
0

Understanding Gesture Expressivity through Muscle Sensing

Baptiste Caramiaux, Goldsmiths, University of London
Marco Donnarumma, Goldsmiths, University of London
Atau Tanaka, Goldsmiths, University of London

Expressivity is a visceral capacity of the human body. To understand what makes a gesture expressive, we
need to consider not only its spatial placement and orientation, but also its dynamics and the mechanisms
enacting them. We start by defining gesture and gesture expressivity, and then present fundamental aspects
of muscle activity and ways to capture information through electromyography (EMG) and mechanomyog-
raphy (MMG). We present pilot studies that inspect the ability of users to control spatial and temporal
variations of 2D shapes and that use muscle sensing to assess expressive information in gesture execution
beyond space and time. This leads us to the design of a study that explores the notion of gesture power in
terms of control and sensing. Results give insights to interaction designers to go beyond simplistic gestural
interaction, towards the design of interactions that draw upon nuances of expressive gesture.

Categories and Subject Descriptors: [Human-centered computing]: Gestural input

General Terms: Human Factors

Additional Key Words and Phrases: gesture, expressivity, muscle sensing, electromyogram, mechanomyo-
gram, feature extraction, experimental study

1. INTRODUCTION
Body movements are a powerful medium for non-verbal interaction, particularly
through gesture. Gestures are increasingly exploited in human-machine interaction
for workplace, leisure, and creative interfaces. While human-human interaction in-
volves rich and complex gesticulation, gestures as they are captured for human-
computer interaction on consumer devices such as touch screens, depth camera video
controllers, and smartphone rotation sensors, remain relatively simplistic, consisting
mostly of simple postures, 2D shapes and movement primitives. Similarly, while hu-
man interaction relies on gestural nuance, gestures in human-computer interaction of-
ten discard or avoid nuance through techniques of invariance for the sake of inter-trial
consistency and inter-user generalisability. We present an approach that conceives of
variation in gesture as a way of understating expression and expressivity, and de-
scribe techniques using physiological interfaces to explore the use of gesture variation
in human-computer interaction. In this way, we present techniques to extend simple
gesture interaction towards more expressive, continuous interaction.

Human limb gesture is nuanced in a number of different ways. One can change
how fast one performs a gesture, how much space the gesture takes or how tense the
body is while executing the gesture. These variations combine and contribute to con-
vey the expressive content of a gesture. There exists a significant challenge to capture
gestural nuance through sensors and interactive systems. While position-based rep-
resentation of motion has been used in most prior work, one promising approach is
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to capture dynamic gesture through physiological signals that are rich in information
on qualitative aspects of a gesture. Movement qualities as a new paradigm for inter-
action has been of interest to recent works in the HCI community [Fdili Alaoui et al.
2012; Fdili Alaoui 2012; Mentis and Johansson 2013], however these qualities have
not yet been broached through physiological sensing. Physiological sensors, ranging
from brain-computer interfaces, to biometric readers, to muscle sensors, have become
increasingly accessible with low cost electronics creating the potential for broad, con-
sumer applications [Fairclough 2009; Silva et al. 2014]. Muscle biosensing has certain
advantages to non-physiological motion sensing such as fiducial based motion capture
or accelerometer sensing. Rather than report on the resulting physical output of a ges-
ture, physiological sensing of muscle activity reports on the intention and activation of
the body to create a gesture.

Muscle sensing has been used in a range of application areas, such as biomedical en-
gineering, human-computer interaction and computer music. In the field of biomedical
engineering, muscle activation and articulation have been exploited to control pros-
thetic limb systems [Saridis and Gootee 1982; Silva et al. 2005; Castellini and van der
Smagt 2009; Farina et al. 2014]. Because muscle sensing provides insights not only on
volitional control but also on sensorimotor control strategies, it has been applied to the
monitoring of muscle fatigue [Barry et al. 1992; Tarata 2003], the evaluation of muscle
functions and responses to stimuli [Beck et al. 2004; Kuriki and Azevedo 2012] and
neurophysiological assessment [Orizio et al. 1992; Orizio et al. 1997].

In the field of Human-Computer Interaction (HCI), the use of muscle-based inter-
faces has been motivated by the need to interact with a non-physical interface [Put-
nam and Knapp 1993], a strategy which has been shown to be relevant in the case of
users with disabilities [Barreto et al. 2000], or in the context of pervasive computing
where wearable devices are too small to embed physical interfaces, such as joysticks
or keyboards [Wheeler and Jorgensen 2003]. Other interesting use cases include en-
abling interaction without any visible or audible user actions [Costanza et al. 2005;
Costanza et al. 2007; Schultz and Wand 2010], or while the hands are busy in other
tasks, allowing forms of always-available interaction [Saponas et al. 2009; Saponas
et al. 2010].

Finally, muscle interfaces have been used in the field of computer music to allow for
the control of sound synthesis directly from muscle tension [Tanaka and Knapp 2002],
and to sonify the subtle variations in the articulation of a performer’s body kinetic
energy [Donnarumma 2012].

In this paper we present ways in which gesture expressivity is suitable for the design
of gesture-based interaction. Looking at gesture expressivity as deliberate variation
of gesture, our goal is to understand if such approach is possible as a motor task. In
particular, the emphasis will be put on dynamic aspects of a gesture detected by muscle
sensing. This insight is fundamental to interaction designers in imagining scenarios
to make expressive use of limb gesture.

The article is structured as follows. First we give working definitions of gesture and
expressivity in gesture performance, introducing dimensions of expressivity to repre-
sent gesture variations. We then present different muscle activation mechanisms to ar-
rive a bimodal approach using electromyogram (EMG) and mechanomyogram (MMG)
signals, and focus on the gestural dimension, power, in the activation of forearm mus-
cles. We then present a series of studies that explore: 1) the use of gesture temporal
and spatial variations for control; 2) the use of muscle sensing as an interface for musi-
cal interaction. This leads to an experiment in which we explore the deliberate control
of power variations of gesture. We analyse the results and discuss their implications
for interaction design.
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2. GESTURE EXPRESSIVITY
In this section, we establish working definitions of gesture and the notion of gesture
expressivity. We present a number of dimensions including temporal, geometrical and
dynamical variations in gesture execution. Among these dimensions, we focus on a
dynamic dimension, called power, that involves variation of the intensity of gesture.

2.1. Gesture: a working definition
Gesture is an intricate notion used across many different research fields. In social
psychology, [Efron 1941] in his seminal work relates gesture style to a cultural basis.
Gesture in HCI can refer to something as simple as a shape drawn on a tactile sur-
face, while gesture as used in character animation of embodied conversational agents
(ECA) might refer to body movement accompanying speech and utterances. In music
composition, a musical gesture can refer to the melodic progression in a score while in
musical performance it can designate deliberate and non-deliberate movements of an
instrumentalist [Jensenius 2014]. Finally, Mulder differentiates posture and gesture
[Mulder 1996], where posture is seen as static, while gesture is dynamic.

One generic definition of gesture in the HCI context comes from Kurtenbach and
Hulteen [Kurtenbach and Hulteen 1990], who define a gesture as “a movement of
the body that contains information” [Kurtenbach and Hulteen 1990]. In psychologi-
cal study of non-verbal communication, Kendon writes “Gesture [...] is a label for ac-
tions that have the features of manifest deliberate expressiveness” [Kendon 2004]. (It
should be noted that here Kendon does not intend deliberateness as in the control of
the expression, but rather as in the voluntary act of expressing a meaning.)

From those different definitions, we extract a series of keywords which characterise
our understanding of gesture: movement, dynamic, information, deliberate expressiv-
ity. A recomposed definition of gesture is as follows:

A gesture is a dynamic movement of the body (or part of the body) that contains
information in the sense of deliberate expression.

We can unwrap this definition as follows. Deliberateness in the movement differ-
entiates gesture from simple movement by inducing an intentional will of expressing
thought, feeling or meaning. Interestingly, deliberate expressivity refers to the capac-
ity of varying the gesture execution intentionally. We now define gesture expressivity
and its constitutive components.

2.2. Gesture expressivity
Expressivity is a notion used to describe the articulation of information in genetics and
computer science. In genetics it refers to the variations in the observable characteris-
tics and traits among individuals with the same genotype [Miko 2008]. In computer
science, expressivity (or expressive power) has been used in programming language
theory and refers to a measure of the range of ideas expressible in a given program-
ming language [Felleisen 1991]. Thus, expressivity involves the idea of potential vari-
ation instantiated by the consistent constitutive structure.

In HCI related fields, examining and designing medium for allowing expressivity is
part of the core research in Music Technology, and more precisely in the NIME commu-
nity, where NIME stands for New Interfaces for Musical Expression1. See for example
the works by Jordà [Jordà 2005] and Dobrian et al. [Dobrian and Koppelman 2006].
Expression in interactive music is understood to be musical expression, connecting it
to the art of all musical performance. In instrumental performance, for example, of
classical music, musical expression is related directly to variation as re-interpretation

1http://www.nime.org
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of an existing piece. One pianist may interpret an established repertoire composition
differently than another pianist: we can think of this as inter-user variation [Palmer
1997]. Or, a single performer may interpret the same composition differently in differ-
ent performances: this may depend on their emotional or psychological state at the mo-
ment of a concert, the feedback the performer gets back from the audience, or through
changes of context such as the size of the performance venue. In order to accommo-
date these contextual changes, an instrumentalist may vary the dynamics (soft and
loud moments) or tempo (speed) of the music, and performs different gesture to ex-
ecute these musical changes. A fast passage may work better in a smaller, intimate
recital hall, where the reverberant nature of a large concert hall may require more
emphatic playing, with broader gestures to communicate musical phrasing to an audi-
ence further away from the stage. In this way, musical performance serves as a useful
example of understanding expressive gestural interaction not just as an intuitive and
emotional, but as volitional, contextual input to interactive systems that may facilitate
human-human communication.

Another active field in the investigation of gesture expressivity concerns embodied
conversational agents (ECA). Gesture expressivity is seen as how a gesture is per-
formed [Pelachaud 2009], in other words the potential variations in its execution. Vari-
ation in gesture performance can exist across different users, or within a single user in
multiple iterations recreating the same gesture primitive. The artefact of variability
can occur due to a lack of skill to perform it or due to noise in the motor system. This
differs from variation as the deliberate intention to nuance gesture execution in order
to modulate its meaning. Hence we propose the term gesture expressivity as deliberate
and meaningful variation in the execution of a gesture.

2.3. Dimensions of expressivity
Expressivity varies across different users of an interactive system, or within a single
user in multiple iterations of the same gesture primitive. The dimensions across which
expressivity varies have been initially studied in fields such as experimental psychol-
ogy, and then applied in computer graphics animation, computer-mediated communi-
cation and the performing arts.

Wallbott [Wallbott 1998] proposes that expressiveness can be characterised by move-
ment qualities: movement activity, expansiveness, movement dynamic. These move-
ment qualities can be the source of expressiveness, in “the type of emotion encoded,
the specific ability of the encoder, and specific, discriminative movement indicators for
certain emotions versus indicators of the general intensity of the emotional experi-
ence” (p.892, §2). These ideas have been applied in design, digital media performance,
and the generation of expressive animated characters using ECA [Cassell 2000].

Camurri et al. have used overall activation (quantity of motion) to define interaction
between a performer and digital media [Camurri et al. 2004]. Laban Movement Anal-
ysis (LMA) [Laban 1963], originally used as a method for observing, describing, notat-
ing, and interpreting human movement to enhance communication and expression in
everyday and workaday life, it has also been applied to understand movement qualities
in terms of physical effort. Chi et al. use LMA to derive dimensions of expressiveness
to be applied in the synthesis of expressive movements for animated characters [Chi
et al. 2000].

Discussing the generation of expressive ECAs, Pelachaud maintains that, when
analysing expressiveness, it is important to consider that “behaviours encode content
information (the ‘What’ is being communicated) and expressive information (the ‘How’
it is being communicated)” [Pelachaud 2009]. Thus, in order to characterise movement
expressiveness, Pelachaud developed a model for the generation of ECA based on six
dimensions.
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— Spatial extent: quantity of space occupied by the arm;
— Temporal extent: movement velocity;
— Fluidity: continuity in successive movements (jerky vs smooth movements);
— Power: dynamism (weak vs strong);
— Overall activation: quantity of movement on a channel;
— Repetition: repetition of the stroke of a movement.

Among these dimensions, gesture power offers a novel way to consider expressive
interaction going beyond geometrical and temporal descriptions of gesture, following
recent studies on movement qualities in interaction [Fdili Alaoui et al. 2012]. Accord-
ing to Pelachaud, power is related to “the degree of acceleration of body parts and
corresponds to the dimension movement dynamics/energy/power defined by Wallbott”
([Pelachaud 2009], pp. 4). The hypothesis underpinning the research presented here is
that gesture intensity, or power, is an expressive dimension that is suitable for track-
ing through physiological sensing, in particular, muscle sensing. The study described
in this paper looks at users’ ability to vary different aspects of gesture power captured
by muscle sensors. The emphasis is not on the dynamic aspects of the final limb move-
ment but on the dynamic muscular aspects of user intention that result in gesture that
can be expressively modulated through variation of exertion, tension, and force

3. DESCRIBING GESTURE THROUGH MUSCLE SENSING
Human limb gesture is initiated by the activation of muscle groups to generate limb
movement. Sensing muscle activity allows us to detect the intention of the subject to
create a gesture, and glean its dynamic, varying characteristics. In this section we
describe the physiological mechanisms involved in muscle activation and the related
biosignals, the EMG and the MMG. The characteristics of both biosignals are illus-
trated in table I. This section draws on biomedical literature [Kaniusas 2012] with
the aim to help the reader better understand the further choices in sensors and data
analysis.

Voluntary muscle control is part of the somatic nervous system (SNS), part of the
peripheral nervous system. The SNS operates through two different kinds of nerves,
the afferent nerves, which handle the transport of signals from sensory receptors to
the central nervous system (CNS) and efferent nerves. which transport signals from
the CNS to the muscles. It is through the efferent nerves that muscle activation takes
place (Figure 1).

At the onset of stimulus integration, the SNS sends an electrical voltage, an action
potential, to the motor neurons. When the action potential reaches the end plate of a
neuron it is passed to the muscles by the neuromuscular synapse. The neuromuscular
synapse is a junction that innervates the skeletal muscle cells and is able to send
the electrical potential throughout the muscle to reach all muscle fibers. A network
of neuromuscular synapse and muscle fibres is known as a motor unit (MU). At this
point, the motor unit action potential (MUAP) causes an all-or-none contraction of the
muscle fibres. A gradation in muscle contraction is achieved by a changing number of
MUAPs firing and differing, stochastic, frequencies.

By positioning surface electrodes on the skin above a muscle group, it is possible
to register the MUAP as an electrical voltage. The resulting signal is known as elec-
tromyogram or EMG. This is the algebraic sum of all the motor unit action potentials
(MUAPs) at a specific point in time. It is a stochastic signal because any number of
MUAP pulses is triggered asynchronously.

Muscle contraction is the product of a bio-electrical effect, but also results in a bio-
mechanical effect. When the muscle cells contract, they produce a mechanical vibra-
tion, known as muscle twitch, which lasts about 10-100ms. The mechanical vibration
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Fig. 1. The SNS. Detail of the efferent nerve information flow illustrating the muscle activation process.
The blue and orange circles indicate respectively the EMG and MMG signals. The location of the circles
illustrates the different stages of the activation process at which the signals are captured (assuming non-
invasive recording methods using on-the-person stationary or ambulatory sensors [Silva et al. 2013]).

Table I. EMG and MMG description

EMG MMG

Type electrical mechanical
Origin neurons firing muscle tissue vibration
Description of muscle activation muscle contraction force
Freq. range 0-500 Hz 0-45 Hz
Sensor wet/dry electrodes wideband microphones
Skin contact yes no
Sensitivity area local broad (due to propagation)

of the muscle cells causes a subsequent mechanical contraction of the whole muscle
which, by means of its oscillation, can be picked up as an acoustic signal. Using a
microphone on the skin above a muscle group it is possible to record a mechanical
signal produced by the perturbation of the limb surface. This signal is knowns as
mechanomyogram, or MMG. Table I reports a summarized description of both sens-
ing modalities.

While the EMG carries information on the neural trigger that activates muscle con-
traction, that is, it informs us of the deliberate intention of performing a gesture, the
MMG bears information on the mechanical contraction of the muscle tissues, giving ac-
cess to the physical effort that shapes the gesture. In this way, the two signals provide
complementary information on muscle activity [Tarata 2009], potentially providing
important information on the expressive articulation of a gesture.
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4. CONTROL AND SENSING IN GESTURE EXPRESSIVITY: PILOT STUDIES
In this section we report two pilot studies that dealt with the control and sensing
of gesture expressivity. The first study presents the control of variations applied to
surface gestures. The second looks at gesture expressivity using muscle sensing.

4.1. Pilot 1: Control of Gesture Spatial and Temporal Extent
First, we conducted a pilot experiment to study gesture variation as an expressive
vector for interaction independent of physiological sensing. We looked at the execution
of 2-dimensional finger gestures on a tactile interface to study whether they can be
consciously controlled by users, and to validate our adaptation based machine learning
algorithm as a means to track gesture variation [Caramiaux et al. 2013].

The study was divided into two parts. Part 1 aimed to understand whether users
can control certain temporal and spatial gestural characteristics and if that control
depends on the vocabulary of gesture primitives. Variation of gesture characteristics
includes changes in speed (slower and faster) and in size or orientation (geometric
changes in space). The gesture vocabulary was comprised of twelve 2D shapes based on
Wobbrock’s work on tactile interaction [Wobbrock et al. 2009]. In Part 2, we used a ma-
chine learning technique based on particle filtering previously used in musical control
[Caramiaux et al. 2014] to simultaneously recognise and measure gesture variation in
time and space. Gesture variation as tracked by the machine learning algorithm was
exploited directly in an end-user graphics effects programme, validating the potential
of expressive input to an interactive software system. Meanwhile, results from Part 1
on the control of the gesture temporal and spatial variations provide important insight
on users’ ability to control gesture that can be applied to physiological interfaces:

(1) Multiple gesture characteristics can be varied independently in slower gestures
(change in size and speed);

(2) This is independent of the gesture considered;
(3) When performing the gesture faster, there is a cognitive shift in motor planning

from non-ballistic to ballistic motion.

These findings provide insights useful to interaction designers wishing to create con-
tinuous interaction scenarios based on variation of gesture characteristics. However,
the 2-dimensional gestures, while varying in time and space, offered an over-simplified
model for expressivity based on gesture variation. First, the gesture vocabulary, based
on shapes, constrained interaction potential. Second, the touch-screen interaction lim-
ited variation to size, speed, and rotation, and did not allow dimensions of expressivity
such as power (as defined by Pelachaud in [Pelachaud 2009]).

Let us illustrate this statement by an example. A gesture such as clenching a fist
can be articulated with greatly different power while looking apparently static. The
deliberate variations of a gesture like this, invoking changes in speed or intensity are
likely characterised by physiological mechanisms that are would not be picked up by
position or motion sensing.

4.2. Pilot 2: Sensing expressive gestures
We next conducted a study looking at dimensions of gesture expressivity using muscle
sensing. In Part 1, we introduced MMG sensing alongside spatial motion capture and
inertial accelerometer sensing in a multimodal configuration. In Part 2 of this second
study, we used EMG and MMG in a bi-modal configuration to look at the ways in
which complementarities of these signals could be exploited in end-user interaction
scenarios.
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4.2.1. Part 1. In the first part, we aimed at examining the complementary information
about gesture expressivity where the gesture was captured through different sensing
modalities. To do so we defined a set of gestures, drawing upon movements of a per-
former in a piece of contemporary music. Each gesture was captured by MMG muscle
sensors (placed on the forearms), accelerometers (also placed on the forearms) and full-
body motion capture [Donnarumma et al. 2013a]. By looking at both physiological and
spatial data recorded from the gestures executed with high and low force, we found
that:

(1) Physiological and spatial modalities complemented one another;
(2) The physiological modality only could sense the preparatory activity taking place

before the actual gesture;
(3) Variation of gesture characteristics (such as power and speed) were detected by

modulation of signal in different modalities.

These findings showed that the ability of users to independently vary different di-
mensions of expressivity in the simple gestures from Study 1 also applied to free space
gestures and a range of more sophisticated sensing modalities including muscle sens-
ing.

4.2.2. Part 2. In Part 2, we introduced EMG sensing in combination with MMG and
used them together as bi-modal input to an interactive sonification system [Don-
narumma et al. 2013b]. We looked at the ability of non-experts to activate and ar-
ticulate MMG and EMG separately using a given gesture vocabulary. The gesture vo-
cabulary was designed by drawing upon complementarity of MMG and EMG described
in the biomedical literature [Jobe et al. 1983; Madeleine et al. 2001; Day 2002; Silva
et al. 2004]. We sonified in real time the MMG and EMG signals as a form of feedback
to the user, enabling them to understand when each signal was produced. Offline data
analysis of the recorded EMG and MMG signals enabled us to understand the physi-
cal dynamics behind the users’ control of different aspects of their muscle activity. The
results showed that:

(1) Following a short training session, non-expert users were able to deliberately vary
the degree of activation of EMG and MMG signals independently;

(2) User-specific variations on the gesture articulation yielded different activity at the
physiological level.

5. STUDY ON THE CONTROL AND SENSING OF GESTURE POWER
We built upon the insight gained from the two pilot studies to design an experiment
looking at the elements underlying variations of gesture power and its characterization
in bi-modal EMG/MMG signal data. The methodology consists of asking participants to
perform several trials of a gesture, taken from a predefined vocabulary, and variations
of this gesture in power, size and speed. As such we aim to understand variations in
power as a motor task. A set of signal features are computed to elucidate the effect
of variations and gestures on the potential control of power. The quantitative analysis
is complemented by a questionnaire collecting subjective measures of users’ notion of
power.

5.1. Gesture Vocabulary
The gesture vocabulary comprises 6 gestures involving two types of interactions (sur-
face and free-space) and an increasing level of complexity. Figure 2 illustrates the
vocabulary considered.
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Gesture 1
Surface
Rotation

Gesture 2
Surface

Line

Gesture 3
Free Space

Square

Gesture 4
Free Space

Circle

Gesture 5
Fist

Rotation

Gesture 6
Lateral
Wave

Fig. 2. Gesture vocabulary considered in the Study.

— Gesture 1 (Surface Rotation): Two fingers on a flat surface, 180 degrees rotation,
counter clockwise (clockwise for left-handed). Example: rotate an image on a touch-
screen.

— Gesture 2 (Surface Line): One finger on a flat surface, move along an horizontal,
straight line from point A to point B, outward. Example: drag a picture on a touch-
screen.

— Gesture 3 (Free Space Square): Raise arm perpendicular to the body and draw a
square with the index finger, start from the up/left corner, move right, clockwise
(counter clockwise for left-handed). Example: Next track.

— Gesture 4 (Free Space Circle): Rise the arm perpendicular to the body and draw a cir-
cle with the index finger, start from the bottom/center point, move counter clockwise
(clockwise for left-handed). Example: Fast forward shuffle.

— Gesture 5 (Fist Rotation): Rise the arm straight perpendicular to the body, close the
fist, move the fist in a circle for 3 times, start left, move counter-clockwise, (clockwise
for left-handed). Example: Play higher notes.

— Gesture 6 (Lateral Wave): Rise the elbow at the shoulder level, bend the forearm at
90◦, move wrist and forearm downward and upward 3 times while opening the arm
outwards. Example: Play louder.

5.2. Gesture Variations
Using the above gesture vocabulary we defined a set of variations to be applied to
each gesture. We sought to design tasks whereby participants would be invoked to
vary the intensity, or power, of each gesture on its own or in combination with related
dimensions of expressivity such as gesture size. In doing so, we wanted to inspect the
relationship, in spatial and temporal extent, between power and other dimensions of
expressivity (as defined in Section 2.3). We thus devised a set of 7 variations using
combinations of dimensions as follows:

— Variation 1: Bigger
— Variation 2: Faster
— Variation 3: More Powerful
— Variation 4: Bigger and Faster
— Variation 5: Bigger and More Powerful
— Variation 6: Faster and More Powerful
— Variation 7: Bigger, Faster and More Powerful
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We chose to constrain the variation in one direction (i.e. increasing speed, power, or
size) in order to avoid variability due to the participant’s choice of variation direction.

5.3. Procedure
The experiment was conducted according to the following procedure. The experimenter
positions the EMG and MMG sensors on the participant’s dominant arm. They are
positioned at the lower interior part of the forearm, at the midpoint of the muscle,
illustrated in Figure 3.

Fig. 3. Experimental setup. Left: EMG, MMG sensors placed on the forearm. Middle: EMG, MMG sensors
placed on the forearm (close view). Right: Both EMG (left) MMG (right) sensors.

At this point the experimenter introduces the study protocol. A gesture from the
vocabulary is chosen randomly. The experimenter gives a visual example of the ges-
ture, and describes the typical scenario in which the gesture might be performed. The
participant is given the chance to rehearse the gesture until they feel ready.

The participant performs the gesture and records data by pressing a start button
with their free arm. 3 trials of the gesture are recorded. Following the 3 trials, the
participant is asked to perform variations on that gesture ( bigger, faster, more power
and the combinations described in Section 5.2 ). The order of variations prompted is
randomly selected by the software. Three trials are recorded for each variation.

The experimenter then asks the participant how easy was to perform the variation
on size, speed and power. The participant replies with a rate in the 1-5 range, where
5 is ‘very easy’. In addition, the participant is asked to briefly explain the answer. The
procedure is then repeated for each gesture in the vocabulary.

At the end of the session each participant was asked to fill out a questionnaire which
included demographic data, along with questions regarding their use of gestural inter-
face in their everyday routine and their knowledge level on the topic. Further ques-
tions addressed their experience during the execution of the gestures, and the possible
real-world applications they could imagine of the gesture variations we proposed.

We recruited 12 participants (8 female, 4 male), ranging in age between 21 and 43
with a mean age of 29.9 (std=6.5). Each subject took an individual 45-minute session
and were recompensed by a nominal fee for their participation. For each participant
we collected 3 trials for each original gesture (i.e. without variations), which leads to
12 x 3 x 6 = 216 trials. And then 3 trials for each gesture performed considering each
variation, which leads to 12 x 3 x 6 x 7 = 1512 trials.

5.4. Acquisition
Gesture data was recorded by means of a bi-modal sensing system with two input
channels, one EMG input and one MMG input. We describe first the acquisition sys-
tem for the EMG and then for the MMG. Given the HCI target application scenarios,
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we chose not to use high-end medical equipment, but sought to create a robust con-
figuration of off the shelf components. Criteria included a practical enough number
of sensing channels, convenient and non-invasive sensor placement on the user, and
modest size and cost to be able to imagine potential incorporation of such sensors into
future consumer interactive products.

After initial trials using different wet gel and dry electrodes, and prompted by the
fact that gel and dry electrodes have been shown to perform similarly [Silva et al.
2013], we used the Infusion Systems BioFlex with active dry electrode sensors2 to cap-
ture the EMG signal. The BioFlex offers a) on-board hardware calibration system to
increase trial-to-trial reliability, b) low baseline noise of the sensor circuit and cable
transmission. The EMG signal was transmitted from the BioFlex as an electrical volt-
age. The signal is acquired through an Olimex board3, a shield for the Arduino4 circuit
board, at a sampling rate of 100Hz. The Bioflex and Olimex both provide analogue
pre-amplification and signal conditioning. The signal is initially amplified and filtered
with a one-pole high-pass filter with frequency cutoff (fc) at 0.16Hz, then amplified
again and passed through a 3rd order Besselworth filter with fc at 40Hz.

We used the Xth Sense system to capture the MMG signal. The Xth Sense is com-
prised of an armband embedded with a wideband electret condenser microphone. This
is encased within a silicon mold so not to get in contact with the skin. The silicon mold
isolates the microphone from external noise and electrical interferences and amplifies
the skin vibration before it reaches the microphone. The design is inspired by the work
of Silva and Chau in the design of control systems for prosthetics [Silva and Chau
2003]. The MMG signal was transmitted from the Xth Sense as an analog sound sig-
nal through an audio cable. The signal was then acquired through an external sound
card which digitised it at a sampling rate of 44100Hz, and sent it to the recording soft-
ware. The signal was not amplified. A high-pass filter (HPF) with a fc of 1Hz was used
with both signals in order to bypass artifacts created by the movement of the whole
arm [Day 2002].

5.5. Feature extraction
We selected a set of features to be extracted and analyzed from both the EMG and
MMG signals. In the prosthesis control literature the predominant signal feature is its
amplitude. Here we propose to compute additional features, namely frequency-domain
features. The features are computed according to the workflow illustrated in Figure 4.
In the following, the features that will be used are: signal amplitudes, signal temporal
zero-crossings; and spectral centroids.

Signal amplitudes (time-domain feature). One of the most important features to
be computed on both muscle biosignals is the amplitude of the signal along time. Am-
plitude computed on the EMG and MMG signals has been shown to be related to the
force exerted while executing the gesture (see for instance [Perry-Rana et al. 2002]).

Amplitude estimation of the EMG signal has received a great attention and has
led to several studies in biomedical or bioengineering literature [Hofmann 2014]. As
suggested by the author, we chose to use a Bayesian filter based on the previous work
by Sanger [Sanger 2007]. For amplitude estimation of the MMG signal, we used a
common estimator used in audio analysis: the root mean square (RMS) estimator.

Zero-crossings (time-domain feature). The number of zero-crossings in the signal is
linked to the frequency of the signal. For low-frequency components, where the Fourier

2http://infusionsystems.com/catalog/product info.php/products id/199
3https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/
4http://arduino.cc
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Fig. 4. The feature extraction dataflow.

transform might lack resolution, this feature can be more informative. On the other
hand, the feature can be used to discriminate signal from noise [Peeters 2004].

Spectral centroid. The spectral centroid is the mean frequency value in a signal
chunk. For both signals we use the same method. The signal is windowed by a Hann
window of log 2(Fs) samples, where Fs is the sampling rate. In other words, the window
has a temporal length of about 1sec. The overlap is 1% of the size of the window size,
i.e. about 10msec. We use a Fourier analysis with the same number of bins than the
number of samples in the windowed signal. The centroid is computed then on the
spectrum.

6. RESULTS
In this section, report on results from the study. We first report on subjective measures
assessing the subjects’ understanding of the dimension ‘power’ and the perceived diffi-
culty of the tasks proposed. Then we look at the data to understand how participants
actually vary what they think of as power through objective measures on the signals’
features. Finally we use these measures to investigate relationships between power
and the other two dimensions, size and speed.
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6.1. Perceived difficulty and understanding of the tasks
Participants were asked to rate between 1 and 5 the difficulty in performing variations
in each dimension for each gesture (where 1 is very difficult and 5 very easy). Results
are reported in Figure 5. We analyze the difference between the mean scores across
variations on gestures by using a Student’s T-Test between pairs of mean scores (α set
to 0.05).
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Fig. 5. Subjective ratings of the participants on the easiness of performing variations on each gesture.
Scores are given between 1 and 5 where 5 is very easy and 1 very difficult. Si (resp. Sp, Po) denotes the
variation in Size (resp. Speed, Power)

The test reveals that variations along each dimension have the same difficulty for
gestures 1 and 2. The task of varying a dimension is globally easy for gesture 1 (mean
score of 3.6, std=1.1) and very easy for gesture 2 (mean score of 4.7, std=0.5). The test
shows that it is more difficult to perform gestures 3, 4 and 6 with more power than
performing it bigger (or even faster for gestures 3 and 4). Participants explained their
ratings related to the task of varying Power, by mentioning aspects related to:

— the feedback, by mentioning the absence of haptic feedback (“there were no resis-
tance”, Participant 11);

— the gesture itself (“gesture [is] not fluid”, Participant 10), while size and speed are
easier since there is “less limit in space” (Participant 9), “a bit easier because of the
breakpoints” (Participant 8);

— the variation, by observing that they had to be more focused on other variations,
like the size in order to respect the task of performing the given gesture (“I had to
keep control to make the shape”, Participant 6).

Participants found it more difficult to perform gesture 5 bigger than faster. Here the
difficulty of applying a change in size is related to the gesture itself and its inherent
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biomechanical constraints (“too limited [in space]”, Participant 7; “a more constraint
movement, awkward”, Participant 3; “limit in the movement itself ”, Participant 10)
that impacts the relation with the gesture reference (“default gesture was already at
the max”, Participant 12).

The difficulty of the task seems to be related to the perceived notion of power. This
brings us to analyze how participants understood this expressive dimension. Partic-
ipants were asked to describe the power dimension of a physical gesture using their
own words. From the questionnaire, we extract the words used by the participants to
describe the characteristics of Power. We report the analysis in Table II.

Table II. Subjective descriptions of “power” as extracted from the questionnaires

Description # Participants Quote example
Pressure 6 “In the case of the tactile surface [I changed] pressure” (P1)
Tension 4 “Power [...] seemed to be tension in the arm or wrist” (P3)

Intensity 2 “[...] a combination of intensity and intentionality” (P10)
Speed 2 “wasn’t always sure what doing the gesture

with more power meant, or if it just sped it up.” (P09)
Effort 2 “increased effort” (P11)

Energy 1 “I was using more energy to do the same movement” (P5)
More Stress 1 “more stress in muscles” (P2)

Forceful 1 “More forceful” (P4)

The analysis shows that participants used descriptions that can be gathered into
three main categories:

(1) Power intended as pressure or physical force exerted against a surface
(2) Power as physical tension or strain exerted in the absence of an object to manip-

ulate
(3) Power as energy of the physical gesture, intended as kinetic energy resulting

from motion.

In the following sections, we will first inspect how these interpretations of power
(pressure, tension, and kinetic energy) are illustrated through physiological features
computed from the EMG and MMG signals. Second we will analyze how the extracted
factors (feedback, gesture and variation) affected the variations of power by the par-
ticipants.

6.2. Objective measure of power as tension, pressure and kinetic energy
We first inspect how the muscle signal amplitudes are linked to the variations of power
in gesture execution, considering every gesture from the vocabulary. We compare the
averaged amplitudes of both signals computed for each gesture under two conditions:
Baseline (gesture performed with no variation) and “More Power”. Figure 6 illustrates
the results by reporting both modalities (EMG on the left, MMG on the right) and
the averaged amplitudes across participants and trials for both conditions “baseline”
(black bars in the figure) and “more power” (orange bars).

A repeated-measure analysis of variance (ANOVA) is performed to investigate the ef-
fect of both factors GESTURE (the 6 gestures of the vocabulary) and VARIATION (2 vari-
ations here, baseline and more power) on the signals’ amplitudes. There is a significant
effect of GESTURE on the EMG amplitudes F (5, 132) = 11.7, p = 0.0 (partial η2 is 0.30)
and on the MMG amplitudes F (5, 132) = 10.3, p = 0.0 (partial η2 is 0.28). Moreover,
there is a significant effect of VARIATION on EMG amplitudes, F (1, 132) = 24.3, p = 0.0
(partial η2 is 0.16), and MMG amplitudes, F (1, 132) = 14.7, p = 0.0 (partial η2 is 0.10).
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Fig. 6. Power estimations for both EMG (left) and MMG (right) averaged across participants and trials.
Black bars show the mean amplitudes when no variation is applied (baseline), orange bars report mean
amplitudes when more power is exerted.

There is no interaction between the factors GESTURE and VARIATION in both cases of
EMG and MMG amplitudes.

A post-hoc analysis using a Tukey’s HSD (Honestly Significant Difference) per-
formed for each gesture reveals that the EMG amplitudes significantly increase with
the condition “more power” compared to the baseline (p < 0.05) except for gesture 5.
Similarly, MMG amplitudes significantly increase (except for the gesture 1 and 5) if
more power applied (p < 0.05).

Based on these results, performing gestures with more power leads to more muscle
tension as shown in both EMG and MMG amplitude estimations. Gesture 5 (Fist Ro-
tation) is a particular case since the gesture itself, without variation, already requires
tension in the forearm’s muscles. MMG amplitudes, however, do not show significant
change in amplitude for the gesture 1 (surface rotation). For this gesture, participants
considered power to be pressure exerted on this surface (see Section 6.1). Therefore,
the EMG amplitude feature is a good candidate to capture pressure and force exerted
on a surface.

Although average amplitudes of EMG and MMG both increase when applying more
power, the amplitude increase is not of the same nature across the two modalities.
Figure 7 illustrates that with an example.

On the left, two EMG signals are reported: the dashed black line is the signal for
gesture 3 (free space square) when no variation is applied and the dashed yellow line
is the EMG signal for the same gesture performed with more power. The solid lines
are the amplitudes computed from the signals. On the right, two MMG signals are also
reported with their computed amplitudes for the same gesture. One can observe that
EMG amplitude increases globally while the MMG amplitude has more transients.
This illustrates that the EMG is a stochastic signal revealing the number of motor
units solicited while MMG refers to the resulting dynamics of muscles. This confirms
that EMG amplitude is more suitable to capture pressure than MMG amplitude.

In order to analyze the change in dynamics, related to the kinetic energy in the
movement (changes in acceleration), we compute the number of zero crossings on the
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signals and inspect how this feature is affected by variations in power. Figure 8 reports
the results. A repeated-measure analysis of variance (ANOVA) is performed to inves-
tigate the effect of the two factors GESTURE (the 6 gestures of the vocabulary) and
VARIATION (baseline and more power) on the signals’ numbers of zero crossings. The
analysis reveals that there is a significant effect of GESTURE on the EMG zero cross-
ings F (5, 132) = 37.7, p = 0.002, but no effect of VARIATION F (1, 132) = 22.7, p = 0.13.
Regarding MMG, the analyze shows that , there is a significant effect of VARIA-
TION on MMG zero crossings, F (1, 132) = 4.6, p = 0.02, but no effect of GESTURE,
F (5, 132) = 1.1, p = 0.34.

A post-hoc analysis on the MMG zero crossings is then performed to examine the
individual differences for each gesture between the two conditions ’baseline’ and ’more
power’. The analysis reveals that the number of zero crossings significantly increase
for gestures 3, 5 and 6 (p < 0.05).

Note that a similar analysis performed on the centroid frequency leads to an iden-
tical result for the MMG. However for the EMG, the centroid frequency significantly
decreases when applying more power (see Figure 9).

Higher frequency in the MMG signal (more rapid oscillations) relate to higher power
in the execution of the gesture. Let us inspect the time-frequency representation of the
same gesture taken as example in Figure 7. Figure 10 reports the spectrogram of the
signal with the centroid curve on top of it (white curve). The figure reports the specific
case of gesture 3 performed by participant 5 with no variation (on the left) and with
more power (on the right). We observe that on the right side, higher frequencies have
more energy when the power is applied. However the peak (in white) of energy is
almost the same in both cases.

6.3. Power dependency on gesture, and other dimensions of expressivity
In the previous section, we showed that the EMG amplitude feature significantly in-
creases when participants varied the power of a gesture. This means that the haptic
feedback does not affect the change in power measured as the variation of EMG am-
plitude (i.e. related to the tension exerted in the arm). However the haptic feedback
affects the spectral density in the MMG signal, as shown in Figure 9.
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Figure 6 illustrates that the increase in amplitude depends on the gesture per-
formed. In order to examine how each gesture affects the change in amplitude, we com-
puted the percentage of amplitude increase between “no variation” and “more power”.
Figure 11 reports the results. We compute a pairwise Student’s T-Test with α = 0.05
across gestures to compare amplitude increases. The test reveals that gesture 1 (sur-
face rotation) has a significantly lower increase in either EMG or MMG amplitude
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compared to the other gestures (p < 0.05). Similarly, gesture 5 (fist rotation) shows a
significantly lower increase in either EMG or MMG amplitude than gestures 2, 3, 4 and
6. In other words, the increase of tension when performing gestures 1 and 5 is more
limited than for the other gestures.
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Fig. 11. Percentage of amplitude increase between the condition “more power” and the baseline. On the left
are reported the percentages related to EMG, on the right those related to MMG.

Furthermore we examine the link between power and the other dimensions: speed
and size. First we inspect if the global speed of the gestures (given by their relative
duration) changes if one is performing the gesture with more power. Figure 12 reports
the results. We compute a Student’s T-test (with α = 0.05) pairwise on the relative
durations across variations (baseline, bigger, faster and more power) for each gesture.
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Firstly, the test applied between the baseline and the condition “bigger” does not re-
veal any significant difference for every gesture. In other words, participants maintain
the global duration of a gesture equals to the original duration of baseline performance
even when varying gesture size. This means by consequence that they also perform the
gesture quicker. Secondly, the duration of gestures performed under the task “faster”
are significantly shorter than the gesture durations under the conditions baseline,
bigger, or more power (p < 0.05) for every gesture. Finally, the test shows that gesture
lengths decrease when performing gestures with more power compared to the base-
line (p < 0.05). In other words, when asked to perform a gesture with more power,
participants also performed it faster.

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

400

450
LN Feature 6

1 2 3 4 5 6
0

100

200

300

400

G
es

tu
re

 le
ng

th
 [a

.u
.]

Gesture

baseline bigger faster more power

Fig. 12. Lengths of the gestures performed, averaged across participants and trials. Black bars show the
mean length when no variation is applied (baseline), orange bars report mean length when more power is
exerted.

Finally, we inspect how variations in size affects variations in power in terms of EMG
and MMG amplitudes. Figure 13 reports the results. We perform a statistical T-Test
between condition for each gesture in order to inspect their relative differences. The
analysis reveals that both EMG and MMG amplitudes significantly increase between
bigger and more power (p < 0.05), but not between more power and the combination
bigger and more power. Also the EMG and MMG averaged amplitudes do not increase
between the baseline and bigger. In other words, participants are able to modulate the
size of the gesture while keeping muscle tension at the same level as in the baseline.

7. DISCUSSION
The studies presented in the paper are a first attempt to understand if an approach
considering gesture expressivity for HCI is possible as a motor task. This insight is
critical to interaction designers in imagining scenarios that make expressive use of
limb movement. A first pilot study reports on the ability for participants to control
variations in size and speed separately, and independently on the gesture performed.
A second pilot study reports on the importance of considering muscle sensing in the
capture of expressive movement in order to go beyond spatial and temporal variations.
This led us to the design of the study presented in Section 5 where the notion of gesture
power is explored in terms of control and sensing. In the results we explore the role of
the haptic feedback on user understanding and control of gesture power variation; the
role of the gesture executed; and the inter-dimensional dependencies of expressivity.
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Here we discuss these aspects, report challenges for interaction design involving the
proposed approach and give some possible applications in HCI.

7.1. Haptic feedback
The user’s ability to understand the task of varying gesture power is linked to the
presence of a haptic feedback. As we would expect, power variations carry with it more
subjective ambiguity than size and speed.

When a gesture involved haptic feedback, like the resistance of a boundary object,
participants associated gesture power to the notion of Force (understood as Pressure).
When the gesture lacked haptic feedback, as in free space movement, participants as-
sociated power to the notion of Tension or Intensity. These three terms, Force, Tension
and Intensity refer to three facets of the notion of power. We can think of them operat-
ing as “sub-dimensions” of the power dimension.

Tension, measured as EMG amplitude, was shown to be modulated independently
to the presence of a haptic feedback. In other words, the variation in power in terms of
tension is equally possible for a surface gesture as for a free space gesture. The motor
capacity for varying tension is therefore de-correlated from the user’s understanding
of the variation of power.

On the other hand, the presence of haptic feedback affects the dynamics of the fore-
arm muscles, as we have shown by inspecting spectral information in the MMG. The
number of zero crossings inform on the activity of the muscle during gesture execution.
We showed that the activity increases for free space movements, and mainly for those
that involve wrist rotations or dynamic changes in the gesture execution itself (such
as square corners). Therefore, moving in free space induces articulations between the
forearm and the hand, dynamically activating the forearm muscles, while performing
gestures on a surface mainly solicit movement of the whole arm to exercise pressure
(better captured via EMG as discussed above).
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7.2. Gesture design
Another factor is the role of the gesture executed. While the pilot study with 2D shape
gestures indicate that the ability of users to execute variations are independent of
the gesture performed, the results of the main study presented in Section 6 indicate
that the gesture performed has an influence on the way users perform variations in
the various dimensions. The gesture vocabulary has been designed to encompass ges-
tures with various biomechanical characteristics like wrist torsion or arm articulation.
Biomechanics have a direct influence on the power as captured by muscle sensors.
From the study we retain that:

— Gestures involving limb torsion are more limited in the range of muscle tension that
can be applied. The natural gesture (with no variation) already induces tension in
the muscle. The range of potential variations is by consequence limited compared to
other gestures.

— Gestures in free space involve higher activity of the muscle, captured in the fre-
quency domain of the MMG signal. Articulations of the forearm lead to higher par-
tials in the frequency response of the muscle. The same is observed for gesture in-
cluding abrupt changes in their shape (e.g. square).

Hence, gestures can be designed to take into account biomechanics and highlight
user modulation of power. For instance, a surface gesture allowing modulation of the
pressure over the widest range, or a free space movement with punctuating changes
may become part of the gesture typology that interaction designers might incorporate
into future interactive products that track user gesture by way of muscle sensing.

7.3. Dependency inter-dimensions of expressivity
While expressive gesture presupposes spontaneity and personal difference, exploit-
ing expressive variation in HCI applications requires reproducibility and the ability
of users to intuitively control the expressive dimension in gesture. Note that deliber-
ateness refers to the capacity in motor control to perform a given task. We did not
evaluate deliberateness in a task-driven study where error rate and time completion
would allow assessment of accuracy.

In the first pilot study, we showed that varying size and speed is natural and can be
executed deliberately in 2D gestures. Both can be controlled separately if the gesture
is performed slower, otherwise both are intrinsically coupled. 2/3 Power Law states
a strong correlation between instantaneous speed and curvature [Viviani and Flash
1995]. This means that the speed cannot possibly be constant over the pattern (even
if the user perceives it as constant), with each gesture having a specific time/speed
profile. The law of isochrony further establishes that the average speed of point-to-
point movement tends to increases with the distance between the starting and ending
point. In other words, we tend to keep constant the time required to perform a gesture
if performed bigger. We show that the law also applies to free space gestures. For larger
gestures, the total length remains constant, meaning that the average gesture speed
increases.

This establishes that speed is not a parameter we are used to controlling or varying
in everyday motor task. On the contrary, size is a parameter we often modulate. Note
that these facts only hold for ballistic gestures, performed sufficiently fast without
feedback. When performed sufficiently slowly, the gestures can be controlled through
a sensorimotor loop using, for example, visual feedback. In such a case, the human
motion law we mentioned above does not hold.

Power is an expressive dimension that takes advantage of the richness of informa-
tion in physiological signals, and can be modulated by varying the tension in the mus-
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cle. We demonstrated capturing such modulation through EMG amplitude analysis.
Varying tension, however, seems to have an incident on the speed of execution of a
gesture. Power and speed seem to be intricately linked, but it is not clear what the
mechanisms are that link speed and power, like in the previously mentioned laws of
motion. On the other hand, size and power are separable in the sense that they can be
modulated independently.

7.4. Applications
Our findings provide insights for interaction designers wishing to enhance the expres-
sivity of interaction using muscle sensing. Here we present some possible applications
that could make use of the approach proposed.

The first application, Expressive Texting, has been imagined by Participant 12. In
the scenario, a user types a text on her mobile phone while commuting on public trans-
port at rush hour. High stress going to work makes her typing more vigorous and she
is eager to transmit her mood to the recipient. The messaging application understands
the level of stress by analyzing the gesture power picked up by wireless muscle sensors
and render the content of the text message in bold upper case or larger font sizes. This
scenario is simple, and is useful to clearly illustrate the type of application that can be
envisioned leveraging on our approach.

Another set of applications that could be imagined involves adaptive interfaces that
respond to the rigidity of user gesture depending on their level of expertise. If the the
user’s gestures show high tension due to inexperience, the system could simplify its
interface relative to a user who is more fluid and relaxed in their interaction. Or if the
user’s gesture shows high force, the system could visually emphasize a specific part of
the interface.

There are further potential applications in games. User engagement with a game
is critical to the interactivity with the system and has been measured by brain com-
puter interfaces (BCI). Typically, a user has a limited set of controls to help navigating
complex virtual environments. An understanding of physiological aspects of the user’s
gesture could help gain insight on the user’s level of engagement. Some games have
recently implemented very basic physiological sensing5, but the use of different expres-
sivity dimensions, as proposed in this work, could provide more subtle interaction, or
even be used to alter the narrative of the video game in real time. High tension in the
user’s gesture could prompt the game to render a more quiet environments to encour-
age the user to rest, and high force could make the user’s virtual character stronger
during fights, with high intensity prompting the soundtrack tempo to increase.

A final set of potential applications relates to the performing arts and digital media
art. In this context, the ability to provoke different and unexpected responses in the
audience is critical to the success of an artwork [Ouzounian et al. 2012]. A set of tools
helping artists to leverage subtle variations of audience reaction while experiencing an
artwork could advance new prospects for live digital music, interactive dance, virtual
reality, media theatre and interactive installations.

8. CONCLUSION AND FUTURE WORKS
In this paper we explored how limb gesture variation captured by physiological sen-
sors can be suitable for the design of expressive interactions. Results from the first
pilot study illustrate that users are able to reliably perform simple variations in size
and speed of 2D shape gestures, and do so independently of the gesture performed.
The second pilot study introduced muscle sensing in a multimodal context alongside

5See review of physiological sensing-based games at http://www.physiologicalcomputing.net/?tag=biofeedback-
games
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standard physical sensors, and looked at two complementary modes of muscle sens-
ing, the EMG and MMG in a bi-modal configuration. This study showed that muscle
sensing gives an indication of the user intent in the execution of a gesture and that
given auditory feedback, users are able to reliably perform gestures that highlight dif-
ferences in complementary modes of the EMG and MMG. This points out that muscle
sensing is suitable for detecting expressive input, and that physiological sensing can
be exploited by users in a voluntary manner in human-computer interaction settings.
We implemented techniques from the biomedical literature on consumer grade muscle
sensing hardware. These physiological phenomena needed to be detected in real work
setting with higher noise, lower sampling rate, and perturbation, similar to those in
which we might imagine future interactive products to be used. The rapid democrati-
sation of sophisticated physiological hardware in the e-health space means that the
signal quality, number of input channels, and sampling frequencies, will only improve,
making techniques like those presented in this paper increasingly robust in everyday
settings.

The main study describes an experiment that focuses on expressive dimensions of
gesture from a user oriented, qualitative and quantitative perspective. A questionnaire
following task-based trials gauging the participants’ perceived difficulty in performing
gesture variations as well as their subjective understanding of the gesture dimension,
‘power’. For the user, power is an ambiguous, subjective dimension that can be under-
stood differently according to the presence or absence of haptic feedback and can be
assimilated to tension or kinematic energy. According to the participants, ‘power’ is
also depends on the gesture performed and other dimensions to be manipulated (e.g.
speed).

A quantitative analysis of EMG and MMG data provides signal features, ampli-
tude and zero-crossings, that are useful in measuring objectively the insights from the
questionnaire. The analysis first shows that participants were able to modulate muscle
tension in gestures and this modulation can be captured through physiological sens-
ing. Exertion by pressure is better explained via EMG signal amplitude while dynamic
variation of intensity is better captured through MMG, in the frequency domain. The
ability to control variations in power, then, depends on the gesture performed. Finally,
we showed that power and speed are dependent.

The proposed approach, using gesture variation as a medium of expressive human-
machine interaction, leads to several potential applications for expressive interac-
tion scenarios, addressing diverse fields like personal devices, adaptive systems, video
games and the performing arts. We believe that this work has a relevant impact for
the HCI community and we see current challenges that will drive our future work in
the field.

A first challenge is to build on the results from these studies to create interaction sce-
narios involving dynamic gesture variations. Such scenarios would allow for evaluate
the approach from a task-oriented perspective and assessing aspects such as usability.
As the task would require the deliberate activation of muscles, the effect of fatigue
and stress would also need to be measured in order to shed light on usability issues for
HCI.

The second challenge is the computational modeling of muscle-based variation and
their real time tracking. We have developed previously a machine learning based
method that is able to recognize a gesture as soon as it starts and to adapt to spatial
and temporal variations. The system has been assessed on gesture databases from the
state of the art and successfully deployed in gesture-based sonic interaction [Carami-
aux et al. 2014]. The study presented in this paper gives insights on the challenges in
adapting such a system to track power variations captured by bimodal muscle sensing.
This machine learning technique would classify different muscle gestures and perform
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adaptation that would take into account variations in gestural power. A future work is
then a system that considers bi-modal muscle input and tracks variations in power, as
an improvement over current position based systems.

Finally, the investigation of gesture expressivity through muscle sensing would al-
low us to explore higher-level notions such as effort that has been widely used in cre-
ative practice such as dance but also in medical fields such as stroke rehabilitation. We
believe that the conceptual and methodological approaches presented offer insight for
further research in using physiological interfaces to go beyond movement-based HCI.
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APPENDIX
A.1. Additional material of the prior work
In the appendix we report the table of gesture used in our first pilot study.
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METAPHORICAL GESTURE ARMS PHYSICAL GESTURE 

Shaking bells Right arm lifted up. Wrist bent forward. 
Multiple contractions of the right hand fingers

Scattering sound grains 1 Right forearm lifted up. Distal phalanges bent forward. 
Fast multi-directional wrist contractions

Stretch the sound 1

Right arm lifted up and extended frontally towards the right. 
Palm completely open.
Closing rapidly the fist, while rotating and contracting the 
forearm towards the left.

Stretch the sound 2
Right arm lifted up, extended backwards behind the 
shoulder, and towards the right. Palm close.
Fast wrist rotation, and faster flexion of the distal phalanges.

Dropping something small
Right arm lifted up. Wrist bent forward. 
Single, neat contractions of the right wrist, and fast flexion of 
the ring finger.

Rotating bells
Right arm extended backwards behind the shoulder, and 
towards the right. Palm half close.
Very slow wrist rotation.

Grasping the void
Both arms lifted up. Elbows at the shoulder level. Forearms 
bent perpendicularly to the arm.
Fast arms closing, and wrist upward/downward contraction.

Shaping a wave
Left forearm lifted up. Palm half open. 
Upward wrist contraction, and movement of the forearm 
from right to left

Throwing a sound wave

Left forearm completely bent upward. Wrist bent forward. 
Palm half closed. 
Extension of the forearm, upward wrist contraction, and full 
opening of the palm.

Holding a growing force
Left arm lifted up. Wrist bent forward.
Multiple contractions of the left hand fingers and wrist, and 
full tension exerted in the whole arm.

Scattering sound grains 2
Left arm resting along the body. 
Sudden, strong, upwards wrist contractions, and fingers 
flexion. Lifting left shoulder upwards.

Rotating a wheel

Left arm perpendicular to the body. Forearm slightly bent to 
the right. Palm half open. 
Sudden upward wrist contraction, and fast rotation of the 
forearm from right to left

Fig. 14. Table describing the gesture vocabulary used in our pilot study [Donnarumma et al. 2013a]. The
gestures are derived from an existing performance piece of contemporary interactive music.
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