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Abstract This paper introduces a novel study on the performance of Stochastic Dif-
fusion Search (SDS) – a swarm intelligence algorithm – to address DNA sequence
assembly problem. This is an NP-hard problem and one of the primary problems in
computational molecular biology that requires optimisation methodologies to recon-
struct the original DNA sequence. In this work, SDS algorithm is adapted for this
purpose and several experiments are run in order to evaluate the performance of the
presented technique over several frequently used benchmarks. Given the promising
results of the newly proposed algorithm and its success in assembling the input frag-
ments, its behaviour is further analysed, thus shedding light on the process through
which the algorithm conducts the task. Additionally, the algorithm is applied to over-
lap score matrices which are generated from the raw input fragments; the algorithm
optimises the overlap score matrices to find better results. In these experiments real-
world data are used and the performance of SDS is compared with several other
algorithms which are used by other researchers in the field, thus demonstrating its
weaknesses and strengths in the experiments presented in the paper.

1 Introduction

Every cell in the body has a complete copy of about 3.2 billion1 DNA base pairs or
letters which build the human genome [23]. DNA has all the information necessary
to build the whole living organism. Although the letters of the genetic alphabet
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Adenine (A), Thymine (T), Cytosine (C) and Guanine (G) are meaningless on their
own, they are joined into useful instructions in genes. It is interesting to note that
more than 99 percent of human’s structure is genetically identical [22].

Imagine having several copies of the same book written in a language you cannot
understand. Every page of each copy has been randomly cut into horizontal strip and
a piece from one copy may overlap a piece from another copy. Assuming that some
of strips are missing and some are splashed with ink, and maybe some of the books
have random typos and error throughout, in different places. Try to arrange all the
strips and assemble a single copy of the original book without any typos or errors.
This process is similar to the important task of DNA sequencing.

In this work, novel applications of a swarm intelligence technique is introduced
as a proof of principle. The swarm intelligence algorithm used is Stochastic Diffu-
sion Search (SDS) which has a good potential to work in large search spaces and
noisy environments. This algorithm is explained in the paper and its application to
the problem is detailed.

This paper starts by presenting the swarm intelligence algorithm along with a
simple example demonstrating its use. Then a brief introduction is given to the DNA
assembly problem and the solutions offered so far using swarm intelligence tech-
niques. Subsequently, some experiments are designed and the performance of SDS
is investigated using various benchmarks and then its performance is contrasted
against several other techniques. Finally, the reason behind using SDS is further
elaborated and the difference between utilising SDS and Smith-Waterman algorithm
is discussed. Additionally in the second set of experiments, initially SDS is shown
to be generating the overlap score matrices (a task that is historically accomplished
by Smith-Waterman algorithm); and then the details of using the SDS generated ma-
trices to optimise the overlap scores are described. This is followed by a conclusion
and directions for future research.

2 Swarm intelligence

The paper is based on swarm intelligence which is one of the categories of artifi-
cial intelligence. Swarm intelligence is based on the study of behaviour of simple
individuals (e.g. ant colonies, bird flocking, and honey bees, animal herding) that
mimics the behaviour of swarms of social insects or animals [6]. More and more
researches are interested in this field as swarm intelligence offers new ways of de-
signing intelligence systems.

Among the successful examples of optimisation techniques inspired by swarm
intelligence are: ant colony optimisation (inspired by foraging behaviour of real
ant colonies) and particle swarm optimisation (inspired by bird flocking) [6]. In
this work, Stochastic Diffusion Search (SDS) [1] algorithm is used. This algorithm
also belongs to the category of swarm intelligence and is based on mimicking the
foraging behaviour of one type of ants Leptothorax acervorum. More details about
SDS are provided in Algorithm 1 and a simple example is presented next.
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Algorithm 1 SDS algorithm

Initialisation phase: Allocate agents to random hypotheses in the search space

Until (all agents congregate on the best hypothesis)

• Test phase

– Each agent evaluates its hypothesis
– Each agent is classified into active or inactive

• Diffusion phase

– Each inactive agent randomly chooses another agent to communicate with. If the inactive
agent selects another inactive agent, no information will be transferred between the agents.
Therefore the selecting agent should choose another hypothesis randomly. If the selected
agent is active, the active agent communicate its hypothesis to the selecting agent

End

2.1 Search example with SDS

In the following example the aim is to find a 4-letter model (Table 1) in a 32-letter
search space (Table 2).

Table 1 MODEL
Index: 0 1 2 3
Model: D N A F

Table 2 Search Space

Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Search space T H I S I S D N A F R A G M E N

Index: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Search space T A S S E M B L Y P R O B L E M

There are four agents; and a hypothesis identifies four adjacent letters in the
search space (e.g. hypothesis ‘6’ refers to D-N-A-F; hypothesis ‘17’ refers to A-S-
S-E, etc.). In the first step, each agent initially picks a random hypothesis from the
search space (see Table 3). Assume that:

• The first agent points to the 27th entry of the search space and randomly picks
one of the letters (e.g. the fourth one, (B): O B L E

• The second agent points to the 14th entry and randomly picks the first letter (E):
E N T A
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• The third agent refers to the 8th entry in the search space and randomly picks the
second letter (F): A F R A

• The fourth agent goes the 20th entry and randomly picks the third letter (B):
E M B L

• The fifth agent refers to the 4th entry in the search space and randomly picks the
second letter (S): I S D N

Table 3 INITIALISATION AND ITERATION 1
Agent No: 1 2 3 4 5

Hypothesis position 27 14 8 20 4
OBLE ENTA AFRA EMBL ISDN

Letter picked: 4th 1st 2nd 3rd 2nd

Status: × × × × ×

The letters picked are compared to the corresponding letters in the model that is
D-N-A-F (see Table 1). In this case:

• The fourth letter from the first agent (E) is compared against the fourth letter
from the model (F) and because they are not the same, the agent is set inactive.

• For the second agent, the first letter (E) is compared with the first letter from the
model (D) and because they are not the same, the agent is set inactive.

• For the third, fourth and fifth agents, letters ‘F’, ‘B’ and ‘S’ are compared against
‘N’, ‘A’ and ‘N’ from the model. Since none of the letters correspond to the letters
in the model, the status of the agents are set inactive.

In the next step, each inactive agent chooses another agent and gets the same hy-
pothesis if the selected agent is active. If the selected agent is inactive, the choosing
agent generates a random hypothesis. Assume that the first agent selects the third
one; since the third agent is inactive, the first agent chooses a new random hypothe-
sis from the search space (e.g. 6). Fig.1 shows communication between agents.

Fig. 1 Agent Communication 1.

The process is repeated for the other four agents. When the agents are inactive,
they all choose new random hypotheses (see Table 4).

Fig. 2 Agents Communication 2.
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Table 4 ITERATION 2
Agent No: 1 2 3 4 5

Hypothesis position 1 6 22 12 17
HISI DNAF BLYP GMEN ASSE

Letter picked: 1st 2nd 4th 3rd 3rd

Status: ×
√

× × ×

In Table 4, the first, third, fourth and fifth agents do not refer to their correspond-
ing letter in the model, therefore they become inactive. The second agent, with hy-
pothesis ‘6’, chooses the second letter (N) and compares it with the second letter of
the model (N). Since the letters are the same, the agent becomes active.

In this case, consider the following communication between the agents: (see Fig.
2)

• The third and fourth agents choose the second one
• The first agent chooses the third one
• The fifth agent chooses the fourth one

At this stage, the first and fifth agents, which chose the inactive third and fourth
agents, have to choose other random hypotheses from the search space. However,
agents three and four use the hypothesis of the active agent, two.

This process is repeated until all agents are active pointing to the location of the
model inside the search. Depending on the problem, there are alternative termination
strategies; for instance, in some cases, SDS algorithm is set to terminates only if all
agents are active and refer to the same hypothesis.

The next section, provides a brief introduction to DNA assembly problem, stating
the main phases and the major challenges faced by researchers in this field. This
is followed by an overview of some of the algorithms that aimed to address the
problem. Afterwards the experiments and results are reported.

3 Understanding DNA Assembly

There is no single solution available for NP-hard problems [23] and it is often not
possible to find an extremely good algorithm that solves such problems [19].

In DNA assembly, a process is required to join the relevant fragments together.
In other words, the overlapping fragments are to be assembled back into the original
DNA sequence. Therefore, the goal of genome projects is to reconstruct the original
genome sequence of an organism. To achieve the goal, DNA fragment assembly
process is divided into three phases [7, 10]:

1. Overlap Phase is tasked to find the common sequence among the prefix of one
sequence and suffix of another.

2. Layout Phase uses alignment strategies to determine the order of fragments
based on high overlap scores and according to the level of similarity.
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3. Consensus Phase assembles all fragments into the consensus sequence and
omits the similar parts.

The quality of a consensus sequence is measured by the term coverage [20, 7].
Coverage is evaluated according to the following equation:

Coverge =
∑

n
i=1 length of fragment i
target sequence length

(1)

where n is the number of fragments.
The higher the coverage, the higher the probability of covering original genome,

the higher the correctness of the assembled parts, the fewer the number of the gaps,
and the better the result [7, 12].

The Layout Phase is the most complex step due to the difficulty of finding the
best overlap. This difficulty is caused by the following challenges [12, 7]:

• Unknown orientation: After the original sequence is divided into many frag-
ments, the direction may change.

• Base call errors: substitution, insertion, and deletion errors are types of base call
error. The errors happen because of experimental errors in the electrophoresis
procedure that affects the finding of fragment overlaps.

• Incomplete coverage: It occurs when the algorithm cannot assemble a given
fragments into one contig.

• Repeated regions: the problem occurs when some sequences are repeated two
or more times in the DNA. None of the current assembly programs can solve the
problem without an error [19].

• Chimeras and contamination: Chimeras arise when two fragments that are not
adjacent, or overlapping on the target molecule, join together into one fragment.
Contamination occurs due to the incomplete purification of the fragment from
the vector DNA.

3.1 DNA Sequence Assembly and Swarm Intelligence

DNA Assembly problem is still open to a large extent because of the principal issue
of “scaling up to real organism”. Some of the swarm intelligence and evolutionary
algorithms, such as genetic algorithms and ant colony optimisation have been used
for the fragment assembly problem focusing on the overlap, layout and consensus
approach [15].

In 1995, Rebecca Parsons and Johnson created performance improvements for
a genetic algorithm applied to the DNA sequence assembly problem [18]. In 2003
Kim and Mohan used a new parallel hierarchical adaptive genetic algorithm. The
method is reported as accurate and noise-tolerant compared to previous methods
[11]. In the same year, Meksangsouy and Chaiyaratana proposed ant colony optimi-
sation. The goal of the search was to find the right order and orientation of each frag-
ment to create a consensus sequence [16]. In 2005 Fang proposed approach speeded
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up the searching process and maximised the similarity or overlaps between given
fragments [8]. Alba and Luque presented several methods, including genetic algo-
rithm, a CHC method, scatter search algorithm, and simulated annealing to solve
accurately DNA Assembly problem in 2005 [13]. They also proposed a local search
method named PALS in 2007 [2]. In 2008, Luque and Alba studied the behaviour of
a hybrid heuristic algorithm that combines a heuristic, PALS, with a meta-heuristic,
a genetic algorithm, achieving an assembler to find optimal solutions for large in-
stances of this DNA assembly problem [4]. In 2010 Kubalik presented a method
called Prototype Optimisation with Evolved Improvement Steps (POEMS). Also in
the same year Minetti and Alba presented a paper about how noiseless and noisy in-
stances of this problem are handled by three algorithms: problem aware local search,
simulated annealing and genetic algorithms [17].

There are some other solutions that are proposed in 2011 for DNA sequence as-
sembly problem using Particle Swarm Optimisation (PSO) with Shortest Position
Value (SPV) rule [23]. In 2012 Firoz analysed and discussed the performance of
two swarm intelligence based algorithms namely Artificial Bee Colony (ABC), and
Queen Bee Evolution Based on Genetic Algorithm (QEGA) to solve the fragment
assembly problem [9]. In 2013 Fernandez-Anaya et al. designed a nature inspired
algorithm (PPSO+DE) based on Particle Swarm Optimisation and Differential Evo-
lution [14].

4 Experiments and Results I

In order to understand the process through which SDS is adopted and adapted for
DNA sequence assembly problem, a number of fragments are used in the experi-
ments. The fragments are the input of the program and the program is responsible
to assemble the fragments and create one long sequence. This is achieved by taking
a fixed number of characters from the end of the first fragments and trying to find
those characters in the other fragments using SDS algorithm. Once the other frag-
ment is found, the two fragments are joined and the repeated part is deleted from one
of the fragments. This will create a longer fragment. This process is repeated until
all fragments are joined. The steps required for SDS to assemble a set of fragments
are detailed in Algorithm 2.

In the experiments reported in this paper the agent size is empirically set to 100
and the model size for SDS is set to 50. Table 5, as proposed by Mallén-Fullerton et
al. [15], shows the benchmarks used by SDS for DNA assembly.

Using the benchmarks provided, SDS algorithm assembles the entire sequences
correctly. Table 6 shows the performance of SDS when assembling the nine afore-
mentioned benchmarks. Each benchmark is assembled 50 times. As the table shows,
the larger the coverage, the more SDS iterations it takes to fully assemble the
datasets. While the number of overall algorithm cycles needed follow the same
structure, there are some exception caused by the order of the fragments. Observing
the sum of active agents over all the iterations and their consistent proximity (check
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Algorithm 2 DNA sequence assembly using SDS
Choose a model from the end of 1st fragment in the search space

While (true)

• Use SDS to search the model in the fragments

– If no matching fragment is found
· Choose the model from the beginning of the first fragment
· Use SDS to search the model in the fragments
· If no matching fragment is found

Break

• Compile a list of fragments where the model is found
• Pick the fragment ( jth) with the maximum similarity (based on agents activity)

– assemble fragments i and j.
– Delete the jth fragment
– Choose a new model from the end of assembled fragment

End While

Table 5 Benchmark datasets

Mean Number Original

Benchmark Coverage fragment of sequence

length fragments length

x60189 4 4 395 39

3,835
x60189 5 5 286 48

x60189 6 6 343 66

x60189 7 7 387 68

m15421 5 5 398 127

10,089m15421 6 6 350 173

m15421 7 7 383 177

j02459 7 7 405 352 20,000

bx842596 7 7 703 773 77,292

the negligible difference between the median and the mean, as well as the value of
the standard deviation) shows the robustness of the technique.

The results shown in Table 6 indicate that three of the benchmarks (m15421 6,
m15421 7 and bx842596 7) are not assembled fully into one sequence. SDS has
been able to assemble two large, accurate sequences from the fragments of each of
these datasets which make up the whole dataset. However up to this point, given
there were no similarities between the two resulting sequences, they are returned
separately. Therefore, caution is taken and they are reported as not completely as-
sembled.



Maximising overlap score in DNA sequence assembly problem by SDS 9

Table 6 Summary of Assembling Four Datasets

Sum of active agents

Cycles SDS Itrs Median Mean Stdev Max Min

x60189 4 23 46,899 384,075 384,746 4,007 392,361 374,717

x60189 5 17 53,649 418,777 418,744 4,119 430,935 409,683

x60189 6 28 114,799 752,539 752,176 4,382 763,060 740,365

x60189 7 26 124,249 1,095,673 1,096,029 5,928 1,109,507 1,083,767

m15421 5 57 476,149 2,175,028 2,176,785 9,722 2,220,938 2,150,915

m15421 6 – – – – – – –

m15421 7 – – – – – – –

j02459 7 129 3,174,449 12,092,968 12,087,911 21,613 12,127,170 12,021,776

bx842596 7 – – – – – – –

Next, one of the benchmarks is chosen (x60189 4) and the analysis are reported
based on this benchmark. The results are compatible with the ones generated from
the other benchmarks. Fig. 3-left shows the level of agents activity at various stages
of SDS assembling process, including both when a match is found and when a match
is not found in any given fragment. The activity of the agents is in the range [0,100],
however if less than the entire agent population (i.e. 100) are active, the agents’
hypotheses are not taken into account for the assembling purpose; this ensures the
presence of a full match. Reducing the 100% accuracy would cater for a noisy en-
vironment which is one of the strengths of SDS algorithm.

To provide a better understanding, the histogram of the agents’ activity is pre-
sented in Fig. 3-middle. This graph clearly shows that in most cases there is no high
similarity between fragments (note that the similarity between fragments is evalu-
ated by comparing the model to the fragments). However when there is a match (i.e.
100% activity), the fragments are joined on the fly.

Fig. 3-right provides a close-up view of the graph on its left and demonstrates
that when there are no exact matches, some of the SDS agents could be activated;
however if there are no full match, the activated agents eventually lose their active
status in the consequent iterations when they choose a different micro-feature. This
feature is particularly useful in a noisy environment whose complete analysis will
be provided in an expanded future publication.

In a similar experiment and in order to analyse the behaviour of the agents when
some of the fragments are contaminated with noise, some noise (i.e. of type substi-
tution) is added to all the fragments. Fig. 4-left shows the activity of the agents and
Fig. 4-middle and right illustrate the frequency of activity level at various iterations.
Note that there are fewer number of iterations needed before SDS terminates (as at
some point during the process, no match is found from either end of the growing se-
quence). However the proportion of agents activity between 0 and 100 is increasing
with the presence of noise. Despite the fact that the entire fragment is contaminated
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Fig. 3 Left: activity of the agents in the fragments of x60189 4; middle: the histogram of the
activity of the agents; right: zooming to show the activity of agents between 0 and 100.
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Fig. 4 Left: activity of the agents in noisy set of fragments; middle: histogram of the activity of
the agents in noisy set of fragments; right: zooming to show the activity of agents between 0 and
100.

with noise, SDS is able to produce more than half the length of the target sequence.
Further research is required to improve this rate.

In order to illustrate the activity of the agents at each SDS iterations, the graphs
in Fig. 5 are presented. In Fig. 5-left the activity of SDS agents are displayed when
there is no match. As shown, most of the agents are inactive and very a few flicker
from being active and then back to being inactive.

However, on the contrary to the lack of a match, when there is a full match, as
shown in Fig. 5-right, soon after the start of the SDS iteration and through agents’
communication and information exchange, the entire population becomes active and
points to the right position, which is the position of the model within the fragment.
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Fig. 5 Left: absence of a match; right: presence of a full match.
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Table 7 Comparison with other techniques

SDS PALS GA PMA CAPS Phrap

x60189 4 1 1 1 1 1 1

x60189 5 1 1 1 1 1 1

x60189 6 1 1 – 1 1 1

x60189 7 1 1 1 1 1 1

m15421 5 1 1 6 1 2 1

m15421 6 2 NA NA NA NA NA

m15421 7 2 1 1 2 2 2

j02459 7 1 1 13 1 1 1

bx8425696 7 2 2 – 2 2 2

4.1 Comparison with other techniques

In another analysis, the performance of SDS is compared against a few other algo-
rithms tasked with assembling the benchmarks. These algorithms, which are used
in this context in the literature, are genetic algorithm (GA), a pattern matching al-
gorithm (PMA), Problem Aware Local Search (PALS) and commercially available
packages: CAP3 and Phrap. The algorithms are compared in terms of the final num-
ber of contigs assembled. Despite being in the early stages of its application in DNA
assembly problem, SDS shows a competitive performance (see Table 72). Other than
an isolated case (m15421 7), where PALS and GA outperform SDS, in the rest of
the cases (89%), SDS either presents similar or better outcome. SDS is also tried on
a benchmark (m15421 6) that is not attempted by the rest of the techniques. The ac-
curacy of the assembled sequences is 100%; in other words, whenever the accuracy
is less than 100%, the results are considered unsuccessful.

In these experiments, SDS deals with various issues common in DNA sequence
assembly3, including but not limited to fragments with varying lengths, unknown
orientation, incomplete coverage, repeated regions, chimeras and contamination,
etc.

4.2 SDS vs. Smith-Waterman algorithm I

Many DNA sequence assembly techniques use Smith-Waterman algorithm [21],
which is a pairwise alignment method to create a similarity matrix between the
fragments, therefore generating a complete picture of the entire available data be-

2 The results of these algorithms, other than SDS, are borrowed from [3].
3 These issues are explained in section 3.
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fore setting off to the overlapping and assembling stage. While Smith-Waterman
algorithm provides a precise and detailed account of the input data, it comes at the
expense of being time consuming and computationally expensive [24].

Assuming there are n fragments, once the similarity between each pair is cal-
culated using Smith-Waterman algorithm, an n× n matrix is created. The matrix
is then used by other optimising algorithm to conduct the overlapping phase. The
results of many of these algorithms are reported in [15].

In the experiments reported earlier in the paper, instead of using Smith-Waterman
algorithm to calculate the similarities between fragments, SDS picks a model from
a given fragment and aims to find the model in the rest of the fragments. Among
the fragments containing the model, the one with the highest similarity is picked
and assembled on the fly and then removed from the search space, thus reducing the
subsequent computational cost.

On the contrary to many other swarm intelligence and evolutionary computa-
tion, SDS has been successful in assembling the benchmarks without using Smith-
Waterman algorithm, therefore avoiding its time consuming and computational ex-
pensive nature. To understand the full picture of the process, further analysis is
needed, among other things, to verify the impact left on the assembling process
without accessing the very detailed information provided by Smith-Waterman algo-
rithm.

5 Experiments and Results II

In the second set of experiments of this paper, SDS is tasked to generate overlap
score matrices and then the same algorithm is used to optimise the generated matri-
ces. In the next subsections, the process through which the overlap score matrices
are generated are described, then the constrains in creating these matrices as well
as choosing SDS hypothesis are presented. Afterwards SDS is applied to the bench-
marks in the dataset and the results are reported.

5.1 Generating matrices of Overlap Score by SDS

In this section, SDS is shown to be generating the overlap score matrices. As in
the previous set of experiments, an already commonly used dataset [15] is used.
More details about the reason behind using SDS (instead of the commonly used
Smith-Waterman algorithm) for generating the overlap score matrices are provided
in Section 5.5.

In the meantime, the steps through which the overlap scores between fragments
are computed using SDS are described below:

1. Take a model from the end of the first fragment, and search each fragment one
by one to check if other fragments have overlaps with the first fragment. For
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instance, if fragment 1 and fragment 5 have 100 bases in common, this value is
stored in the matrix as (1,5) = 100.

2. After going through all the fragments, another model is taken from the beginning
of the first fragment and again the program searches all the fragments. If the
program finds a matching fragment, it stores the value of the overlap score in the
matrix.

3. Then the orientation and bases of the first fragment is changed (i.e. A replaces T,
T replaces A, C replaces G and G replaces C. Then the orientation is reversed).

4. Steps 1 to 3 are repeated for all other fragments (in the second cycle, the second
fragment will be verified, and in the third the third fragment, until all fragments
are checked, their matches are found and their overlap scores are stored in the
correct entry of the matrix).

5.2 Constraints in overlap score matrices and hypotheses choice

Before preceding to the experiments, some important points about the input matri-
ces, overlap scores and the constraints and rules are listed below:

• The matrix always has symmetric overlap score.
• The matrix always has the overlap score of zero on the diagonal line.
• The dimension of the matrix is equal to the number of fragments in the dataset.
• For computing the overlap score of a dataset (that for instance) has 40 fragments,

the program should select 40 indices from the matrix. In this work, each one of
these elements is called the index hypothesis.

• For choosing the hypothesis from the matrix, the program should follow some
rules and consider some constraints.

The following constraints should be considered when choosing the hypotheses
(also see Fig. 6):

• Assume each hypothesis has one row and one column. The row and column
should not be equal. In other words, hypothesis should not be chosen from the
diagonal line of the matrix as the values on the diagonal line are always zero.

• Two different hypotheses should not be on the same row.
• Two different hypotheses should not be on the same column.

Having mentioned the rules and constraints, the next section presents the ex-
periments designed for this paper, demonstrating the performance of the proposed
algorithm. Then the results are reported along with comparisons against other tech-
niques.
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0 1 2 3 4 5

0 0 10 50 300 65 0

1 10 0 44 72 100 0

2 50 44 0 35 84 0

3 300 72 35 0 26 0

4 65 100 84 26 0 0

5 0 0 0 0 0 0

The entries highlighted in green are the valid elements (coordinates) of the hypothesis, and the
entries in red are the invalid ones.

Fig. 6 Matrix Constraints

5.3 Applying SDS on overlap score matrices

As mentioned before, SDS has the three phases of initialisation, test and diffusion.
In this part, these phases are explained in detail and it is shown how SDS is applied
to the matrices in order to find the optimum solution. Thus, on the contrary to the
previous set of experiments where the inputs were DNA bases, in this section the
inputs data are overlap score matrix.

5.3.1 Initialisation Phase

The initialisation phase of SDS algorithm should adhere to the rules and constraints
described above. Also it is important to note the following problem-dependant is-
sues:

• Every fragment (except the first and last one) is a prefix of one fragment and
suffix of another fragment.

• The first fragment in a contig has no prefix, and the last fragment has no suffix.
• The fragments cannot be appended to itself.

During the implementation stage of the initialisation phase, a hypothesis (i.e.
member of matrix) is generated for every agent with respect to the constraints.

For generating the hypothesis, the following steps should be taken:

1. Create a list and populate the cells with values from [0,n−1] where n is the size
of any sides of the matrix.

2. Initialise the first value in X with zero (see Fig. 7).
3. Randomly choose the Y value from the list created. According to Fig. 7, 2 is

chosen randomly. Now the row and column (X, Y) of the first hypothesis are
assigned.

4. In the next step, the Y value of the previous hypothesis will be assigned as the
X value of the second hypothesis. Then that number will be removed from the
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Fig. 7 Sample Hypothesis of an agent (based on the matrix in Fig. 6).

array (i.e. 2) which was created in the first step. Again the Y value of the second
hypothesis will be selected randomly.

5. Finally when all the elements of the array are removed, zero is assigned as the Y
value of the last hypothesis. Note that the algorithm is prevented from choosing
zero as the Y value during generating the hypotheses until it reaches to the last
hypothesis. As stated earlier, the reason behind picking the value of ‘0’ is that
the first and the last fragments in every sequence only have suffix and prefix
respectively.

6. All these elements form one SDS hypothesis for the first agent.

After the initialisation phase, every agent has a SDS hypothesis which consists
of n coordinates from the overlap score matrix. Therefore there will be an overlap
score associated with every agent (e.g. the overlap score of the first agent is 50+0+
0+ 26+ 72+ 10 = 158). This will pave the way for comparing the agents against
one another.

5.3.2 Test Phase

The test phase is explained by taking agent ‘0’ as the starting point to determine
whether it should be active or inactive.

• Agent 0 is compared with a random agent
• If agent 0 has a higher overlap score than the randomly selected agent, it will be

active
• If agent 0 has a lower overlap score than the randomly selected agent, it will be

inactive
• This continues until all agents are labelled as either active or inactive

5.3.3 Diffusion phase

This phase is similar to the original description of the SDS’s diffusion search and
works as follows:



16 Fatimah Majid al-Rifaie and Mohammad Majid al-Rifaie

This figure shows the elements of a sample agent hypothesis. The hypothesis’ elements are
highlighted in grey as well as the one in red. When the red elements of the hypothesis are updated
and the new coordinates are shown in green. Note that the number of hypothesis elements are 8.

Fig. 8 Hypothesis Sliding

• Each inactive agent selects an agent randomly
• If the selected agent is active, the hypothesis (which contains all the x and y

coordinates) will be copied from the active to the inactive agent.
• If the selected agent is not active, again, another valid hypothesis will have to be

generated for that inactive agent.

This technique shows a good initial outcome however it does not return an opti-
mum solution since the agents communicate with each other with limited informa-
tion (the hypotheses that are chosen randomly) and there is not sufficient comparison
with the “outside worlds” (all other possible hypotheses that can be generated from
the matrix are not considered). Therefore, to improve the program, in the next sec-
tion, another important phase (i.e. Reform Phase) is added. This phase complements
the three previously discussed phases.

Prior to explaining the Reform phase, it is important to discuss what happens if
one of the elements of the hypothesis moves from one position to another.

5.3.4 Hypothesis Sliding and the Reform Phase

In the following part, the steps are shown as to how to exchange the values of the
coordinates of hypothesis in each agent.

Fig. 8 shows a sample matrix representing a dataset with 8 fragments. Therefore
each agent has a set of 8 coordinates belonging to the hypothesis. The details of the
figure are explained below:

• The grey circles are the hypotheses in the current agent.
• The red circles are the old hypotheses that are replaced by the new ones
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• The green circles are the new hypotheses that are replaced with the old ones.

The below steps, describe how the Reform Phase works on the input matrix:

1. Initially the minimum hypothesis (with the smallest overlap score) other than
zero, which is called ‘First Old’ is picked. Assume that the hypothesis (5, 1)
which has the minimum value is picked.

2. The aim is to have the minimum hypothesis exchanged with an index in the
matrix which has a value (overlap score) more than the minimum value. This
index is called ‘First New’.

• The position of this index (i.e. First New) should be selected from the same
row of where the minimum overlap score (First Old) is located. In other words,
‘First Old’ and ‘First New’ are in the same row. In order to do that, a column is
chosen randomly. Assuming the fourth column is selected, the index of ‘First
New’ will be (5,3).

3. Next, the program should find a hypothesis that is called ‘Second Old’. The steps
below show how this is accomplished:

• The ‘Second Old’ has the same column as the ‘First New’. According to the
previous stage, the column of ‘First New’ was 3, therefore the column of
‘Second Old’ will become 3.

• In order to find the row, the algorithm checks which hypothesis in the current
agent has column 3. Then it picks the row of that hypothesis. Suppose the row
of that hypothesis is 6. Thus the index of ‘Second Old’ hypothesis becomes
(6, 3).

• As mentioned before, in every agents hypothesis, every column is used once,
and every row is used once too. In other words, no two items of the hypothesis
should be in the same column or the same row.

4. The next tasks is to find the position of the new coordinate in the original matrix.
This coordinate is called the ‘Second New’, which takes the row of the ‘Second
Old’ and the column of the ‘First Old’.

5.4 Results

This section presents the results of optimising the overlap score on the real dataset.
These experiments are conducted on the following datasets from Table 5: x60189 4,
x60189 5, x60189 6, x60189 7.

In the experiments reported in this paper the agent size is empirically set to 100
and the model size for SDS is set to 50. Table 5, as proposed by Mallén-Fullerton et
al. [15], shows the benchmarks used by SDS for DNA assembly.

As part of the results reported, the performance of SDS is compared against a few
other algorithms used for computing the overlap scores. These algorithms, which are
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Table 8 Collection of results for the commonly used 4 benchmark datasets along with SDS results

Benchmark SDS LKH PPSO+DE QEGA PALS SAX POEMS

x60189 4 11,322 11,478 11,478 11,478 11,478 11,478 11,478

x60189 5 13,930 14,161 13,642 14,027 14,021 14,027 –

x60189 6 15,160 18,301 18,301 18,266 18,301 18,301 –

x60189 7 19,728 21,271 20,921 21,208 21,210 21,268 21,261

used in this context in the literature, are Prototype Optimisation with Evolved Im-
provement Steps (POEMS), Problem aware local Search (PALS), Queen Bee Evo-
lution Based on Genetic Algorithm (QEGA), Particle Swarm Optimisation and Dif-
ferential Evolution, which is called (PPSO+DE), SAX and Lin-Kernighan (LKH).
The algorithms are compared in terms of the total overlap score (see Table 8 4) and
the results show that the preliminary investigation of SDS behaviour demonstrates
a competitive performance.

As explained before, the starting point in the reform phase is the minimum
(smallest) element of the hypothesis. The algorithm aims to find a larger value to
replace the minimum element. The question is: should the program search the entire
matrix environment to find a bigger value (global search) or should it search just, for
instance, the row or the column where the minimum elements are sitting in (local or
neighbourhood search). At the moment the paper has explored the neighbourhood
search and global search is the topic of an ongoing research.

5.5 SDS vs. Smith-Waterman algorithm II

In the dataset used [15] for the experiments reported, the file ‘matrix conservative’
contains matrices that store the overlap score amongst all fragments for each bench-
mark in the dataset. The overlap scores are computed by the Smith-Waterman algo-
rithm. Smith-Waterman algorithm takes into account the overlap of each fragment
with every other fragments individually, therefore, while providing a comprehen-
sive picture, it is computationally expensive. In other words, Smith and Waterman
which was proposed in 1981, is a dynamic programming local sequence alignment
algorithm that is used for this purpose. This algorithm’s most common setting are 1
for a match, 3 for a mismatch, and 2 for a gap. This algorithm must of run on the
entire possible combination of fragment pairs taking both orientations into account
(regular and reverse compliment); this is necessary due to the unknown orientation
of every input fragment. Upon finding the maximum overlap by the algorithm, the
actual overlap needs to be calculated. Once complete, the final values are inserted
into the overlap score matrix, which details the overlap between any two pair of

4 The results of these algorithms, other than SDS, are borrowed from [15]
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fragments. As stated before, this is a time consuming and computational expensive
task, with the computational complexity of O(n2). As stated in [15], even if there
are only 500 fragments of approximately 100 bases long, around 2,500,000,000
Smith-Waterman elements would be required to calculate the overlap matrix.

In order to explore an alternative less time consuming approach, SDS algorithm
is tasked to accomplish the creation of the overlap score matrices.

SDS ignores the non-significant overlap. This is achieved by assigning the min-
imum overlap score by setting the model size. When the overlap between two frag-
ments is less than the model size, the overlap score value of the fragments is set
to zero in matrix. For instance, if model size is 50 and the overlap score between
fragments 1 and 4 is 40, the value in entry (1,4) in the matrix will be zero. The ad-
vantage of using this technique (i.e. ignoring non-significant overlaps) is speeding
up the search. Additionally the matrix could be compressed easily by removing the
zero values.

6 Conclusions

Since DNA fragment assembly problem is NP-hard, it is difficult to find optimal so-
lutions. The increasing presence of biological data and the requirements to study and
understand them closely lead researchers and scientists in this field to use computa-
tional approaches. This work has shown how DNA fragment assembly problem can
be addressed with meta-heuristics. This paper presents Stochastic Diffusion Search
(SDS), which belongs to the extended family of swarm intelligence algorithms, in
the context of DNA fragment assembly problem. An initial study into the behaviour
of SDS is provided, offering an analysis into the agents’ activity using several bench-
marks. The results are promising as they demonstrate how the activity of the agents
shed light into the way agents interact and eventually finalise the assembling pro-
cess. Additionally it is shown that the level of agents’ activity provides a measure
of similarity between fragments, thus allowing more similar fragments to be joined
in the assembling process.

Subsequently, SDS algorithm is used to optimise the overlap score of the input
overlap score matrices. In this optimisation task, input matrices with overlap scores
of fragments is given as input to the system and the adapted SDS algorithm is re-
sponsible for finding the optimum overlap score in order to assembly the fragments.
Taking into account the initial attempt of using this algorithm, the results are close
to the those of other researchers.

As part of the future research, this algorithm will be compared against other evo-
lutionary computation techniques used in this field; also larger datasets with more
complex features are to be used, and more research is needed in order to theoretically
determine the two values (population size and model size) of the SDS parameters.
Additionally, CPU time and memory usage will be taken into account for all the
comparisons to provide a more comprehensive account on the performance of the
proposed algorithm.
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