
A Lazy Semantis for Program SliingSebastian Danii1, Mark Harman2, John Howroyd1 and Lahen Ouarbya11Department of Computing, Goldsmiths College, University of London, New Cross,London SE14 6NW2Department of Information Systems and Computing, Brunel University, Uxbridge,Middlesex, UB8 3PH.Abstrat. This paper demonstrates that if a sliing algorithm is ex-pressed denotationally, without intermediate strutures, then the powerof denotational semantis an be used to prove orretness.The semantis preserved by sliing algorithms, however, is non-standard.We introdue a new lazy semantis whih we prove is preserved by sliingalgorithms.It is demonstrated how other onepts in program dependene, diÆultor impossible to express using standard semantis, for example variabledependene, an be expressed naturally using our new lazy semantis.Traditionally, sliing algorithms and program analysis algorithms in generalare de�ned in terms of a variety of intermediate graph representations: ontrolow graphs [1℄, data dependene graphs [2℄ and program dependene graphs [3℄.There have been many e�orts to give a formal semantis of these intermediateprogram representations [9, 10℄. Horwitz et al. [10℄ have shown that two programswith the same program dependene graph have the same semantis. Cartwrightand Felleisen [9℄ de�ned a non-strit semantis for program dependene graphsof a simple proedural language. Other e�orts give a onstrutive semantisof the program dependene graph by transforming the denotational semantisof imperative languages. The fat that these semantis are de�ned for someintermediate graph representations instead of the programming language itselfmakes it diÆult to prove orretness of program transformation tehniques suhas sliing.This paper demonstrates that if the sliing algorithm and the semantis of theprogram language and the `orretness riteria' of sliing should are all expresseddenotationally then the full power of denotational semantis an be used inorretness proofs.In 1989, Hausler [11℄ introdued a denotational sliing algorithm. His algo-rithm has not been formally proved orret. This was our goal. To do this, asatisfatory de�nition of orretness had to be given. Aording to Weiser [12℄,a program and its (end) slie must agree with respet to the set of variablesin the sliing riterion. In other words, if we run the original program and theslie, then, in all states where the original terminates, the slie must also termi-nate with the same �nal values for the variables in the sliing riterion. This isthe orretness riterion that needs to be proved for any sliing algorithm. The

behaviour of the slie in states where the original does not terminate is left un-de�ned. In fat, traditional sliing algorithms sometimes introdue termination:the standard semantis of the program is thus, less de�ned than the semantisof some of its slies. Beause of this it is unnatural to try to prove orretnessof sliing properties using Standard Semantis [13℄.In an attempt to solve this problem, Cartwright and Felleisen [9℄ introduea non-strit lazy semantis of program dependene graphs. Unfortunately, theirlazy semantis is not substitutive i.e. we annot always replae a subprogramQ of a program P with another semantially equivalent subprogram, Q0, andguarantee that the resulting program P 0 is semantially equivalent to P .Giaobazzi and Mastreoni [13℄ argued that if a semantis is to be usefulfor modelling kinds of program manipulation suh as sliing it should be om-positional, just as standard semantis, and be able to apture semanti infor-mation `beyond in�nite loops'. They use semantis represented by trans�nitestates traes of programs [14℄ and showed the existene of suh semantis usingdomain equations. They introdue a non-standard semantis, alled Trans�niteSemantis, using a metri struture on their value domains.Central to sliing is the onept of variable dependene (or neededness aswe all it): the set of variables needed by a set of variables V in program P .Intuitively, this is the set of variables whose initial value `may a�et' the �nalvalue of at least one variable v in V after exeuting P . Our aim is to make thephrase `may a�et' semantially preise.Intuitively, neededness should be semantially desriminating. That is, if xand y are variables suh that there exists two initial states �1 and �2, di�eringonly on x, suh that the meaning of P gives rise to �nal states with di�erentvalues of y. Then y should be needed by x with respet to P .A de�nition of neededness, learly will also have to be onsistent with Weiser'salgorithm. That is, all variables that are `semantially needed' must also be`Weiser Needed'. Otherwise, Weiser's algorithm would be deemed in some asesnot to produe valid slies.Due to issues regarding non{termination, it turns out to be hard, if notimpossible, to de�ne neededness in terms of standards semantis. This leadsto the Lazy Semantis whih is at the heart of our work. Our semantis is,unsurprisingly, losely related to the semantis of Cartwright and Felleisen [9℄,as that was a semantis for program dependene graphs. Unlike theirs, however,our lazy semantis is substitutive. In terms of our lazy semantis the de�nitionof neededness turns out to be straightforward.In Lazy Semantis, variables are allowed to have a ? value and hene partiallyde�ned states, where some variables are mapped to ? and others to well de�nedvalues. The set of suh states is denoted as �?.�? : V ariables! V?:The ordering on �? is now a riher ordering than on �? as used in the standardsemantis where all non ? states were inomparable. For these partially de�nedstates, �1 v �2 means �2(x) = ? =) �1(x) = ?:

Sine variables an be mapped to ? we now have the possibility that evaluat-ing an expression in a partially de�ned state an yield ?. A variable x, referenedby an expression e, does not neessarily mean it ontributes to the evaluationof e. For example, the value of the expression x� x is independent of the valueof x. We de�ne a funtion, det, whih takes an expression e for argument andreturns the set of variables referened by e whih ontribute to the evaluationof e. The funtion det(e) is de�ned later on. If det(e) ontains a variable whihhas ? as a value in �, then the whole expression is evaluated to ? in �. Themeaning of an expression in our lazy semantis is given by the funtion Elazy.Elazy : E ! �? 7�! V?given by Elazy e � = (? if 9v 2 det(e) with �v = ?:E e � otherwise.The lazy meaning of a program is given by the funtionMlazy, whih, as inthe ase of standard semantis, is a state to state funtion:Mlazy : P �! �? 7�! �?For skip, assignment, and statement sequenes, the rules are as in standard se-mantis:Mlazy[[skip℄℄� = �,Mlazy[[x=e℄℄� = �[x Elazy [[e℄℄�℄ andMlazy[[S1;S2℄℄ =Mlazy[[S2℄℄ ÆMlazy[[S1℄℄. The �rst departure from standard semantis appears inthe way we handle onditional statements:Mlazy[[if (B) then S1 else S2℄℄� = 8><>:Mlazy[[S1℄℄� if Elazy[[b℄℄� = True:Mlazy[[S2℄℄� if Elazy[[b℄℄� = False:Mlazy[[S1℄℄� uMlazy[[S2℄℄� if Elazy[[b℄℄� = ?:where �1u�2 the meet of �1 and �2 is de�ned as �i��1(i) = �2(i)! �1(i);?. Theonly di�erene from standard semantis is when the guard evaluates to bottom.If the value of x depends on the guard then x is mapped to ?. On the otherhand, if the value of x is the same in the then and else parts then this should beits �nal value even if the guard is ?.if (z>0)then fx=1;y=2;gFig. 1. in fx 7! 1; y 7! 1; z 7! ?g, x has �nal value 1, whereas y has �nal value ?.

For example given an initial state � = 8><>:x = 1y = 1z = ? in�?, the value if prediatein the program in Figure 1 in � is equal to ?. However, the value of the variablex after exeuting the then branh is the same as when exeuting the else branhand is equal to 1. In this ase the lazy value of the variable x after exeuting theprogram in Figure 1 in state � is equal to 1. Unlike the variable x, the value of thevariable y is di�erent when exeuting the then branh from when exeuting elsebranh, and hene, the �nal value of the variable y is ?. The �nal values of bothvariables ,x and y, when using the lazy semantis by Cartwright and Felleisen [9℄is ?. This is a result of the fat that their semantis lose all information aboutthe variables de�ned in the then or else parts of an if statement in states whereits prediate is unde�ned.The lazy semantis of a while loop, while (B) S is de�ned in terms ofthe loop's unfoldings Wi(B;S) whereW0(B;S) = skip and Wn+1(B;S) =if (B) then fS;Wn(B;S)g else skip. The lazy meaning of a while loop is thende�ned as follows:Mlazy[[while (B) S℄℄ = �� � 1Gi=0Gi� where Gi� = 1ln=iMlazy[[Wn(B;S)℄℄�Given a state � and a variable x the �nal lazy value of x after exeuting a whileloop starting in state � is the limit of all the values of x after exeuting eah ofthe unfoldings. If the limit does not exist, then we de�ne the �nal lazy value tobe ?. Here we mean the limit with respet to a disrete metri i.e. for the limitto exist, there must exist an N 2 N suh that all unfoldings greater than N givethe same value for x in �. If this is the ase we say the value of x stabilises afterN unfoldings. The lazy meaning of while loop is thus the limit of the meet ofthe lazy meaning of all its orresponding unfoldings.Although theMlazy[[Wn(B;S)℄℄ are not monotoni, i.e.Mlazy[[Wn(B;S)℄℄ isnot neessarily less de�ned thanMlazy[[Wn+1(B;S)℄℄, learly Gi v Gi+1, henethe least upper bound of the Gi exists.In states where the while loop does not terminate or the guard evaluates to?, if the value of a variable stabilises after i unfoldings, for some i � 0, then itsmeaning will be the stabilised value. Otherwise, its value is just ?. For example,given the in�nite loop in the program in Figure 2 the value of the variable xstabilises to 1 after the �rst unfolding whereas the value of the variable y neverstabilises. In this ase, the lazy values of x and y are 1 and ? respetively.Substitutivity of the semantis greatly simpli�es orretness proofs for thesorts of transformations desribed in this paper and others for example amor-phous sliing [15℄ whih is another transformation system where a program'stransformations are expressed in terms of the transformations of its sub-omponents.We showed that our lazy semantis is substitutive. Furthermore, a semantisde�nition of variable dependene(neededness) is given in terms of it, that is se-mantially disriminating, Weiser-onsistent and sub-sequential.

while (True)f x=1;y=y+1;gFig. 2. The lazy value of x is 1 and of y is ?.As a demonstration of the appliability of our lazy semantis, Hausler's De-notational Sliing Algorithm is proved orret with respet to the lazy semantide�nition of a slie. Sine our lazy de�nition of a slie is stronger than the stan-dard one, this proves that Hausler's Algorithm [11℄ is orret with respet to thestandard de�nition too.Future work will explore the extension of our lazy semantis and Hausler'ssliing algorithm to handle programs with proedures.Referenes1. M. S. Heht, Flow Analysis of Computer Programs, Elsevier, 1977.2. D. J. Kuk, The struture of omputers and omputations 12 (1) (1990) 26{60.3. J. Ferrante, K. J. Ottenstein, J. D. Warren, The program dependene graph and itsuse in optimization, ACM Transations on Programming Languages and Systems9 (3) (1987) 319{349.4. M. Harman, L. Hu, M. Munro, X. Zhang, D. W. Binkley, S. Danii, M. Daoudi,L. Ouarbya, Syntax-direted amorphous sliing, Journal of Automated SoftwareEngineering 11 (1) (2004) 27{61.5. R. M. Hierons, M. Harman, C. Fox, L. Ouarbya, M. Daoudi, Conditioned sliingsupports partition testing, Software Testing, Veri�ation and Reliability 12 (2002)23{28.6. M. Daoudi, S. Danii, J. Howroyd, M. Harman, C. Fox, L. Ouarbya, M. Ward,ConSUS: A salable approah to onditioned sliing, in: IEEE Working Confereneon Reverse Engineering (WCRE 2002), IEEE Computer Soiety Press, Los Alami-tos, California, USA, Rihmond, Virginia, USA, 2002, pp. 109 { 118, invited forspeial issue of the Journal of Systems and Software as best paper from WCRE2002.7. L. Ouarbya, S. Danii, D. M. Daoudi, M. Harman, C. Fox, A denotational inter-proedural program slier, in: IEEE Working Conferene on Reverse Engineering(WCRE 2002), IEEE Computer Soiety Press, Los Alamitos, California, USA,Rihmond, Virginia, USA, 2002, pp. 181 { 189.8. M. Harman, L. Hu, X. Zhang, M. Munro, S. Danii, M. Daoudi, L. Ouarbya, Aninterproedural amorphous slier for WSL, in: IEEE International Workshop onSoure Code Analysis and Manipulation (SCAM 2002), IEEE Computer SoietyPress, Los Alamitos, California, USA, Montreal, Canada, 2002, pp. 105{114, se-leted for onsideration for the speial issue of the Journal of Automated SoftwareEngineering.

9. R. Cartwright, M. Felleisen, The semantis of program dependene, in: ACM SIG-PLAN Conferene on Programming Language Design and Implementation, 1989,pp. 13{27.10. S. Horwitz, J. Prins, T. Reps, On the adequay of program dependene graphs forrepresenting programs, in: ACM (Ed.), POPL '88. Proeedings of the onfereneon Priniples of programming languages, January 13{15, 1988, San Diego, CA,ACM Press, New York, NY, USA, 1988, pp. 146{157.11. P. A. Hausler, Denotational program sliing, in: 22nd, Annual Hawaii InternationalConferene on System Sienes, Volume II, 1989, pp. 486{495.12. M. Weiser, Program sliing, IEEE Transations on Software Engineering 10 (4)(1984) 352{357.13. R. Giaobazzi, I. Mastroeni, Non-standard semantis for program sliing, Higher-Order and Symboli Computation(HOSC) 16 (4) (2003) 297{339.14. J. Kennaway, J. Klop, M. Sleep, F. Vries, Trans�nite redution in orthogonal termrewriting systems., Information and omputation 119 (1) (1995) 18{38.15. M. Harman, S. Danii, Amorphous program sliing, in: 5th IEEE InternationalWorkshop on Program Comprenhesion (IWPC'97), IEEE Computer Soiety Press,Los Alamitos, California, USA, Dearborn, Mihigan, USA, 1997, pp. 70{79.

