
2011) indicates that our creative capabilities are contingent
on the objects and infrastructure available to us, which help
us achieve individual goals, in two ways:

“One way to look at this is, as Clark does (Clark
2003), in terms of the mind being extended to a dis-
tributed system with an embodied brain at the centre,
and surrounded by various other tools, from digits to
digital computers. Another way is to step away from
the centrality of human brains altogether and consider
social complexes as distributed systems involving more
or less cognitive elements.”

Discussion on creativity and the conditions which make
a particular work creative, have generated heated de-
bate amongst scientists and philosophers for many years
(Rothenberg and Hausman 1976); for a theoretical review
on ‘conditions of creativity’, the ‘systems’ view of creativ-
ity, cognitive approaches, etc. see also (Sternberg 1988).Al-
though this paper does not aim to resolve any of these issues
(or even suggest that the presented work strongly fits and
endorses the category of the ‘artificially creative realm’), we
investigate the performance of a swarm intelligence sketch-
ing system which, we suggest, highlights core issues inher-
ent in exploring conceptual/artistic space(s).

3 On Creativity and Swarm Intelligence
This section focuses mainly on the significance of freedom
and constraint in producing a creative work. These concepts
are then mapped into the ‘Swarmic’ freedom which encom-
passes the freedom and constraint. The final part of this sec-
tion touches upon the plausibility of producing artificially
creative artworks (i.e. weak artificial creativity) using the
swarm-based systems.

3.1 Freedom vs. Constraint
Both freedom and constraint have always been at the core of
several definitions for creativity. Philip Johnson-Laird in his
work on freedom and constraint in creativity (Johnson-Laird
1988) states:

“... for to be creative is to be free to choose among
alternatives .. [] .. for which is not constrained is not
creative.”

In swarm intelligence systems, the two phases of explo-
ration and exploitation introduce the freedom and control
the level of constraint. Pushing the swarms towards explo-
ration, freedom is boosted; and by encouraging exploitation,
constraint is more emphasised. Finding a balance between
exploration and exploitation has been an important theoret-
ical challenge in swarm intelligence research and over the
years many hundreds of different approaches have been de-
ployed by researchers in this field. In the presented work,
two swarm intelligence algorithms are deployed: the al-
gorithm which is responsible for the “intelligent” tracking
of the line drawing is Particle Swarm Optimisation (PSO).
This well-known algorithm, which mimics the behaviour
of birds flocking, has an internal mechanism of balancing



off the exploitation and exploration phases. However due to
the weakness of the exploration in this algorithm, our sys-
tem also deploys another nature inspired algorithm to over-
come this weakness – Stochastic Diffusion Search (SDS),
which mimics the behaviour of one species of ants (Lep-
tothorax acervorum) foraging. Therefore, exploration is pro-
moted by utilising the SDS algorithm, whose impact on
different swarm intelligence algorithms has been reported
using various measures and statistical analysis in several
publications (e.g. (al-Rifaie, Bishop, and Blackwell 2011;
2012)). The technical information on the integration of the
two aforementioned algorithms can be found in (al-Rifaie,
Bishop, and Blackwell 2011).

In the visualisation, the swarms are presented with a set
of points (which constitute a line drawing – see Fig. 1a) and
are set to consider these points (one at a time) as their global
optimum. In other words, the global optimum is dynamic,
moving from one position to another and the swarms aim to
converge over this dynamic optimum (Fig. 1c).

In order to visualise the performance of the swarm with-
out the added exploration capacity (via SDS), in Fig. 1b,
only PSO algorithm is used to produce the sketch. This ex-
periment is run in order to highlight the impact of the lack
of exploration (i.e. ‘freedom’) induced by SDS.

As stated in the introduction, there have been several rele-
vant attempts to create creative computer generated artwork
using Artificial Intelligence, Artificial Life and Swarm In-
telligence. Irrespective of whether the swarms are consid-
ered genuinely creative or not, their similar individualistic
approach is not totally dissimilar to those of the “elephant
artists” (Weesatchanam 2006):

“After I have handed the loaded paintbrush to [the
elephants], they proceed to paint in their own distinc-
tive style, with delicate strokes or broad ones, gently
dabbing the bristles on the paper or with a sweeping
flourish, vertical lines or arcs and loops, ponderously
or rapidly and so on. No two artists have the same
style.”

Similarly if the same line drawing (see Fig. 1a) is repeat-
edly given to the swarms, the output sketches made by the
swarms, are never the same (see Fig. 2 to compare differ-
ent sketches). In other words, even if the swarms process
the same input several times, they will not make two identi-
cal sketches; furthermore, the outputs they produce are not
merely randomised variants of the input. In order to demon-
strate this claim qualitatively in an experiment, the output
of the swarm-based system is compared against a simple
randomised tracing algorithm, where each point in the line
drawing could be surrounded with lines at a random distance
and direction.

3.2 Swarmic vs. Random Freedom
This part presents an experiment with the goal of contrasting
the behaviour of the swarms to that of a group of random
agents. In this experiment, the freedom of the swarm (i.e.
Swarmic Freedom) is maintained by the swarm intelligence
algorithms used in the system, whereas the freedom of the
agents in the randomised algorithm is controlled by what

we call theRandom Freedom. These definitions are utilised
here to highlight the potential of the swarms in exhibiting
artificial creativity.

The sketches in Fig. 3 (left and middle) show two out-
puts from a simple randomised algorithm when configured
to exhibit limited ‘random’ variations in their behaviour
(i.e. there is only small random distance and direction from
the points of the original line drawing); comparing the two
sketches, we note a lack of any significant difference be-
tween them. Furthermore, when more ‘freedom’ is granted
to the randomised algorithm (by increasing the range in
the underlying random number generator, which allows the
technique to explore broader areas of the canvas), the algo-
rithm soon begins to deviate excessively from the original
line drawing. For this reason such randomisation results in
a very poor - low fidelity - interpretation of the original line
drawing (Fig. 3-right). In contrast, although the agents inthe
swarms are free to access any part of the canvas, the swarm-
control mechanism (i.e. Swarm Freedom) naturally enables
the system to maintain recognisable fidelity to the original
input. In the randomised algorithm, contra the swarms sys-
tem, it can be seen that simply by giving the agents more
randomised behaviour (Random Freedom), they fails to pro-
duce more ‘creative sketches’.

The Swarmic Freedom or ‘controlled freedom’ (or the
‘tincture of madness’) exhibited by the swarm algorithms
(induced by the stochastic side of the algorithms) is crucial
to the resultant work and is the reason why having the same
line drawing does not result in the system producing identi-
cal sketches. This freedom emerges, among other influenc-
ing factors, from the stochasticity of SDS algorithm in pick-
ing agents for communication, as well as choosing agents
to diffuse information; the tincture of madness in PSO al-
gorithm is induced via its strategy of spreading the particles
throughout the search space as well as the stochastic ele-
ments in deciding the next move of each particle.

In other words, the reason why the swarm sketches are
different from the simple randomised sketches, is that the
underlying PSO flocking component-algorithm constantly
endeavours to accurately trace the input image whilst the
SDS foraging component constantly endeavours to explore
the wider canvas (i.e. together the two swarm mechanisms
ensure high-level fidelity to the input without making an ex-
act low-level copy of the original line drawing). Although
the algorithms (PSO and SDS) are nature-inspired, we do
not claim that the presented work is an accurate model
of natural systems. Furthermore, whilst designing the al-
gorithm there was no explicit ‘Hundertwasser-like’ attempt
(Restany 2001) by which we mean the stress on using
curves instead of straight lines, as Hundertwasser consid-
ered straight lines not nature-like and tried not to use straight
lines in his works to bias the style of the system’s sketches.

3.3 Weak vs. Strong Artificial Creativity
Before approaching the topic of weak or strong artificial
creativity, the difference between weak and strong AI is
highlighted. In strong AI, the claim is that machines can
think and have genuine understanding and other cognitive
states (e.g. “suitably programmed machines will be capable



Figure 1: (a) Input: series of points that make a line drawing
– sample line drawing after one of Matisse’s sketches; (b)
Output: sketch produced by the swarms without SDS explo-
ration; (c) Output: sketch produced by the hybrid PSO-SDS
swarms

(a) (b) (c)

of conscious thought” (Callan 2003)); weak AI, in contrast,
does not usually go beyond expecting the simulation of hu-
man intelligence. I.e. instantiating genuine “understanding”
is not the primary concern in weak AI research.

An analogy could be drawn to artificial creativity, extend-
ing the notion of weak AI to weak artificial creativity, which
does not go beyond exploring the simulation of human cre-
ativity; emphasising that genuine understanding is not the
main issue in weak artificial creativity. In strong artificial
creativity, the expectation is that the machine should be cre-
ative, have genuine understanding and other cognitive states
as well as being capable of conscious thought.

Having a machine with conscious thought has provoked
many critics, among whom John Searle made the most fa-
mous attack against strong AI in his Chinese Room ar-
gument (Searle 1980). Bishop (Bishop 2004) summarises
Searle’s Chinese Room Argument (CRA) as follows:

The central claim of the CRA is that computa-
tions alone cannot in principle give rise to understand-
ing, and that therefore computational theories of mind
cannot fully explain human cognition. More formally,
Searle stated that the CRA was an attempt to prove
that syntax (rules for the correct formation of sen-
tences:programs) is not sufficient for semantics (under-
standing). Combining this claim with those that pro-
grams are formal (syntactical), whereas minds have se-
mantics, led Searle to conclude that ‘programs are not
minds’. [. . .]

Searle argues that understanding, of say a Chinese
story, can never arise purely as a result of following
the procedures prescribed by any computer program,
for Searle offers a first-person tale outlining how he
could instantiate such a program, and act as the Central
Processing Unit of a computer, produce correct inter-
nal and external state transitions, pass a Turing test for
understanding Chinese, and yet still not understand a
word of Chinese.

We suggest that Searle’s famous thought experiment sim-
ilarly targets the notion of ‘strong artificial creativity’. I.e.
Searle using a similar “room” could gets so good at follow-
ing the rules that the strings of symbols he outputs from
the room successfully control a ‘Strong computer creative

Figure 2: Swarms’ different sketches of a single line draw-
ing. Looking at the sketches although they might look the
same when seen in a glance, they are the result of a com-
pletely different set of movements by swarm in two inde-
pendent instances, tracing the points of the initial drawing.

art’ system producing works judged to have artistic merit by
people outside the room; even though Searle-in-the-room re-
mains ignorant of art and art practise. Hence, until the chal-
lenge of the Chinese room has been fully met, the authors
urge caution in predicating ‘strong’ notions of creativityto
any computational system.



Figure 3: The sketches of the swarms with random be-
haviour: This figure shows the sketches made with a simple
randomised tracing algorithm, using random distance and
direction from the lines of the original line drawing. The
first two sketches (left and middle) use the same random
distance,d, and the right sketch uses the random distance
of d× 6 .

4 Conclusion
In this paper, we have discussed the potential of the swarms
in exhibiting ‘weak artificial creativity’. This specific work
described herein uses swarm intelligence techniques to ex-
plore the difference between deploying Random Freedom
and Swarmic Freedom in the visualisation of the swarms
‘tracing’ line drawings; the aim is to highlight the features
of swarm-regulated differenceversus simple-random differ-
ence in the production of such ‘sketches’ by computer. We
stressed on the significant impact of both freedom and con-
straint on the emergent creativity, and presented a discussion
on how these two concepts are mapped onto exploration and
exploitation, the two most infamous phases in the swarm in-
telligence world. The so described artificial artist is the re-
sult of merging two swarm intelligence algorithms (SDS and
PSO), preserving freedom (exploration) and constraint (ex-
ploitation) respectively.

5 CODA
Leit-motif: Although we distance ourselves from claims of
strong artificial creativity, in faint homage to Turing’s Imi-
tation Game and Harre & Wang’s physical implementation
of the Chinese room experiment (Harre and Wang 1999), we
asked a human artist to adopt the ‘style’ of the swarms and
to produce two sketches (Fig. 4) based on the ‘style’ of the
swarms; the other two sketches are made by the swarms.
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