
A Lazy Semanti
s for Program Sli
ingSebastian Dani
i
1, Mark Harman2, John Howroyd1 and Lah
en Ouarbya11Department of Computing, Goldsmiths College, University of London, New Cross,London SE14 6NW2Department of Information Systems and Computing, Brunel University, Uxbridge,Middlesex, UB8 3PH.Abstra
t. This paper demonstrates that if a sli
ing algorithm is ex-pressed denotationally, without intermediate stru
tures, then the powerof denotational semanti
s
an be used to prove
orre
tness.The semanti
s preserved by sli
ing algorithms, however, is non-standard.We introdu
e a new lazy semanti
s whi
h we prove is preserved by sli
ingalgorithms.It is demonstrated how other
on
epts in program dependen
e, diÆ
ultor impossible to express using standard semanti
s, for example variabledependen
e,
an be expressed naturally using our new lazy semanti
s.Traditionally, sli
ing algorithms and program analysis algorithms in generalare de�ned in terms of a variety of intermediate graph representations:
ontrol
ow graphs [1℄, data dependen
e graphs [2℄ and program dependen
e graphs [3℄.There have been many e�orts to give a formal semanti
s of these intermediateprogram representations [9, 10℄. Horwitz et al. [10℄ have shown that two programswith the same program dependen
e graph have the same semanti
s. Cartwrightand Felleisen [9℄ de�ned a non-stri
t semanti
s for program dependen
e graphsof a simple pro
edural language. Other e�orts give a
onstru
tive semanti
sof the program dependen
e graph by transforming the denotational semanti
sof imperative languages. The fa
t that these semanti
s are de�ned for someintermediate graph representations instead of the programming language itselfmakes it diÆ
ult to prove
orre
tness of program transformation te
hniques su
has sli
ing.This paper demonstrates that if the sli
ing algorithm and the semanti
s of theprogram language and the `
orre
tness
riteria' of sli
ing should are all expresseddenotationally then the full power of denotational semanti
s
an be used in
orre
tness proofs.In 1989, Hausler [11℄ introdu
ed a denotational sli
ing algorithm. His algo-rithm has not been formally proved
orre
t. This was our goal. To do this, asatisfa
tory de�nition of
orre
tness had to be given. A

ording to Weiser [12℄,a program and its (end) sli
e must agree with respe
t to the set of variablesin the sli
ing
riterion. In other words, if we run the original program and thesli
e, then, in all states where the original terminates, the sli
e must also termi-nate with the same �nal values for the variables in the sli
ing
riterion. This isthe
orre
tness
riterion that needs to be proved for any sli
ing algorithm. The

behaviour of the sli
e in states where the original does not terminate is left un-de�ned. In fa
t, traditional sli
ing algorithms sometimes introdu
e termination:the standard semanti
s of the program is thus, less de�ned than the semanti
sof some of its sli
es. Be
ause of this it is unnatural to try to prove
orre
tnessof sli
ing properties using Standard Semanti
s [13℄.In an attempt to solve this problem, Cartwright and Felleisen [9℄ introdu
ea non-stri
t lazy semanti
s of program dependen
e graphs. Unfortunately, theirlazy semanti
s is not substitutive i.e. we
annot always repla
e a subprogramQ of a program P with another semanti
ally equivalent subprogram, Q0, andguarantee that the resulting program P 0 is semanti
ally equivalent to P .Gia
obazzi and Mastreoni [13℄ argued that if a semanti
s is to be usefulfor modelling kinds of program manipulation su
h as sli
ing it should be
om-positional, just as standard semanti
s, and be able to
apture semanti
 infor-mation `beyond in�nite loops'. They use semanti
s represented by trans�nitestates tra
es of programs [14℄ and showed the existen
e of su
h semanti
s usingdomain equations. They introdu
e a non-standard semanti
s,
alled Trans�niteSemanti
s, using a metri
 stru
ture on their value domains.Central to sli
ing is the
on
ept of variable dependen
e (or neededness aswe
all it): the set of variables needed by a set of variables V in program P .Intuitively, this is the set of variables whose initial value `may a�e
t' the �nalvalue of at least one variable v in V after exe
uting P . Our aim is to make thephrase `may a�e
t' semanti
ally pre
ise.Intuitively, neededness should be semanti
ally des
riminating. That is, if xand y are variables su
h that there exists two initial states �1 and �2, di�eringonly on x, su
h that the meaning of P gives rise to �nal states with di�erentvalues of y. Then y should be needed by x with respe
t to P .A de�nition of neededness,
learly will also have to be
onsistent with Weiser'salgorithm. That is, all variables that are `semanti
ally needed' must also be`Weiser Needed'. Otherwise, Weiser's algorithm would be deemed in some
asesnot to produ
e valid sli
es.Due to issues regarding non{termination, it turns out to be hard, if notimpossible, to de�ne neededness in terms of standards semanti
s. This leadsto the Lazy Semanti
s whi
h is at the heart of our work. Our semanti
s is,unsurprisingly,
losely related to the semanti
s of Cartwright and Felleisen [9℄,as that was a semanti
s for program dependen
e graphs. Unlike theirs, however,our lazy semanti
s is substitutive. In terms of our lazy semanti
s the de�nitionof neededness turns out to be straightforward.In Lazy Semanti
s, variables are allowed to have a ? value and hen
e partiallyde�ned states, where some variables are mapped to ? and others to well de�nedvalues. The set of su
h states is denoted as �?.�? : V ariables! V?:The ordering on �? is now a ri
her ordering than on �? as used in the standardsemanti
s where all non ? states were in
omparable. For these partially de�nedstates, �1 v �2 means �2(x) = ? =) �1(x) = ?:

Sin
e variables
an be mapped to ? we now have the possibility that evaluat-ing an expression in a partially de�ned state
an yield ?. A variable x, referen
edby an expression e, does not ne
essarily mean it
ontributes to the evaluationof e. For example, the value of the expression x� x is independent of the valueof x. We de�ne a fun
tion, det, whi
h takes an expression e for argument andreturns the set of variables referen
ed by e whi
h
ontribute to the evaluationof e. The fun
tion det(e) is de�ned later on. If det(e)
ontains a variable whi
hhas ? as a value in �, then the whole expression is evaluated to ? in �. Themeaning of an expression in our lazy semanti
s is given by the fun
tion Elazy.Elazy : E ! �? 7�! V?given by Elazy e � = (? if 9v 2 det(e) with �v = ?:E e � otherwise.The lazy meaning of a program is given by the fun
tionMlazy, whi
h, as inthe
ase of standard semanti
s, is a state to state fun
tion:Mlazy : P �! �? 7�! �?For skip, assignment, and statement sequen
es, the rules are as in standard se-manti
s:Mlazy[[skip℄℄� = �,Mlazy[[x=e℄℄� = �[x Elazy [[e℄℄�℄ andMlazy[[S1;S2℄℄ =Mlazy[[S2℄℄ ÆMlazy[[S1℄℄. The �rst departure from standard semanti
s appears inthe way we handle
onditional statements:Mlazy[[if (B) then S1 else S2℄℄� = 8><>:Mlazy[[S1℄℄� if Elazy[[b℄℄� = True:Mlazy[[S2℄℄� if Elazy[[b℄℄� = False:Mlazy[[S1℄℄� uMlazy[[S2℄℄� if Elazy[[b℄℄� = ?:where �1u�2 the meet of �1 and �2 is de�ned as �i��1(i) = �2(i)! �1(i);?. Theonly di�eren
e from standard semanti
s is when the guard evaluates to bottom.If the value of x depends on the guard then x is mapped to ?. On the otherhand, if the value of x is the same in the then and else parts then this should beits �nal value even if the guard is ?.if (z>0)then fx=1;y=2;gFig. 1. in fx 7! 1; y 7! 1; z 7! ?g, x has �nal value 1, whereas y has �nal value ?.

For example given an initial state � = 8><>:x = 1y = 1z = ? in�?, the value if predi
atein the program in Figure 1 in � is equal to ?. However, the value of the variablex after exe
uting the then bran
h is the same as when exe
uting the else bran
hand is equal to 1. In this
ase the lazy value of the variable x after exe
uting theprogram in Figure 1 in state � is equal to 1. Unlike the variable x, the value of thevariable y is di�erent when exe
uting the then bran
h from when exe
uting elsebran
h, and hen
e, the �nal value of the variable y is ?. The �nal values of bothvariables ,x and y, when using the lazy semanti
s by Cartwright and Felleisen [9℄is ?. This is a result of the fa
t that their semanti
s lose all information aboutthe variables de�ned in the then or else parts of an if statement in states whereits predi
ate is unde�ned.The lazy semanti
s of a while loop, while (B) S is de�ned in terms ofthe loop's unfoldings Wi(B;S) whereW0(B;S) = skip and Wn+1(B;S) =if (B) then fS;Wn(B;S)g else skip. The lazy meaning of a while loop is thende�ned as follows:Mlazy[[while (B) S℄℄ = �� � 1Gi=0Gi� where Gi� = 1ln=iMlazy[[Wn(B;S)℄℄�Given a state � and a variable x the �nal lazy value of x after exe
uting a whileloop starting in state � is the limit of all the values of x after exe
uting ea
h ofthe unfoldings. If the limit does not exist, then we de�ne the �nal lazy value tobe ?. Here we mean the limit with respe
t to a dis
rete metri
 i.e. for the limitto exist, there must exist an N 2 N su
h that all unfoldings greater than N givethe same value for x in �. If this is the
ase we say the value of x stabilises afterN unfoldings. The lazy meaning of while loop is thus the limit of the meet ofthe lazy meaning of all its
orresponding unfoldings.Although theMlazy[[Wn(B;S)℄℄ are not monotoni
, i.e.Mlazy[[Wn(B;S)℄℄ isnot ne
essarily less de�ned thanMlazy[[Wn+1(B;S)℄℄,
learly Gi v Gi+1, hen
ethe least upper bound of the Gi exists.In states where the while loop does not terminate or the guard evaluates to?, if the value of a variable stabilises after i unfoldings, for some i � 0, then itsmeaning will be the stabilised value. Otherwise, its value is just ?. For example,given the in�nite loop in the program in Figure 2 the value of the variable xstabilises to 1 after the �rst unfolding whereas the value of the variable y neverstabilises. In this
ase, the lazy values of x and y are 1 and ? respe
tively.Substitutivity of the semanti
s greatly simpli�es
orre
tness proofs for thesorts of transformations des
ribed in this paper and others for example amor-phous sli
ing [15℄ whi
h is another transformation system where a program'stransformations are expressed in terms of the transformations of its sub-
omponents.We showed that our lazy semanti
s is substitutive. Furthermore, a semanti
sde�nition of variable dependen
e(neededness) is given in terms of it, that is se-manti
ally dis
riminating, Weiser-
onsistent and sub-sequential.

while (True)f x=1;y=y+1;gFig. 2. The lazy value of x is 1 and of y is ?.As a demonstration of the appli
ability of our lazy semanti
s, Hausler's De-notational Sli
ing Algorithm is proved
orre
t with respe
t to the lazy semanti
de�nition of a sli
e. Sin
e our lazy de�nition of a sli
e is stronger than the stan-dard one, this proves that Hausler's Algorithm [11℄ is
orre
t with respe
t to thestandard de�nition too.Future work will explore the extension of our lazy semanti
s and Hausler'ssli
ing algorithm to handle programs with pro
edures.Referen
es1. M. S. He
ht, Flow Analysis of Computer Programs, Elsevier, 1977.2. D. J. Ku
k, The stru
ture of
omputers and
omputations 12 (1) (1990) 26{60.3. J. Ferrante, K. J. Ottenstein, J. D. Warren, The program dependen
e graph and itsuse in optimization, ACM Transa
tions on Programming Languages and Systems9 (3) (1987) 319{349.4. M. Harman, L. Hu, M. Munro, X. Zhang, D. W. Binkley, S. Dani
i
, M. Daoudi,L. Ouarbya, Syntax-dire
ted amorphous sli
ing, Journal of Automated SoftwareEngineering 11 (1) (2004) 27{61.5. R. M. Hierons, M. Harman, C. Fox, L. Ouarbya, M. Daoudi, Conditioned sli
ingsupports partition testing, Software Testing, Veri�
ation and Reliability 12 (2002)23{28.6. M. Daoudi, S. Dani
i
, J. Howroyd, M. Harman, C. Fox, L. Ouarbya, M. Ward,ConSUS: A s
alable approa
h to
onditioned sli
ing, in: IEEE Working Conferen
eon Reverse Engineering (WCRE 2002), IEEE Computer So
iety Press, Los Alami-tos, California, USA, Ri
hmond, Virginia, USA, 2002, pp. 109 { 118, invited forspe
ial issue of the Journal of Systems and Software as best paper from WCRE2002.7. L. Ouarbya, S. Dani
i
, D. M. Daoudi, M. Harman, C. Fox, A denotational inter-pro
edural program sli
er, in: IEEE Working Conferen
e on Reverse Engineering(WCRE 2002), IEEE Computer So
iety Press, Los Alamitos, California, USA,Ri
hmond, Virginia, USA, 2002, pp. 181 { 189.8. M. Harman, L. Hu, X. Zhang, M. Munro, S. Dani
i
, M. Daoudi, L. Ouarbya, Aninterpro
edural amorphous sli
er for WSL, in: IEEE International Workshop onSour
e Code Analysis and Manipulation (SCAM 2002), IEEE Computer So
ietyPress, Los Alamitos, California, USA, Montreal, Canada, 2002, pp. 105{114, se-le
ted for
onsideration for the spe
ial issue of the Journal of Automated SoftwareEngineering.

9. R. Cartwright, M. Felleisen, The semanti
s of program dependen
e, in: ACM SIG-PLAN Conferen
e on Programming Language Design and Implementation, 1989,pp. 13{27.10. S. Horwitz, J. Prins, T. Reps, On the adequa
y of program dependen
e graphs forrepresenting programs, in: ACM (Ed.), POPL '88. Pro
eedings of the
onferen
eon Prin
iples of programming languages, January 13{15, 1988, San Diego, CA,ACM Press, New York, NY, USA, 1988, pp. 146{157.11. P. A. Hausler, Denotational program sli
ing, in: 22nd, Annual Hawaii InternationalConferen
e on System S
ien
es, Volume II, 1989, pp. 486{495.12. M. Weiser, Program sli
ing, IEEE Transa
tions on Software Engineering 10 (4)(1984) 352{357.13. R. Gia
obazzi, I. Mastroeni, Non-standard semanti
s for program sli
ing, Higher-Order and Symboli
 Computation(HOSC) 16 (4) (2003) 297{339.14. J. Kennaway, J. Klop, M. Sleep, F. Vries, Trans�nite redu
tion in orthogonal termrewriting systems., Information and
omputation 119 (1) (1995) 18{38.15. M. Harman, S. Dani
i
, Amorphous program sli
ing, in: 5th IEEE InternationalWorkshop on Program Comprenhesion (IWPC'97), IEEE Computer So
iety Press,Los Alamitos, California, USA, Dearborn, Mi
higan, USA, 1997, pp. 70{79.

