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ABSTRACT
This paper presents a system that allows end users to de-
sign full body interactions with 3D animated virtual charac-
ter through a process we call Interactive Performance Cap-
ture. This process is embodied in the sense that users design
directly by moving and interacting using an interactive ma-
chine learning method. Two people improvise an interaction
based only on their movements, one plays the part of the vir-
tual character the other plays a real person. Their movements
are recorded and they label it with metadata that identifies
certain actions and responses. This labelled data is then used
to train a Gaussian Mixture Model that is able to recognized
new actions and generate suitable responses from the virtual
character. A small study showed that users do indeed design
in a very embodied way using movement directly as a means
of thinking through and designing interactions.
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INTRODUCTION
Non-verbal communication is a vital part of our social inter-
actions. While the often quoted estimate that only seven per-
cent of human communication is verbal is contested, it is clear
that a large part of peoples communication with each other is
through gestures, postures, and movements. This is very dif-
ferent from the way that we traditionally communicate with
machines. Creating computer systems capable of this type
of non-verbal interaction is therefore an important challenge.
Interpreting and animating body language is challenging for
a number of reasons, but particularly because it is something
we do subconsciously and we are often not aware of what ex-
actly we are doing and would not be able to describe it later.
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Experts in body language (the people we would like to de-
sign the game) are not computer scientists but professionals
such as actors and choreographers. Their knowledge of body
language is embodied: they understand it by physically do-
ing it and often find it hard to explicitly describe it in words
(see Kirsh[16] for a discussion of embodied cognition in the
area of dance). This makes it very hard for people to trans-
late it into the explicit, symbolic form needed for computer
programming.

The last few years have seen introduction of new forms of
user interface device such as the Nintendo WiiMote, the
Microsoft Kinect and the Sony Move go beyond the key-
board and mouse and use body movements as a means
of interacting with technology. These devices promise
many innovations, but maybe the most profound and ex-
citing was one that appeared as a much hyped demo prior
to the release of the Microsoft Kinect. The Milo demo
(http://www.youtube.com/watch?v=CPIbGnBQcJY) showed
a computer animated boy interacting with a real woman, re-
plying to her speech and responding to her body language.
This example shows the enormous potential for forms of
interaction that make use of our natural body movements,
including our subconscious body language. However, this
demo was never released to the public, showing the impor-
tant challenges that still remain. While sensing technology
and Natural Language Processing have developed consider-
ably in the 5 years since this demo there are still major chal-
lenges in simulating the nuances of social interaction, and
body language in particular. This is very complex work that
combines Social Signal Processing [33] with computer ani-
mation of body language[11]. Perhaps the greatest challenge
is that body language is a tacit skill [27] in the sense we are
able to do it without being able to explicitly say what we are
doing or how we are doing it; and it is a form of embodied
(social) cognition [16, 3] in which our body and environment
play a fundamental role in our process of thought. The physi-
cality of movement and the environment is an integral part of
cognition and so a movement-based interaction is best under-
stood through embodied movement. Kirsh[16] therefore ar-
gues that the next generation of interaction techniques should
take account of this embodiment, part of a larger trend to-
wards embodiment in interaction design [24, 9]. This raises
an important challenge for designing computational systems
because they traditionally must be programmed with explicit
rules that are abstract and disembodied (in the sense that body
movement is not an innate part of their creation). The prob-
lem of representing the embodied, tacit skills of body lan-
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guage and social interaction requires us to develop computa-
tional techniques that are very different from the explicit and
abstract representations used in computer programming.

In Fiebrink’s evaluation of the Wekinator, a system for de-
signing new gestural musical instruments one of the partic-
ipants commented: “With [the Wekinator], it’s possible to
create physical sound spaces where the connections between
body and sound are the driving force behind the instrument
design, and they feel right. . . . it’s very difficult to create
instruments that feel embodied with explicit mapping strate-
gies, while the whole approach of [the Wekinator] . . . is pre-
cisely to create instruments that feel embodied.” [7, p. 249].
This shows that the wekinator uses a new approach to de-
sign gestural interfaces that not only makes it easier to de-
sign but changes the way people think about designing, from
a explicit focus on features of the movement (e.g. shoulder
rotation) to a holistic, embodied view of movement. This ap-
proach is called Interactive Machine Learning (IML): the use
of machine learning algorithms to design by interactively pro-
viding examples of interaction. This “embodied” form of de-
sign taps into our natural human understanding of movement
which is itself embodied and implicit. We are able to move
and recognise movement effectively but less able to analyse it
into components. IML allows designers to design by moving
rather than by analysing movement.

This paper presents a first attempt at applying Fiebrink’s
method to full body interaction with animated virtual char-
acters, allowing an emodied form of designing by doing as
suggested by Kleinsmith et al [17]. We call this approach In-
teractive Performance Capture. Performance capture is the
process of recording actors’ performances for mapping into a
3D animation. This is able to bring the nuance of the perfor-
mance to the animation, but it works for static animations, not
interactive systems. We use interactive machine learning as a
way of capturing the interactions between two performers, as
well as their movements.

RELATED WORK

Expressive Virtual Characters
This work builds on a long tradition of research in interactive
virtual characters that aims to simulate people’s non-verbal
behaviour and how they interact with eachother [32]. Ma-
chine learning has been applied to virtual characters in a
number of ways. It has been used most often in contexts
where there is a clear score that the system has to optimize
to produce the best possible character at playing a game (e.g.
[21] on reinforcement learning for a boxing character). Oth-
ers have used learning algorithms to approximate examples
of real behavior. For example, [20] learn Dynamic Bayesian
Networks that reproduce the interaction between two fighting
characters. Similarly, [8] has created characters that respond
expressively to game events (in this case, spectators at a foot-
ball match). This was learned from motion capture of a per-
son responding to example events. [22] and [26] use a similar
approach for learning to control gestures to accompany spo-
ken conversation. These examples underpin our current work.
However, none of the above systems have experimented with
how machine learning can be used interactively as a design

tool rather than a batch process. We extend this approach to
use IML, in which the human is not simply a source of data
but is actively involved in guiding the learning process.

Full body interaction
Full body interaction covers a range of interaction styles that
make greater use of body movement than traditional mouse
and keyboard input. The most common kind of bodily in-
teraction is gesture interaction, where an interface is based
on recognizing particular gestures, normally made with the
hands and arms [2, 7]. However, it can include broader forms
of interaction such as body activated art installations [29] or
dance-like interfaces for controlling music[1].

Bodily interaction in video games is now a mass-market phe-
nomenon with the launch of controllers such as the Nintendo
Wii, Sony Move and particularly the Microsoft Kinect. This
opens up the possibility of video games in which players in-
teract with characters through their natural body language and
other body movements. This is only beginning to be ex-
plored in video games but builds on a long tradition of re-
search into virtual character that can engage in dialogs with
humans [14], including many experiments into developing
virtual characters that respond to gestures and body move-
ments, from Thórisson’s early work [31] to Huang et al’s [12]
sophisticated responsive listening agent and Xiao et al’s ma-
chine learning based gesture recognition and response [34].

Interactive Machine Learning
Interactive Machine Learning is a new approach to machine
learning in which user interaction is central to the learning
process. Rather than simply providing a fixed data set to
a batch process, users add data and tune parameters inter-
actively, progressively refining the machine learning model
based on interactive testing. This approach has the potential
to fundamentally change the use of machine learning in inter-
face design. The interaction and progressive refinement can
make machine learning into a genuine design tool in which a
designer has fine control of the resulting interface, as opposed
to a batch approach where the designer has to simply prepare
the data and hope that the result comes out as expected. Inter-
active machine learning builds on a long tradition of program-
ming by example (e.g. [25, 23]) but it also differs in focusing
on statistical learning algorithms and also in not attempting to
model general programming, but limiting training by example
to specific elements such as classifiers that are well modeled
by current learning techniques. The term Interactive Machine
Learning (IML) was introduced by [6] who saw it as a way of
involving users more closely in the machine learning process
by interactively supplying and editing training data. Their
Crayons system enables non-expert users to create image pro-
cessing classifiers in an iterative process by drawing on im-
ages that they provide as training data. Other systems also
allow users to manipulate other aspects of the learning pro-
cess, for example, Talbot et al’s [30] EnsembleMatrix which
allows users to combine classifiers and interactively explore
the relationships between them. ManiMatrix by [15] allows
users to specify preferences for classification by manipulat-
ing a confusion matrix. Most of the above systems treat ma-
chine learning algorithms as black boxes without considering
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Figure 1. The actor being motion captured (above) and a participant interacting with the virtual character.

how users understand them. While ManiMatrix and Ensem-
bleMatrix allow users to visualize and edit how the outputs of
classification are used, they treat the algorithms themselves
as a black box and do not encourage users to understand how
they work. [19]’s research, on the other hand, centers on sup-
porting users in understanding how their classifier reaches it’s
classification. They focus on end user debugging of machine
learning systems for spam filtering by allowing users to make
queries relating to why the system makes certain classifica-
tions. [7] has used Interactive Machine Learning for the de-
sign of gestural and bodily interfaces for the control of elec-
tronic movement. Her users found this form of design to
be more natural and engaging than approaches that required
them to analyze gestures in terms of specific features. This
seems to have been because the process was more embod-
ied, allowing users to concentrate on their movements, and in
particular on the physical performance of those movements,
rather than analyzing abstract features of the sensor data.

Machine learning has been applied to virtual agents in a num-
ber of ways. It has been used most often in contexts where
there is a clear score that the system has to optimize to pro-
duce the best possible character at playing a game (e.g. [21]
on reinforcement learning for a boxing character). Others
have used learning algorithms to approximate examples of
real behavior. For example, [20] learn Dynamic Bayesian
Networks that reproduce the interaction between two fighting
characters. Similarly, [8] has created characters that respond
expressively to game events (in this case, spectators at a foot-
ball match). This was learned from motion capture of a per-
son responding to example events. [22] and [26] use a similar
approach for learning to control gestures to accompany spo-
ken conversation. These examples underpin our current work.
However, none of the above systems have experimented with
how machine learning can be used interactively as a design
tool rather than a batch process. We extend this approach to
use IML, in which the human is not simply a source of data
but is actively involved in guiding the learning process.

DESIGNING BY MOVING
We have developed a process and software for designing body
movment interactions with virtual agents. It allows users
to design the interaction directly by moving rather than by
programming, by using an interactive machine learning ap-

proach. The process consists of three phases: improvising
movements to design the interaction labelling the movments
that have been recorded in order to train a machine learning
classifier and testing the resulting system.

PROCESS
The aim of this research is to create a software and hardware
application that could make the creation of full body interac-
tion interfaces accessible to independent game developers and
ordinary game players. In particular it was to support the de-
sign of full body interaction with a virtual character, including
both recognition of players’ bodily actions and animation of
a character’s response. Users can design characters that can
recognize actions performed by a player and then perform a
suitable response.

Our application uses an Interactive Machine Learning ap-
proach, in which users design by giving examples of particu-
lar interactions. A learning algorithm is used to create a clas-
sifier that can recognize players’ actions and which is then
used to select responses. The learning algorithm is trained
using the examples of interaction created by the users. The
aim is to capture interactions that are as natural as possible,
so our application is built around capturing interactions be-
tween two users as they happen.

The design process is therefore based on users providing ex-
amples of interaction via motion capture systems. This re-
quires them to act out interaction, but does not require specific
technical knowledge of programming. It focuses on users de-
signing actions by doing those actions, using their implicit
knowledge of behavior without having to formally analyze
their actions.

The design process is split into three major phases: improvi-
sation, labeling and testing.

Improvisation
The improvisation set up enables two users to improvise inter-
action in order to design the virtual character. One user plays
the part of the character while the other plays the part of the
player. The set up is shown schematically in figure 2. The
two users are in different spaces and their movements were
streamed live to each other. The movements of the the charac-
ter were motion captured using an OptitrackTMoptical motion
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Figure 2. The improvisation and capture system

capture system and the player’s movements were recorded us-
ing a Microsoft Kinect consumer motion tracking device.

Both sets of movement data were streamed into our software
application and used to display a visualization on a screen in
front of each user. Each user could see the movement of the
other user, as well as their own. Both motion tracking devices
represented the movement in terms of joint rotations. These
rotations were mapped onto articulated skeletons consisting
of a hierarchy of transformations. The rotations were writ-
ten directly to the transformation corresponding to the same
joint. The articulations were then used to drive an animated
figure. In the case of the character, the figure was a moder-
ately realistic mesh of a man. The player’s movements were
represented in a more abstract way as a stick figure. In our
first prototype the user representing the player was directly
visible to the other user via a live video stream (figure 1, left).
However, this caused problems. A live video feed gives a
holistic idea of a person’s behavior based on a combination of
many complex and subtle factors ranging from facial expres-
sion to muscle tension. However, the data used as input from
the Kinect is only able to capture a small range of features,
essentially only joint rotations and even then only of certain
joints. Users’ understanding of a pose would therefore rely
on a number of factors that were not available to the soft-
ware. The video feed made visible many aspects of the user’s
movement including many that were not available to the al-
gorithm. On reviewing the poses used during the workshops
it was clear that the users were making use of distinctions that
were not visible in the joint rotation data. For example, they
used a strong man pose, in which users raised their arms and
flexed their biceps and also a celebration pose in which arms
were raised without flexing the biceps. The two were easy to
distinguish from video but looked very similar based on joint
rotations. The final prototype used a new representation of
the Kinect data as a stick figure (Figure 3). This represen-
tation aimed at making the system’s representation of action
as Kinect data more explicit to users. This minimal represen-
tation was designed to show only the joint rotation features
available to the algorithm. To ensure consistency, this new
representation was used both to display the user’s movement
live during improvisation and in the labeling interface.

The movement data was also recorded for later playback and
as an input to the machine learning algorithm. The data

was saved as an animation object consisting of a sequence
of timed keyframes. Whenever new motion capture data was
received, and after it had been mapped onto the skeleton, a
keyframe was saved. The keyframe consisted of a time and a
list of quaternion rotations, one for each joint. A single ani-
mation object was used for both the character and player data,
to allow for synchronized playback.

Labelling
After the improvisation phase, the users use an editing inter-
face (Figure 3) to select particular movements and label them
as examples of particular actions and reactions. This label-
ing process is divided into two stages, selecting actions made
by the player (using the interface shown in figure 3, left) and
responses by the character (figure 3, right). The first are in-
dividual poses from the movement data of the user represent-
ing the player. Responses are sequences of movement by the
player representing the character, which can be used to ani-
mate the character.

Both actions and responses are labeled with textual tags rep-
resenting the type of action/response pair. Actions labeled
with a certain tag will trigger one of the responses labelled
with the same tag. Users are free to choose their own textual
labels (with the exception of a special label “nothing” corre-
sponding to no action). By allowing a free choice of tags the
application aims to avoid imposing a fixed set of semantics
on behaviour. Instead it aims to encourage users to use the
functionality to develop their own meanings and representa-
tions of behavior, inline with research on designing systems
for appropriation by users [5, 4]. Labels could be added using
the interface labeled 4 in figure 3 (left). Each label is assigned
a unique color and all items tagged with that label are shown
in that color, to make the labeling clearly visible throughout
the interface.

At the center of the action interface is the representation of
the kinect data from the player with the character next to it
for reference. As discussed in the previous section the kinect
data is shown in a minimal stick figure (labeled 1 in figure 3,
left) that only displays the joint rotation information that is
actually available from the kinect, thus preventing the users
from reading in extra detail that is not available to the algo-
rithm. At the top of the screen is a list of recorded sets of
movement data that the users can select (2 in figure 3, left).
Once a movement data set has been selected users can move
through it using the slider at the bottom of the screen (3 in fig-
ure 3, left). This allows them to select a particular pose as an
action. This action can then be labeled with a tag, shown in
the colored buttons above the stick figure (4 in figure 3, left).
Each tag has a unique color which is used to represent it con-
sistently across the interface. All of the labeled actions are
shown as smaller “thumbnail” stick figures below the main
stick figure (5 in figure 3, left). Each action is displayed in
the color that represents its tag. The function of the thumb-
nails will be discussed in more detail in section ??. The data
selected using the interface above was used to train a classi-
fier, which will be discussed in more detail in the next section.

The interface for selecting responses (figure 3, right) is simi-
lar. This time the character is in the center of the screen (1 in

4



1

4

2

5

3

1

2

3

Figure 3. Left: The user interface for labeling action data. Center: The user interface for labeling response data. Right: The dynamic visualization of
the nearest neighbor algorithm. Each data item is displayed as a stick figure. The figures are scaled in proportion to the amount of probability each
contributes to the classification of the current posture.

figure 3, center). The responses are represented by a sequence
of movement from motion capture data. These are created by
selecting a range of movement from the data, using two slid-
ers, one for the start and one for the end of the sequence (2 in
figure 3, right). These sequences can be labeled with tags in
the same way as the actions and then appear as buttons at the
top of the screen (3 in figure 3, center).

The labeled movement data is used to train a machine learn-
ing classifier that is used to classify the behavior of the player
and select appropriate responses for the character. The clas-
sifier is trained with data from the Kinect. The pose of the
kinect data at each selected action is used as the training data
and the textual tag is used as the class. The pose is represented
as a vector of features consisting of the rotation of each joint
represented as Euler angles (rotation angles about the x,y,z
axes). We use the weighted nearest neighbor classifier pro-
posed by Gillies et al[10]. They suggest that this classifier is
particularly suited to interactive machine learning with body
movement as it makes use of the training examples directly
rather than creating an abstract model from the data. This
maximizes the value of the training instances, which is im-
portant because in interactive machine learning there are typ-
ically fewer instances than in batch learning [7], but they are
carefully chosen. The use of the training examples also makes
the algorithm easier for users to understand, as it is directly
acting on examples they are using, and it is easy to visualize
in terms of these examples (see below for a discussion of the
visualization).

Interaction
When interacting with the virtual character, the player’s set
up was identical to the improvisation set up: they interacted
with a virtual character via the Kinect. However, in this case
the character’s actions were selected by our software rather
than being controlled live by a user in motion capture.

When the software is controlling the character, the player’s
movements are tracked by the Kinect and converted into joint
rotation features in real time. These features are classified by
the Gaussian Mixture Model classifier and the result is used
to select an animation clip to play. After the labeling process,
each class label has been assigned to a number of motion cap-
ture clips of the character’s movement. When the current clip

has finished playing, the class label resulting from the latest
classification is used to choose a new clip. A clip is cho-
sen randomly from the clips tagged with the latest class la-
bel. This new clip is then smoothly blended into the previous
animation using Unity’s built in animation blending system.
Once an animation clip has been selected the classification
is re-set to the special label “nothing” which indicates that
no action has been recognized. Thus, if no action is recog-
nized while the current clip is playing, one of the clips labeled
“nothing” will be played.

This set up allows users to test their virtual character and ver-
ify whether it produces the desired responses and detect er-
rors. In our early tests, one of the biggest challenges for users
was what to do when the system did not respond as expected.
This requires users to debug the result of the learning algo-
rithm, a very challenging task for end users and a well known
issue for interactive machine learning [19]. In order to sup-
port this we have provided a visualization that supports users
in understanding the working of the system. This visualisa-
tion is based on the one suggested by Gillies et al. [10] and is
shown in figure 3 (right). Thumbnails of all of the training ex-
amples are shown at the bottom, each shown in a color corre-
sponding to its class label. Each training example is shown as
a stick figure. This is a deliberately simple representation that
is constrained to only show the information available in the
kinect data. These are scaled based on the probability weight
they contributed to the classification of the current pose. This
allows users to see which training examples are responsible
for the current classification.

EMBODIED DESIGN IN USE
We performed a small evaluation of the final prototype to un-
derstand whether it better supported users. We recruited par-
ticipants from applicants to a computer science programme,
all of whom identified themselves as keen gamers. We ran
three workshops with participants working in groups to de-
sign a virtual character with our system. Two workshops had
two participants each and another had three.

All groups were asked to design a movement based game in
which they interacted with a virtual character that responded
to their movements. They could design whatever game they
liked. They were shown how to use the system and then left
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Figure 4. Embodied Design in practice. Left: two participants practicing an interaction together, they are constantly moving while discussing an
interaction. Right: moving in front of the systesm, a playful dancing movement turns into a design idea.

to work independently. s groups were asked to improvise and
act out interactions that would be suitable for their virtual
characters. They recorded these improvisations in the pro-
cess shown in figure 1 and then labelled the resulting data
using the interface shown in figure 3. After the initial training
phase, all groups were asked to test their games live using the
Kinect. After this testing all groups were asked whether it
worked as they wanted, and if not whether they knew what to
do in order to fix it. All groups reported problems but imme-
diately reported that they knew how to fix them. This implies
that they had all formed a (not necessarily correct) model of
the problem and had a strategy to fix it. They all proceeded
to refine the model and in the final interview they all reported
that they were happy with the end result. One participant ex-
plicitly noted that “the second time around [the results were]
much better”. This suggests that participants were able to de-
bug effectively. The testing did seem to be a key part of this:
“it wasn’t fully clear until I tried it again”.

Designing by moving
As we had hoped, movement was an integral part of the
design process for our participants. They were in motion
throughout the process. They moved while the discussing
the design of the interfaces, creating a multimodal discussion
combining speech with acting out movements (figure 4, left).
There was also a lot of playful movement. Participants would
joke and laugh while acting out movements and watching
their motion capture. A number of participants also danced
spontaneously, watching themselves. This might, in part be
due to the novelty of the technology but the play also resulted
in design ideas. One participant began dancing and made a
waving movement (figure 4 right), in the middle of which she
turned to her partner and said ”Ooh, we could do a wave”,
indicating a new potential idea for their interface. Our obser-
vation of participants’ behaviour therefore supports our idea
that movement is important to the design process and by al-
lowing participants to design with movement they will design

in new and embodied ways.

Visualising the algorithm is “really helpful”
The visualisation of the nearest neighbour algorithm seemed
to play an important part in supporting their understanding.
One participant rated the visualisation as “really helpful”
with his partner adding “especially when you are testing it
over there [the live testing area]”. In their interviews par-
ticipants reported clearly understanding the function of the
visualisation “If it triggers it, it comes up, so that makes you
know that movement triggers that posture” and “both the tags
and the labelling went well, the fact that you can see them
. . . bigger . . . it’s good because when you move the bar around
. . . you can see when it recognises it and when not, so you can
see when a pose is clear and when not”. These quotes in-
dicate that participants were able to create conceptual models
of how the classifier worked based on the visualisation. These
were not completely accurate, they did not mention anything
like weighting or probabilities, but they were sufficient to de-
bug. They understood which postures were being triggered
by a particular movement, and therefore which needed cor-
rection. One participant identified the visualisation as key to
identifying problems: “because as soon as we did the posture
thing we understood what was the problem. So after you do
that, it’s easier to go and do movements . . . because you know
how it works, the little stick man, let’s say”.

Visualising features is problematic
The participants reported problems with the stick figure rep-
resentation of the Kinect data for actions: “sometimes [the
stick figure] can be a bit less clear, because it doesn’t have
depth perception, so you can have your arm out but it just
thinks it’s just there”. One participant stated that she would
have preferred to see a real camera view: “If you have a
real camera while you are recognising the movements and
the poses . . . it’s easier, you can recognise the movements
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. . . just for working out”. The representation was purpose-
fully designed to be impoverished relative to a live interaction
or camera feed, in order to display only what the Kinect is
able to recognise. However, this clearly made things difficult
for participants. The first quote is simply about the lack of
depth in the representation. This could be fixed without pro-
viding more information than the Kinect perceives. However,
the second quote indicates that participants wanted a richer
view, and that a more impoverished view was not sufficient to
recognise movements.

CONCLUSIONS
Our participants’ use of the system show that they do natu-
rally use movement as the primary means of designing inter-
action, if the design tools allow this. This suggests that con-
sidering the embodied aspects of interaction is important not
only for final systems, but also in the design process. This
supports Hummels et al.’s belief that “[in order to design
movement interfaces] one has to be or become an expert in
movement, not just theoretically, by imagination or on paper,
but by doing and experiencing while designing” [13]. Our
system has show that interactive machine learning can poten-
tially be a way of enabling this type of embodied design.

However, there is considerably more research to be done.
While our participants did find visualizations useful in debug-
ging the system, they did not like the stick figure visualization
used for the training examples. This is problematic, as visu-
alization was designed to only show the information that is
available in the kinect sensor data, and so not mislead users
by showing features such as muscle tension, which cannot be
recognized in the system. However, users felt the lack of the
rich information they normally have about movement. This
shows that finding ways of communicating to users the na-
ture of the sensor data, and how it differs from what we see,
will be very important.

The types of interaction that our system supports are rela-
tively simple: and action by the player directly generates a re-
sponse by the character. This type of interaction is well suited
to a machine learning classifier. However, human body lan-
guage interaction is in general much more complex, with con-
tinuous exchange of much more subtle cues, with responses
that have long term temporal effects. This type of behavior
will require more sophisticated learning models such as mul-
tivariate regression (e.g. Gaussian Processes[28] ) or com-
plex probabilistic models[18]. It will therefore require con-
siderably more research to achieve the type of interaction we
outlined in our introduction.
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