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This paper addresses aesthetic problem in cellular automata, taking a quantitative approach
for aesthetic evaluation. Although the Shannon’s entropy is dominant in computational
methods of aesthetics, it fails to discriminate accurately structurally different patterns in
two-dimensions. We have adapted information gain measure and Kolmogorov complexity to
overcome the shortcomings of entropic measures. The measures are customised to robustly
quantify the complexity of multi-state cellular automata configurations.

Experiments are set up with different initial configurations in a two-dimensional multi-state
cellular automaton whose corresponding structural and Kolmogorov complexity measures at
global level are analysed. Preliminary outcomes on the resulting automata are promising,
as they suggest the possibility of predicting the structural characteristics, symmetry and
orientation of cellular automata generated patterns.
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1. Introduction

Cellular Automata (CA) were initially developed as a material independent framework
to study the logic of self-reproducing behaviour of biological systems in the late 1940s
by von Neumann and Ulam (Burks, 1970). In the 1960s the idea of using CA as artistic
tool emerged from the works of Knowlton and Schwartz who produced “Pizillation”,
one of the early computer generated animations (Knowlton, 1964; Schwartz & Schwartz,
1992). The “Tapestry I” and “Tapestry II”, still frames from “Pizillation” won the first
prize of the Fighth Annual Computer Art Contest in 1970. The computer arts of Struy-
cken (Struycken, 1976), Brown (Brown, 2001; Beddard & Dodds, 2009) and evolutionary
architecture of Frazer (Frazer, 1995) are classical examples of CA based arts. Moreover,
CA have been used for music composition, for example, Xenakis (Xenakis, 1992) and
Miranda (Miranda, 2001).

The popularity of John Conway’s Game of Life (Gardner, 1970) drew the attention
of a wider community of researchers and digital artists to the unexplored potential of
CA applications, especially in their capacity to generate complex behaviour from simple
rules (Brown, July 1996). This fact has been noted by Wolfram, who himself produced
some CA arts in the 1980s, “even a program that may have extremely simple rules
will often be able to generate pictures that have striking aesthetic qualities-sometimes
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reminiscent of nature, but often unlike anything ever seen before” (Wolfram, 2002, p.11).
He further emphasises that “one of the things I've been meaning to do is to make a bit
more of a serious effort to use cellular automata in some kind of computer art” (Regis,
1988, p.250).

Although classical one-dimensional CA with binary states can exhibit complex be-
haviours, experiments with multi-state two-dimensional (2D) CA reveal a very rich spec-
trum of symmetric and asymmetric patterns which are extremely challenging to generate
using conventional mathematical methods (Javaheri Javid & te Boekhorst, 2006; Javaheri
Javid, al Rifaie, & Zimmer, 2014).

There are numerous studies on the quantitative (Langton, 1986) and qualitative be-
haviour (Wolfram, 1983, 1984, 2002) of CA but they are mostly concerned with cate-
gorising the rule space and the computational properties of CA. Since CA are one of
the generative tools in computer art, means of evaluating the aesthetic qualities of CA
generated patterns have a substantial contribution towards further automation of CA
art. There have been some interesting attempts to develop means of controlling emer-
gence of aesthetic behaviour in CA (W. Li, 1988, 1989; Sims, 1992; Mason, 1993; Ashlock
& Tsang, 2009) but with less success. This is due to lack of computational methods in
substituting human aesthetic perception speciality measures of complexity.

This work follows Birkhoff’s tradition in studying mathematical bases of aesthetics,
especially the association of aesthetic judgement with the degree of order and complexity
of a stimulus. Shannon’s information theory provided an objective measure of complexity.
It led to emergence of various informational theories of aesthetics. However due to its
nature, the entropic measures fail to take into account spacial characteristics of 2D
patterns which is fundamental in addressing aesthetic problem in general and of CA
generated configurations specifically.

In this paper, following our earlier works (Javaheri Javid et al., 2014; Javaheri Javid,
al Rifaie, & Zimmer, 2015; Javaheri Javid, Blackwell, Zimmer, & al Rifaie, 2015), we
investigate computational notion of aesthetic in CA as non-linear dynamical systems.
Particularly, we examine information gain and Kolmogorov complexity as measures of
complexity in multi-state 2D CA generated configurations.

This paper is organised as follows. Section 2 provides formal definitions and estab-
lishes notations of CA. Section 3 demonstrates that entropy is an inadequate measure of
discriminating multi-state 2D CA configurations. In Section 4, in the framework of the
objectives of this study a spatial complexity spectrum is formulated and the potential
of information gain as a structural complexity measure is discussed. Section 5 provides
formal notions of Kolmogorov complexity and method estimating it. Section 6 gives de-
tails of experiments that test the effectiveness of information gain and its relation to to
Kolmogorov complexity. The paper closes with a discussion and summary of findings.

2. Definition of Cellular Automata

DEFINITION 2.1 A cellular automaton is a regular tiling of a lattice with uniform de-
terministic finite state automata.

A cellular automaton A is specified by a quadruple (L, S, N, f) where:

e [ is a finite square lattice of cells (1, j).

o S=1{1,2,...,k} is set of states. Each cell (7, ) in L has a state s € S.

e N is neighbourhood, as specified by a set of lattice vectors {e,}, a =1,2,..., N. The
neighbourhood of cell r = (i,7) is {r + e1,r + ea,..., 7 +en}. A a cell is considered
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to be in its own neighbourhood so that one of {e,} is the zero vector (0,0). With an
economy of notation, the cells in the neighbourhood of (i,7) can be numbered from
1 to N; the neighbourhood states of (i,7) can therefore be denoted (s1,$2,...,SN).
Periodic boundary conditions are applied at the edges of the lattice so that complete
neighbourhoods exist for every cell in L.

e f is the update rule. f computes the state s1(t + 1) of a given cell from the states
(s1,82,...,8n) of cells in its neighbourhood:s;(t + 1) = f(s1, $2,...,Sn). A quiescent
state s, satisfies f(sq,5q,...,5¢) = Sq-

Remark 1  There are two common neighbourhoods; a five-cell von Neu-
mann neighbourhood {(0,0), (£1,0),(0,£1)} and a nine-cell Moore neighbourhood
{(0,0), (£1,0), (0, £1), (£1, £1)}.

The collection of states for all cells in L is known as a configuration (C'). The global
rule F' maps the whole automaton forward in time; it is the synchronous application of
f to each cell. The behaviour of a particular A is the sequence ?, ¢, ¢?, ..., ¢’ !, where
¥ is the initial configuration (IC) at t = 0.

CA behaviour is sensitive to the IC and to L, S, N and f. The behaviour is generally
non-linear and sometimes very complex; no single mathematical analysis can describe, or
even estimate, the behaviour of an arbitrary automaton. The vast size of the rule space,
and the fact that this rule space is unstructured, mean that knowledge of the behaviour
a particular cellular automaton, or even of a set of automata, gives no insight into the
behaviour of any other CA. In the lack of any practical model to predict the behaviour
of a cellular automaton, the only feasible method is to run simulations.

3. Aesthetics, Order and Complexity

Baumgarten (1714 -1762) influenced by Descartes (1596 - 1650) in distinguishing between
“clear and distinct ideas” from “obscure and confused ideas” argued that since thought
and intellect types of cognitions are dealt with logic and reasoning, the perception and
sensory types of cognitions should be dealt with a new science of sensory perception
which he called aesthetics, deriving it from a Greek word for ‘things perceived by the
senses’, as opposed to ‘things known by the mind’.

Aesthetic judgements have long been hypothesised to be correlated to the stimulus
complexity and order (i.e. symmetry). Empirical studies on art and aesthetic preferences
to address this problem initiated by Fechner who is also founded experimental aesthet-
ics (Fechner, 1876). Wundt postulated that the stimulus complexity and appraisal are
in a inverted-U curve relation which increases and then decreases with higher levels of
arousal (Wundt, 1874). Birkhoff suggested an early mathematical model as aesthetic mea-
sure by arguing that the measure of aesthetic (M) (Eq. 1) is in direct relation with the
degree of order (O) and in reverse relation with the complezity (C) of an object (Birkhoff,
1933),

M= = 1

" (1)
The validity of Birkhoff’s model, and his definition of order and complexity, has been
challenged by empirical studies in (Wilson, July 1939). Eysenck conducted a series of
experiments on Birkhoff’s model and suggested that a better expression of aesthetic
evaluation function should consider a direct relation to stimulus complexity rather than
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an inverse relation ( M = O x C') (Eysenck, 1941, 1942, 1968).

Information theory was developed in order to address communication over an unreliable
channel (Shannon, 1948). Entropy is the core of this theory (Cover & Thomas, 2006).
Let X be discrete alphabet, X a discrete random variable, z € X a particular value of
X and P(x) the probability of z. Then the entropy, H(X), is:

H(X)=~)  P(x)log, P(x) (2)

reX

The quantity H is the average uncertainty in bits, log2(%) associated with X. Entropy
can also be interpreted as the average amount of information needed to describe X.
The value of entropy is always non-negative and reaches its maximum for the uniform

distribution, logy(|X]):
0 < H < logy(|X]). 3)

The lower bound of relation (3) corresponds to a deterministic variable (no uncertainty)
and the upper bound corresponds to a maximum uncertainty associated with a random
variable. Entropy can be regarded as a measure of order and complexity. A low entropy
implies low uncertainty and the message is highly predictable, ordered and less complex.
High entropy implies a high uncertainty, less predictability, highly disordered and com-
plex. These interpretations of entropy shaped the informational theories of aesthetics.

Moles (Moles, 1968), Bense (Bense, 1960; Bense & Nee, 1965; Bense, 1969) and Arn-
heim (Arnheim, 1954, 1966, 1969) were pioneers of the application of entropy to quantify
order and complexity in Birkhoft’s formula by adapting statistical measure of informa-
tion in aesthetic objects. Bense argued that aesthetic objects are “vehicles of aesthetical
information” where statistical information can quantify the aesthetical information of
objects (Bense, 1960). His informational aesthetics has three basic assumptions. (1) Ob-
jects are material carriers of aesthetic state, and such aesthetic states are independent
of subjective observers. (2) A particular kind of information is conveyed by the aesthetic
state of the object (or process) as aesthetic information and (3) objective measure of
aesthetic objects is in relation with degree of order and complexity in an object (Nake,
2012).

Herbert Franke put forward an aesthetic perception theory on the ground of cyber-
netic aesthetics. He made a distinction between the amount of information being stored
and the rate of information flowing through a channel as information flow measured in
bits/sec (Franke, 1977). His theory is based on psychological experiments which sug-
gested that conscious working memory can not take more than 16 bits/sec of visual
information. Then he argued that artists should provide a flow of information of about
16 bits/sec for works of art to be perceived as beautiful and harmonious. Staudek in his
multi criteria approach (informational and structural) as ezact aesthetics to Birkhoff’s
measure applied information flow I’ by defining it as a measure assessing principal infor-
mation transmission qualities in time. He used 16 bits/sec reference as channel capacity
C, = 16 bits/sec and a time reference of 8 seconds ({, = 8s) to argue that artefacts
with I > 128 bits will not fit into the conscious working memory for absorbing the whole
aesthetic message (Staudek, 2002).

Berlyne, inspired by Wundt, suggested that the aesthetic judgement and pleasurable-
ness of a stimulus starts at a relatively indifferent level, then increases as a function of
complexity up to a certain level, then decreases and becomes more unpleasant as com-
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plexity increases (Berlyne, 1960). Later experimental studies supported the aesthetic
preference in relation to the complexity of visual and auditory stimuli conforming with
a inverted-U curve (Munsinger & Kessen, 1964; Silvia, 2006). These principle explains
the general dominance of stimuli or artworks that are not too simple and not too com-
plex. Berlyne used informational approach in his psychological experiments to determine
humans perceptual curiosity of visual figures (Berlyne, 1957).

Machado and Cardoso (Machado & Cardoso, 1998) proposed a model based on
Birkhoff’s approach as the ratio of image complexity to processing complexity by ar-
guing that images with high visual complexity, are processed easily so they have highest
aesthetic value. Adapting Bense’s informational aesthetics to different approaches of the
concepts of order and complexity in an image in (Rigau, Feixas, & Sbert, 2007, 2008),
three measures based on Kolmogorov complexity (M. Li, 1997), Shannon entropy (for
RGB channels) and Zurek’s physical entropy (Zurek, 1989) were introduced. Then the
measures were are applied to analyse aesthetic values of several paintings (Mondrian,
Pollock, and van Gogh).

In summary:

e Birkhoff’s aesthetic measure made order and complexity as integral parts of computa-
tional notions of aesthetics.

e Even though the validity of Birkhoff’s approach in penalising complexity in aesthetic
judgements has been contradicted by empirical studies, it seems that computational
notions of aesthetics keep ignoring this well established fact.

e Despite the dominance of entropy as a measure of order and complexity, it fails to
reflect on structural characteristics of 2D patterns. The main reason for this drawback
is that it only reflects on the distribution of the symbols, and not on their spatial
arrangements. This is in contrast to our intuitive perception of the complexity of
patterns and is problematic for the purpose of measuring the complexity of 2D patterns.
This fact also have been ignored on the developments of computational notions of
aesthetics.

Fig. 1 illustrates the measure of entropy of 2D patterns with various structural charac-
teristics with the uniform distribution of elements. Figs. 1la-b are patterns with ordered
structures and Fig. 1c is a pattern with a fairly structureless random pattern.

H = 1.58496 H = 1.58496

Figure 1. Measure of H for structurally different patterns with uniform distribution of elements.

The comparison of structural characteristics of these patterns with their corresponding
entropy value shows that despite their structural differences, all of the patterns have the
same entropy value. This clearly demonstrates the failure of entropy to discriminate
structurally different 2D patterns. In other words entropy measure is invariant to spatial
arrangement of composing elements of 2D patterns. This is in contrast to our intuitive
perception of complexity of patterns. For the purpose of measuring complexity of CA
behaviour specially with multi-state structures, it would be problematic if only entropy
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measure is applied.

4. Information Gain Measure

Considering our intuitive perception of complexity and structural characteristics of 2D
patterns, a complexity measure must be bounded by two extreme points of complete
order and disorder. It is reasonable to assume that reqular structures, irreqular structures
and structureless patterns lie along between these extremes, as illustrated in Fig. 2. A

regular structure | irregular structure | structureless _
disorder

order <

Figure 2. The spectrum of spatial complexity.

complete regular structure is a pattern of high symmetry, an irregular structure is a
pattern with some sort of structure but not as regular as a fully symmetrical pattern
and finally a structureless pattern is a random arrangement of elements (Javaheri Javid,
Blackwell, et al., 2015). A measure introduced in (Bates & Shepard, 1993; Wackerbauer,
Witt, Atmanspacher, Kurths, & Scheingraber, 1994; Andrienko, Yu. A., Brilliantov, N.
V., & Kurths, J., 2000) and known as information gain, has been proposed as a means of
characterising the complexity of dynamical systems and of 2D patterns. It measures the
amount of information gained in bits when specifying the value, z, of a random variable
X given knowledge of the value, y, of another random variable Y,

Gyy = —logy P(zly). (4)

P(z]y) is the conditional probability of a state z conditioned on the state y. Then the
mean information gain (MIG), Gxy, is the average amount of information gain from
the description of the all possible states of Y:

Gxy =Y P(2,y)Gry=—Y Pla,y)log, P(xly) (5)
.y

x?y

where P(z,y) is the joint probability, prob(X = x,Y = y). G is also known as the
conditional entropy, H(X|Y) (Cover & Thomas, 2006). Conditional entropy is the re-
duction in uncertainty of the joint distribution of X and Y given knowledge of Y,
H(X|Y)=H(X,Y)— H(Y). The lower and upper bounds of Gy y are

0 § é)@y < log2 |X’ (6)

DEFINITION 4.1 A structural complexity measure G, of a cellular automaton configura-
tion is the sum of the mean information gains of cells having homogeneous/heterogeneous
neighbouring cells over 2D lattice.

For a cellular automaton configuration, G can be calculated by considering the distri-
bution of cell states over pairs of cells r, s,

Gr,s = - Z P(ST’ 58) 1Og2 P(ST’ SS) (7)

ERER

where s,, s; are the states at r and s. Since |S| = N, G, is a value in [0, N].
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The vertical, horizontal, primary diagonal (\) and secondary diagonal () neigh-
bouring pairs provide eight Gs; G(; ) (i-1,j+1)) Gi),G.5+1)» Gl i+1,5+1)0 G, i-14)>
G (i), (i+1,5) G(@j)?(i_l’j_l), Gij),i,j—1) and G j) (i+1,j—1)- The relative positions for non-

edge cells are given by matrix M:

(i*l,j‘i’l) (i,j+1) (i+1,j+1)
M= (-15) Gj) G+5) |- (8)

Correlations between cells on opposing lattice edges are not considered. The result
of this edge condition is that G;41; is not necessarily equal to G;_; ;. In addition the
differences between the horizontal (vertical) and two diagonal mean information rates
reveal left/right (up/down), primary and secondary orientation of 2D patterns. So the
sequence of generated configurations by a multi-state 2D cellular automaton can analysed
by the differences between the vertical (i,j + 1), horizontal (i £ 1, j), primary diagonal
(P; ) and secondary diagonal (Syz) mean information gains by

AGijz1 = [Gijr1 — Gijl (9a)
AGit1; = |Gi-1 — Gig] (9b)
AGp, =|Gi—1j11 — Git1,j-1| (9c)
AGs, = |Git1,j41 — Gi—1,j-1| (9d)

Fig. 3 demonstrates the merits of G in discriminating structurally different patterns
for the sample patterns in Fig. 1. As it is evident, the measures of H are identical for
structurally different patterns, however, the measure of Gs and AGs are reflecting not
only the complexity of patterns but their spatial arrangements too.

5. Kolmogorov Complexity of 2D Patterns

From information theory perspective, the object X has been a random variable drawn
according to a probability mass function P(z). If X is random, then the descriptive com-
plexity of the event X = z is log %, because [log %1 is the number of bits required
to describe x. Thus the descriptive complexity of an object depends on the probability
distribution (Cover & Thomas, 2006). Kolmogorov defined the algorithmic (descriptive)
complexity of an object to the minimum length of a program such that a universal
computer can generate a specific sequence (Kolmogorov, 1965). Thus, the Kolmogorov
complexity of an object is independent of the probability distribution. Kolmogorov com-
plexity is related to entropy (H (X)), in that the expected value of K(z) for a random
sequence is approximately the entropy of the source distribution for the process generat-
ing the sequence. However, Kolmogorov complexity differs from entropy in that it relates
to the specific string being considered rather than the source distribution (M. Li, 1997;
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Gi_1,j4+1 = 1.15843
Giy1,j—1 = 1.15843
AGp, =0
Git1,j41 = 1.15843
Gi_1,-1 = 1.15843
AGs, =0

L
(b)

H = 1.58496
Gij41=0
Gi,j—l =0

AGij1 =0

Gi-1,; = 1.15955
Git1, = 1.15955
AGit1,;,=0
G141 = 1.15843
Giy1j—1 = 1.15843
AGp, =0
Git1,j41 = 1.15843
Gi_1j-1 = 1.15843
AGs, =0

H = 1.58496

Gij+1 = 1.58181
G j-1 = 1.58209
AG; j+1 = 0.00028
G,_1, = 1.57696
Git1,; = 1.57668
AGi11; = 0.00028
G141 = 1.56727
Giy1,j—1 = 1.56712
AG p, = 0.000150
Git1,j+1 = 1.57688
Gi_1j-1 = 157657
AGs, = 0.00031

Figure 3. Measure of H, G's and AGs for structurally different patterns with uniform distribution of elements.

Cover & Thomas, 2006). Kolmogorov complexity can be described as follows, where ¢
represents a universal computer, p represents a program, and x represents a string:

Kofe) ={ min 1) (10)

Random strings have rather high Kolmogorov complexity on the order of their length, as
patterns cannot be discerned to reduce the size of a program generating such a string. On
the other hand, strings with a large amount of structure have fairly low complexity. Uni-
versal computers can be equated through programs of constant length, thus a mapping
can be made between universal computers of different types. The Kolmogorov complex-
ity of a given string on two computers differs by known or determinable constants. The
Kolmogorov complexity K (y|z) of a string y, given string = as input is described by the
equation below

min  [(p)

w(p,y)=y
Ko(ylr) = (11)

00, if there is no p such that p(p,z) =y

where [(p) represents program length p and ¢ is a particular universal computer under
consideration. Thus, knowledge or input of a string z may reduce the complexity or
program size necessary to produce a new string y. The major difficulty with Kolmogorov
complexity is that you cannot compute it. Any program that produces a given string is an
upper bound on the Kolmogorov complexity for this string, but you cannot compute the
lower bound. Lempel and Ziv defined a measure of complexity for finite sequences rooted
in the ability to produce strings from simple copy operations (Ziv & Lempel, 1978). This
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method known as LZ78 universal compression algorithm harnesses this principle to yield
a universal compression algorithm that can approach the entropy of an infinite sequence
produced by an ergodic source. So LZ78 compression has been used as an estimator for
K. Kolmogorov complexity is the ultimate compression bound for a given finite string,
thus a natural choice for estimation of complexity is the class of universal compression
techniques.

In order to estimate the K value of 2D configurations generated by multi-state CA, we
generate linear strings of configurations by six different templates illustrates in Fig. 4.

1—2—3 1 2 3 1 2 3 1 2 3 1—2—3 2—3
[ Yava N\ | L/
4—5—6 4 5 6 4 5 6 4 5 6 4—5 6 4 5 6
[ 4 NN T |
7T—8—9 7 8 9 7 8 9 7 8 9 T—8+—9 T—8 9

(a) (b) (c) (d) (e) (f)

Figure 4. Six different templates.

Fig. 4a string horizontal S, = {1,2,3,4,5,6,7,8,9}, Fig. 4b vertical S, =
{1,4,7,2,5,8,3,6,9}, Fig. 4c diagonal Sy = {1,2,4,3,5,7,6,8,9}, Fig. 4d reverse di-
agonal S,q = {3,2,6,1,5,9,4,8,7}, Fig. 4e spiral Sg ={1,2,3,6,9,8,7,4,5}, and Fig. 4f
continuous spiral S.s = {1,4,2,3,5,7,8,6,9}. Then using LZ78 compression algorithm,
the upper bound of K is estimated. The comparison of the measurement of H, Gs, AGs
and K for structurally different patterns with uniform distribution of elements is illus-
trated in Fig. 5. As it is evident from the measurements, K is able to discriminate the
complexity of patterns, however it fails to discriminate the spatial orientations.

T )
(b) ()
H =1.58496 H = 1.58496
G, Gij+1=0 Gij+1 = 1.58181
Gij—1 = 1.15955 Gij1=0 Gij—1 = 1.58209
Aéi,j:ﬁ:l =0 Aéi,j:l:l =0 Aéi,j:l:l = 0.00028
Gi1;=0 G, 1 = 1.15955 Gi_1; = 1.57696
Git1,=0 Gis1j = 1.15955 Git1,; = 1.57668
Aéi:tl,j =0 Aéiil,j =0 Aéizﬂ’j = 0.00028

Gi—1j+1 = 1.15843
Giy1,j-1 = 1.15843
AGp, =0
Giy1,j+1 = 1.15843
Gi_1,-1 =1.15843
AGg, =0
Kh =0.13889

Gi—1,j+1 = 1.15843
Git1,j-1 = 1.15843
AGp, =0
Git1j+1 = 1.15843
Gi—1j-1 = 1.15843
AGs, =0
Kv = 0.13889

Gi-1j+1 = 1.56727
Giy1,j-1 = 1.56712
AGp, = 0.000150
Giy1,j+1 = 1.57688
Gi_1j-1 = 157657
AGg, = 0.00031
Kg—es = 0.27778

Figure 5. Measures of H, Gs, AGs and K for structurally different patterns with uniform distribution of elements.
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6. Experiments and Results

A set of experiments was designed to examine the effectiveness of G in discriminating
the particular configurations that are generated by a multi-state 2D cellular automaton.
The experimental rule (Table 1) maps four states, represented by white, red, blue and
orange; the quiescent state is white.

Table 1. Update rule of experimental cellular automaton.

L = 65 x 65 (4225 cells).

S$=10,1,2,3={ ,m,mm

N': Moore neighbourhood

f:8—=8
if s;,5)(t) =0 and 0 =1
if 5(;5)(t) =1-3 and 0 =2
if s5(,5)(t) =1-3 ando =3
otherwise

f(sig)(t) = si(t+1) =

SN W

where ¢ is the sum total of the neighbourhood states.

The experiments are conducted with four different ICs: (1) all quiescent states cells
except for a single cell (Fig. 6a) (2) a right oriented 5 cell (Fig. 6b), (3) a left oriented 5 cell
(Fig. 6¢) and (4) a random configuration with 2112 white quiescent states cells covering
~ 50% of the lattice, 749 red, 682 blue and 682 orange cells (Fig. 6d). The experimental
rule has been iterated synchronously for 150 successive time steps. Figs. 7, 9, 11 and 13
illustrate a sample of time steps starting from four different ICs. Then the sequence of
configurations are analysed by 9a, 9b, 9¢c, 9d and K.

J..-,"'f"h

(a) (b) (c) (d)

Figure 6. The four different ICs.

The behaviour of cellular automaton from the single cell IC is a sequence of symmetrical
patterns (Fig. 7). This fact has been reflected on the measurements of AGs (Fig. 8), where
they are constant for the 150 time steps (Aéi’jil = Aéiﬂ’j = AGp, = AGg, = 0). This
is an indicator of the development of complete symmetrical patterns in four directions
for each of 150 configurations generated by experimental cellular automaton. However,
the measurement of entropy starts from Hy = 0.00319 and reaches Hi59 = 1.47979 at
the end of the runs.

The behaviour of cellular automaton from two 5 cell ICs (6b and 6¢) are sequence of
symmetrical patterns with different orientations (Fig. 14). The measurements of H for
these two sequences of structurally different but symmetrical conﬁgurations are identical
from t = 0 to ¢t = 150, where H{® = H§ = 0.01321 and HY = HPS) = 1.43241
(Fig. 16). On the other hand the measurements of AGs especially AGp, and AGg, are
reflecting the differences in the orientations of symmetrical configurations (Figs. 14). This
is further illustrated in Fig. 15 where the measures of H, Gs and AGs are compared for
two configurations generated at ¢ = 40 from two different 6b and 6¢ ICs.

[a side by side comparison of the measurements of IG for .... and H]



February 15, 2016

Connection Science

ConnScie
P g ve TR e
[ .\._l'\"'l_.- [ :."‘- ."—.:.b 'Lll.sl- -'H.:
] ..-I-"\.I-.\. 1 :'\.\_. "_.:_"I-!' 'rli::\-_'_.\..-:
- = -y :.-\. ‘.:' I-'- -'.:-_.-:l.' a.:
Aot i
t=0 t=20 t=40
oapHAER LRGeS e 0D el S =
YA EE g ‘%}"‘% e % TR %
iﬁl%nﬂtgﬁaﬁ 24 %-d hﬁ Y %@ﬁf
e T R e
i_;jm- ﬁﬁ%ﬁ -EE %%&E%E :
I_I..-. i '-%.:..;rl )= : _%“g 5 .-|:'\-
Tanbl i aiedeal UM i e
f..‘E'.‘I-:-:;I.-\::l;-\.rTﬁ:-:.r. -..1..5 BT EAEE S P e A

Figure 7. Space-time diagram of the experimental cellular automaton for sample time steps starting from the

single cell IC (6a).
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Figure 8. The measurements of AGs for 150 time steps starting from 6a ICs.
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The behaviour of cellular automaton from the random IC is a sequence of irregular
structures (Fig. 13). The formation of patterns with local structures has reduced the
values of AGs until a stable oscillating pattern is attained. This is an indicator of the
development of irregular structures. However the patterns are not random patterns since
the maximum four-state value logy(4) = 2 (Eq. 6).

These experiments demonstrate that a cellular automaton rule seeded with different
ICs leads to the formation of patterns with structurally diverse characteristics. The
gradient of the mean information rate along lattice axes is able to detect the structural
characteristics of patterns generated by this particular multi-state 2D cellular automaton.
From the comparison of H with AG's in the set of experiments, it is clear that entropy fails
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Figure 9. Space-time diagram of the experimental cellular automaton for sample time steps starting from the 6b
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Figure 10. The measurements of AGs for 150 time steps starting from 6b and 6¢c ICs.

to discriminate between the diversity of patterns that can be generated by various CA.
The structured but asymmetrical patterns emerging from the random start are clearly
distinguished from the symmetrical patterns including their orientation. As it is evident
from the results of experiments, the measures of H are identical for structurally different
patterns, however, the measure of G's and AGs are reflecting not only the complexity of
patterns but their spatial arrangements (i.e. orientation of symmetries) as well.

The relationship between K and Gs are examined by Eq. 12 (Pearson correlation
coefficient). Table 2 illustrates the calculations of r for different directional G's. Since the
r are =~ 0.99, so there are strong positive correlation between K and G's.
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The measurements of AGs for 150 time steps starting from 6b and 6c ICs.

YK — K)(Gi - G)
r=TrKg = = =
VIR - K2\ Y (G- 6y

(12)
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Figure 13. Space-time diagram of the experimental cellular automaton for sample time steps starting from the
random (6d) IC.
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Figure 14. The measurements of AGs for 150 time steps starting from 6b and 6c ICs.
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Gijr1 = 1.36140
Gij—1 = 1.36538
AG; ;41 = 0.00308

Gi_1,; = 1.36140
Giy1; = 1.36538
AG;11,; = 0.00398
Gi—1,j41 = 1.36634
Gig1,j-1 = 1.37431
AGp, = 0.00797
Gi_1j-1 = 1.37148

Gi+1’j+1 = 137148

(b)
H = 1.42929

Gij+1 = 1.36140
Gij—1 = 1.36538
AG, ;1 = 0.00398

Gi-1,; = 1.36538
Git1,5 = 1.36140
AG,11,; = 0.00398
Gi_1,j41 = 1.37148
Git1,j-1 = 1.37148
AGp, =0
Gi_1j-1 = 1.37431
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AGs, = 0.00797
K, = 0.16118

AGs, =0
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Figure 15. The comparison of H, Gs and AGs at t = 40 for 6b (a) and 6¢ (b) ICs.
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Figure 16. The measurements of AGs for 150 time steps starting from 6b and 6c ICs.

Table 2. Calculations of r for different ICs.

TG, = 09985 | rig  =09985 | rig  =09985 | rg = 0.9985
TG = 09975 | T = 09975 | 1 = 09975 | rg = 0.9975
Calculations of r for 6a IC.

TG, = 09996 | rg  =09995 | rg  =09996 | reg. = 0.999
TG = 09996 | Tig = 0.9996 | rg =099 g =0.9995
Calculations of r for 6b IC.

TG, = 09996 | g =09995 | reg  =09995 | rig = 0.9996
TG = 09995 | Tig = 09996 | rig =0.9996 | g = 0.9996
Calculations of r for 6¢ IC.

TG, = 09854 | rim  =09842 [ rup  =09874 | rig = 0.9838
TG = 09885 | T = 09819 |1 =09794 | rp = 0.9831

Calculations of r for 6d IC.
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7. Conclusion

CA are powerful tools for the pattern generation and have been used as a generative tool
in computer art. Indeed, multi-state 2D CA can generate aesthetically appealing and
complex patterns with various structural characteristics. Entropy, which is a statistical
measure of the distribution of cell states, is not in general able to distinguish structurally
different configurations generated by CA. However mean information gain, takes into
account conditional and joint probabilities between pairs of cells and, since it is based
on correlations between cells, holds promise for patterns discrimination. Kolmogorov
algorithmic complexity is another measure of complexity which is used to estimated the
complexity of 2D configurations generated by a cellular automaton.

This paper reports on a set of experiments for four different initial conditions of a
cellular automaton. The potential of mean information gain and Kolmogorov complexity
for distinguishing multi-state 2D CA patterns is demonstrated. So the measures appears
to be particular good at distinguishing different kinds random patterns from non-random
patterns however, information gain can also discriminate the orientation of symmetries
as well. Since CA are one of the generative tools in computer art, means of evaluating
the aesthetic qualities of CA generated patterns could have a substantial contribution
towards further automation of aesthetic behaviour generation-evaluation of CA art.
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