A Lazy Semantics for Program Slicing

Sebastian Danicic!, Mark Harman?, John Howroyd' and Lahcen Ouarbya'

'Department of Computing, Goldsmiths College, University of London, New Cross,
London SE14 6NW

?Department of Information Systems and Computing, Brunel University, Uxbridge,
Middlesex, UB8 3PH.

Abstract. This paper demonstrates that if a slicing algorithm is ex-
pressed denotationally, without intermediate structures, then the power
of denotational semantics can be used to prove correctness.

The semantics preserved by slicing algorithms, however, is non-standard.
We introduce a new lazy semantics which we prove is preserved by slicing
algorithms.

It is demonstrated how other concepts in program dependence, difficult
or impossible to express using standard semantics, for example variable
dependence, can be expressed naturally using our new lazy semantics.

Traditionally, slicing algorithms and program analysis algorithms in general
are defined in terms of a variety of intermediate graph representations: control
flow graphs [1], data dependence graphs [2] and program dependence graphs [3].
There have been many efforts to give a formal semantics of these intermediate
program representations [9, 10]. Horwitz et al. [10] have shown that two programs
with the same program dependence graph have the same semantics. Cartwright
and Felleisen [9] defined a non-strict semantics for program dependence graphs
of a simple procedural language. Other efforts give a constructive semantics
of the program dependence graph by transforming the denotational semantics
of imperative languages. The fact that these semantics are defined for some
intermediate graph representations instead of the programming language itself
makes it difficult to prove correctness of program transformation techniques such
as slicing.

This paper demonstrates that if the slicing algorithm and the semantics of the
program language and the ‘correctness criteria’ of slicing should are all expressed
denotationally then the full power of denotational semantics can be used in
correctness proofs.

In 1989, Hausler [11] introduced a denotational slicing algorithm. His algo-
rithm has not been formally proved correct. This was our goal. To do this, a
satisfactory definition of correctness had to be given. According to Weiser [12],
a program and its (end) slice must agree with respect to the set of variables
in the slicing criterion. In other words, if we run the original program and the
slice, then, in all states where the original terminates, the slice must also termi-
nate with the same final values for the variables in the slicing criterion. This is
the correctness criterion that needs to be proved for any slicing algorithm. The

behaviour of the slice in states where the original does not terminate is left un-
defined. In fact, traditional slicing algorithms sometimes introduce termination:
the standard semantics of the program is thus, less defined than the semantics
of some of its slices. Because of this it is unnatural to try to prove correctness
of slicing properties using Standard Semantics [13].

In an attempt to solve this problem, Cartwright and Felleisen [9] introduce
a non-strict lazy semantics of program dependence graphs. Unfortunately, their
lazy semantics is not substitutive i.e. we cannot always replace a subprogram
@ of a program P with another semantically equivalent subprogram, @', and
guarantee that the resulting program P’ is semantically equivalent to P.

Giacobazzi and Mastreoni [13] argued that if a semantics is to be useful
for modelling kinds of program manipulation such as slicing it should be com-
positional, just as standard semantics, and be able to capture semantic infor-
mation ‘beyond infinite loops’. They use semantics represented by transfinite
states traces of programs [14] and showed the existence of such semantics using
domain equations. They introduce a non-standard semantics, called Transfinite
Semantics, using a metric structure on their value domains.

Central to slicing is the concept of wvariable dependence (or neededness as
we call it): the set of variables needed by a set of variables V in program P.
Intuitively, this is the set of variables whose initial value ‘may affect’ the final
value of at least one variable v in V after executing P. Our aim is to make the
phrase ‘may affect’ semantically precise.

Intuitively, neededness should be semantically descriminating. That is, if =
and y are variables such that there exists two initial states o1 and o9, differing
only on z, such that the meaning of P gives rise to final states with different
values of y. Then y should be needed by x with respect to P.

A definition of neededness, clearly will also have to be consistent with Weiser’s
algorithm. That is, all variables that are ‘semantically needed’ must also be
‘Weiser Needed’. Otherwise, Weiser’s algorithm would be deemed in some cases
not to produce valid slices.

Due to issues regarding non—termination, it turns out to be hard, if not
impossible, to define neededness in terms of standards semantics. This leads
to the Lazy Semantics which is at the heart of our work. Our semantics is,
unsurprisingly, closely related to the semantics of Cartwright and Felleisen [9],
as that was a semantics for program dependence graphs. Unlike theirs, however,
our lazy semantics is substitutive. In terms of our lazy semantics the definition
of neededness turns out to be straightforward.

In Lazy Semantics, variables are allowed to have a | value and hence partially
defined states, where some variables are mapped to L and others to well defined
values. The set of such states is denoted as X*.

X+ Variables — V| .

The ordering on YL is now a richer ordering than on Y| as used in the standard
semantics where all non L states were incomparable. For these partially defined
states, o1 C oy means o3(z) = L = oy(z) = L.

Since variables can be mapped to L we now have the possibility that evaluat-
ing an expression in a partially defined state can yield L. A variable z, referenced
by an expression e, does not necessarily mean it contributes to the evaluation
of e. For example, the value of the expression x — z is independent of the value
of x. We define a function, det, which takes an expression e for argument and
returns the set of variables referenced by e which contribute to the evaluation
of e. The function det(e) is defined later on. If det(e) contains a variable which
has 1 as a value in o, then the whole expression is evaluated to L in o. The
meaning of an expression in our lazy semantics is given by the function &£,.,.

Elazy : E%ZJ‘ l—)Vl

1 if Jv € det(e) with ov = L.

iven by & eo =
& Y Clazy {5 e o otherwise.

The lazy meaning of a program is given by the function Mj,.,, which, as in
the case of standard semantics, is a state to state function:

Migzy @ P— 5t — 3+

For skip, assignment, and statement sequences, the rules are as in standard se-
mantics: Myq.y[skip]o = 0, Mia.y[z=e]o = o[z <+ Eiazyle]o] and Myqzy[S1; S2] =
Miazy[1S2] © M2y [S1]. The first departure from standard semantics appears in

the way we handle conditional statements:

Mlazy[[S]]]U if glazy[[b]]g True.
Miazy[if (B) then Sy else Sa]o = { Myazy[Sa]o if Eiazy[b]o = False.
leLZy[[Sl]]U M Mlazy IISQ]](T if Elazy IIb]]()‘ = 1.

where o1 Moy the meet of o1 and o is defined as Mi-o1 (i) = 02(i) = 01(i), L. The
only difference from standard semantics is when the guard evaluates to bottom.
If the value of = depends on the guard then z is mapped to L. On the other
hand, if the value of z is the same in the then and else parts then this should be
its final value even if the guard is L.

if (z>0)

Fig.1.in {z — 1,y = 1,z — L}, z has final value 1, whereas y has final value L.

=1
For example given an initial statec = { y =1 in X%, the value if predicate
z=1
in the program in Figure 1 in o is equal to L. However, the value of the variable
x after executing the then branch is the same as when executing the else branch
and is equal to 1. In this case the lazy value of the variable = after executing the
program in Figure 1 in state o is equal to 1. Unlike the variable z, the value of the
variable y is different when executing the then branch from when executing else
branch, and hence, the final value of the variable y is L. The final values of both
variables ,z and y, when using the lazy semantics by Cartwright and Felleisen [9]
is L. This is a result of the fact that their semantics lose all information about
the variables defined in the then or else parts of an if statement in states where
its predicate is undefined.

The lazy semantics of a while loop, while (B) S is defined in terms of
the loop’s unfoldings W;(B,S) whereW,(B,S) = skip and W,41(B,S) =
if (B) then {S;W,,(B,S)} else skip. The lazy meaning of a while loop is then
defined as follows:

Miqzy[while (B) S] = Ao - |_|G,;(7 where G0 = |_| Miazy[Wn (B, S)]o

i=0 n=i

Given a state o and a variable x the final lazy value of = after executing a while
loop starting in state o is the limit of all the values of z after executing each of
the unfoldings. If the limit does not exist, then we define the final lazy value to
be L. Here we mean the limit with respect to a discrete metric i.e. for the limit
to exist, there must exist an NV € N such that all unfoldings greater than N give
the same value for z in o. If this is the case we say the value of = stabilises after
N unfoldings. The lazy meaning of while loop is thus the limit of the meet of
the lazy meaning of all its corresponding unfoldings.

Although the M,., [Wn(B, S)] are not monotonic, i.e. Mjq.y[Wn(B,S)] is
not necessarily less defined than Mj,.,[Whn41 (B, S)], clearly G; C G,41, hence
the least upper bound of the G; exists.

In states where the while loop does not terminate or the guard evaluates to
L, if the value of a variable stabilises after ¢+ unfoldings, for some i > 0, then its
meaning will be the stabilised value. Otherwise, its value is just L. For example,
given the infinite loop in the program in Figure 2 the value of the variable x
stabilises to 1 after the first unfolding whereas the value of the variable y never
stabilises. In this case, the lazy values of x and y are 1 and L respectively.

Substitutivity of the semantics greatly simplifies correctness proofs for the
sorts of transformations described in this paper and others for example amor-
phous slicing [15] which is another transformation system where a program’s
transformations are expressed in terms of the transformations of its sub-components.
We showed that our lazy semantics is substitutive. Furthermore, a semantics
definition of variable dependence(neededness) is given in terms of it, that is se-
mantically discriminating, Weiser-consistent and sub-sequential.

while (True)

{

x=1;
y=y+1;

Fig. 2. The lazy value of z is 1 and of y is L.

As a demonstration of the applicability of our lazy semantics, Hausler’s De-

notational Slicing Algorithm is proved correct with respect to the lazy semantic
definition of a slice. Since our lazy definition of a slice is stronger than the stan-
dard one, this proves that Hausler’s Algorithm [11] is correct with respect to the
standard definition too.

Future work will explore the extension of our lazy semantics and Hausler’s

slicing algorithm to handle programs with procedures.

References

w

M. S. Hecht, Flow Analysis of Computer Programs, Elsevier, 1977.
D. J. Kuck, The structure of computers and computations 12 (1) (1990) 26—60.

. J. Ferrante, K. J. Ottenstein, J. D. Warren, The program dependence graph and its

use in optimization, ACM Transactions on Programming Languages and Systems
9 (3) (1987) 319 349.

M. Harman, L. Hu, M. Munro, X. Zhang, D. W. Binkley, S. Danicic, M. Daoudi,
L. Ouarbya, Syntax-directed amorphous slicing, Journal of Automated Software
Engineering 11 (1) (2004) 27 61.

. R. M. Hierons, M. Harman, C. Fox, L. Ouarbya, M. Daoudi, Conditioned slicing

supports partition testing, Software Testing, Verification and Reliability 12 (2002)
23 28.

M. Daoudi, S. Danicic, J. Howroyd, M. Harman, C. Fox, L.. Ouarbya, M. Ward,
ConSUS: A scalable approach to conditioned slicing, in: IEEE Working Conference
on Reverse Engineering (WCRE 2002), IEEE Computer Society Press, Los Alami-
tos, California, USA | Richmond, Virginia, USA | 2002, pp. 109 — 118, invited for
special issue of the Journal of Systems and Software as best paper from WCRE
2002.

L. Ouarbya, S. Danicic, D. M. Daoudi, M. Harman, C. Fox, A denotational inter-
procedural program slicer, in: IEEE Working Conference on Reverse Engineering
(WCRE 2002), IEEE Computer Society Press, Los Alamitos, California, USA,
Richmond, Virginia, USA, 2002, pp. 181 — 189.

M. Harman, L. Hu, X. Zhang, M. Munro, S. Danicic, M. Daoudi, L. Ouarbya, An
interprocedural amorphous slicer for WSL, in: IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM 2002), IEEE Computer Society
Press, Los Alamitos, California, USA, Montreal, Canada, 2002, pp. 105 114, se-
lected for consideration for the special issue of the Journal of Automated Software
Engineering.

10.

11.

12.

13.

14.

15.

R. Cartwright, M. Felleisen, The semantics of program dependence, in: ACM SIG-
PLAN Conference on Programming Language Design and Implementation, 1989,
pp. 13-27.

S. Horwitz, J. Prins, T. Reps, On the adequacy of program dependence graphs for
representing programs, in: ACM (Ed.), POPL '88. Proceedings of the conference
on Principles of programming languages, January 13-15, 1988, San Diego, CA,
ACM Press, New York, NY, USA, 1988, pp. 146 157.

P. A. Hausler, Denotational program slicing, in: 22", Annual Hawaii International
Conference on System Sciences, Volume II, 1989, pp. 486-495.

M. Weiser, Program slicing, IEEE Transactions on Software Engineering 10 (4)
(1984) 352 357.

R. Giacobazzi, I. Mastroeni, Non-standard semantics for program slicing, Higher-
Order and Symbolic Computation(HOSC) 16 (4) (2003) 297 339.

J. Kennaway, J. Klop, M. Sleep, F. Vries, Transfinite reduction in orthogonal term
rewriting systems., Information and computation 119 (1) (1995) 18-38.

M. Harman, S. Danicic, Amorphous program slicing, in: 5" IEEE International
Workshop on Program Comprenhesion (IWPC’97), IEEE Computer Society Press,
Los Alamitos, California, USA, Dearborn, Michigan, USA, 1997, pp. 70-79.

