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Abstract:  25 

Background: Obesity is one of the leading causes of preventable death worldwide.  Circadian 26 

rhythms are known to control both sleep timing and energy homeostasis, and disruptions in 27 

circadian rhythms have been linked with metabolic dysfunction and obesity-associated disease.  In 28 

previous research, social jetlag, a measure of chronic circadian disruption caused by the discrepancy 29 

between our internal versus social clocks, was associated with elevated self-reported Body Mass 30 

Index (BMI), possibly indicative of a more generalized association with obesity and metabolic 31 

dysfunction.  32 

Methods: We studied participants from the population-representative Dunedin Longitudinal Study 33 

(N = 1037) to determine if social jetlag was associated with clinically assessed measurements of 34 

metabolic phenotypes and disease indicators for obesity-related disease; specifically, indicators of 35 

inflammation and diabetes.  36 

Results: Our analysis was restricted to N = 815 non-shift workers in our cohort.  Among these 37 

participants, we found that social jetlag was associated with numerous clinically assessed measures 38 

of metabolic dysfunction and obesity. We distinguished between obese individuals who were 39 

metabolically healthy versus unhealthy, and found higher social jetlag levels in metabolically 40 

unhealthy obese individuals.   Among metabolically unhealthy obese individuals, social jetlag was 41 

additionally associated with elevated glycated hemoglobin and an indicator of inflammation.  42 

Conclusions: The findings are consistent with the possibility that “living against our internal clock” 43 

may contribute to metabolic dysfunction and its consequences. These findings suggest the 44 

hypothesis that reducing social jetlag might help prevent obesity. Further research aimed at 45 

understanding the physiology and social features of social jetlag may inform obesity prevention and 46 

have ramifications for policies and practices that contribute to increased social jetlag, such as work 47 

schedules and daylight savings time. 48 

Keywords: Social jetlag, obesity, metabolism, inflammation, diabetes, population cohort 49 
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INTRODUCTION 50 

Obesity is one of the biggest public health concerns facing industrialized societies (ref. 1-3). 51 

Many factors affect the risk for obesity, including sleep duration (ref. 4-8).  Circadian output 52 

rhythms, including sleep-wake timing, are modified through signals from the internal circadian clock 53 

which is in turn synchronized to external environmental cues (ref. 9).  The circadian clock is also 54 

known to regulate energy metabolism (ref. 10), and disruption of circadian rhythms has been shown 55 

to alter obesity and metabolic-associated phenotypes in mice and humans (ref. 11-15).   56 

Social jetlag is a measure of the discrepancy in sleep timing between our work days and free 57 

days (ref. 16-17).  Social jetlag was so named due to the similarity in the time discrepancy for many 58 

individuals between work and free days to that of travel-induced jetlag caused by taking a flight to 59 

the west on Friday evening and a return flight on Monday morning.   Unlike travel-induced jetlag, 60 

social jetlag occurs chronically throughout an individual’s working life.  As travel-induced jetlag 61 

results in a misaligned circadian system that in turn causes temporary problems with metabolism, it 62 

is likely for social jetlag to have chronic consequences for metabolism, due to the manifestations of a 63 

misaligned circadian system.  Recently, individuals who have more social jetlag, and thus a greater 64 

discrepancy between their internal and social clocks, were found to also have higher self-reported 65 

Body Mass Index scores (BMI) in a large European sample (N>65,000) (ref. 14).  This association 66 

persisted after controlling for sleep duration and sleep timing (chronotype). 67 

If social jetlag is not only associated with BMI, but more generally with other measures of 68 

obesity and metabolic dysfunction as well as with the health consequences of obesity, then this 69 

would be consistent with the hypothesis  that our internal clocks being at odds with our external 70 

schedules may partially underlie the increased obesity seen in recent decades.  This would be in line 71 

with a number of studies suggesting that sleep disruptions, including short sleep duration and sleep 72 

debt, may be a contributing factor to obesity (ref. 18-19).   73 

We studied participants in the population-representative Dunedin Longitudinal Study in 74 

order to further explore the link between social jetlag and metabolic dysfunction in three ways. First, 75 
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although our sample is smaller than the original discovery sample, it has the advantage of containing 76 

a number of clinically assessed measurements of metabolic phenotypes: BMI, fat mass, waist 77 

circumference, obesity and the metabolic syndrome.  We were additionally able to control not only 78 

for additional sleep measures, but also for lifestyle and demographic factors such as smoking and 79 

socioeconomic status.  Second, obesity is typically associated with metabolic dysfunction and 80 

increased inflammation which have, in turn, been hypothesized to underlie an increased risk for 81 

cardiovascular disease and diabetes seen in obese individuals (ref. 20-23).  In order to investigate 82 

whether social jetlag is also associated with these consequences of obesity, we investigated whether 83 

social jetlag was associated with disease indicators for obesity-related disease; specifically, indicators 84 

of inflammation and diabetes.  Third, recent obesity research has shown that there is a subset of 85 

obese individuals who are metabolically healthy (ref. 24).  There is controversy about whether or not 86 

these metabolically healthy obese individuals are at increased risk of developing cardiovascular 87 

disease and dying from related disorders (ref. 24-26).  We thus tested whether social jetlag is 88 

specifically associated with unhealthy obesity, defined as obese individuals who exhibit at least three 89 

risk factors for metabolic syndrome.  90 

 91 

MATERIALS AND METHODS 92 

Sample 93 

Participants are members of the Dunedin Multidisciplinary Health and Development Study, a 94 

longitudinal investigation of health and behaviour in a complete birth cohort. Study members 95 

(N=1,037; 91% of eligible births; 52% male) were all individuals born between April 1972 and March 96 

1973 in Dunedin, New Zealand, who were eligible for the longitudinal study based on residence in 97 

the province at age 3 and who participated in the first follow-up assessment at age 3. The cohort 98 

represents the full range of socioeconomic status in the general population of New Zealand’s South 99 

Island and is primarily white (ref. 27). Assessments were carried out at birth and at ages 3, 5, 7, 9, 11, 100 
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13, 15, 18, 21, 26, 32, and, most recently, 38 years, when 95% of the 1,007 study members still alive 101 

took part. At each assessment wave, study members are brought to the Dunedin research unit for a 102 

full day of interviews and examinations. The Otago Ethics Committee approved each phase of the 103 

study and informed consent was obtained from all study members. We excluded all shift workers 104 

(n=131) as the standard Munich Chronotype Questionnaire (MCTQ) would only provide an estimate 105 

of their social jetlag for a single shift and thus may not give an accurate measurement of social jetlag 106 

for shift-workers on variable shift schedules.  Exclusion of shift workers is standard practice when 107 

using the MCTQ (ref. 14,28).   108 

 109 

Sleep duration, chronotype and social jetlag measures 110 

At age 38, the Munich Chronotype Questionnaire was used to assess social jetlag as well as 111 

sleep duration and chronotype (ref. 29).  Social jetlag, the discrepancy between our internal timing 112 

and external timing, was measured by subtracting each participant’s midpoint of sleep on work days 113 

(MSW) from their midpoint of sleep on free days (MSF).  Sleep duration was calculated by averaging 114 

the sleep duration on work days and free days, assuming 5 work days and 2 free days a week as 115 

standard.  Chronotype, the preference in sleep timing, was assessed using sleep-debt-corrected MSF 116 

(MSFsc) (see (ref. 17)). A detailed protocol for calculating the complete set of MCTQ variables can be 117 

found elsewhere (ref. 14).  Social jetlag was significantly correlated with chronotype (r = 0.40, p < 118 

0.01), but not with sleep duration (r = -0.04, p = 0.28). The mean social jetlag among participants in 119 

our cohort was 0.88 hours with a standard deviation of 0.96 (n=815) (see Supplemental Figure 1).  All 120 

analyses were conducted using the absolute value of social jetlag.   121 

 122 

Obesity Phenotypes at age 38 123 
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Measures of being overweight.  Height was measured to the nearest millimeter using a 124 

portable Harpenden Stadiometer (Holtain, Crymych, UK). Weight was recorded to the nearest 0.1kg 125 

using calibrated scales.  Individuals were weighed in light clothing. BMI was computed as weight 126 

(kg)/height (m2).  Obesity was defined as BMI≥30. Of the participants, 23.4% (n=192) were obese.   127 

Waist circumference (girth) was measured in centimeters.  Fat mass was measured using a body 128 

composition analyser (Tanita BC 418, Tokyo, Japan) to assess bio-electrical impedance.   129 

Metabolic syndrome. Metabolic syndrome was assessed from measurements of five 130 

biomarkers: (i) high waist circumference (≥88cm for women, ≥102cm for men), (ii) high blood 131 

pressure (≥130/85 mmHg), (iii) low high density lipoprotein (HDL) cholesterol (<50mg/dl for women, 132 

<40mg/dl for men), (iv) high glycated hemoglobin (≥5.7%), and (v) high triglycerides (≥200 mmol/l). 133 

Biomarker assessments have been described in detail previously (ref. 30). Cohort members with 134 

high-risk values on three or more biomarkers were defined as having the metabolic syndrome (ref. 135 

31). Of the participants, 15.9% met criteria for the metabolic syndrome. 136 

Inflammation. Elevated systemic inflammation was assessed using high sensitivity assays of 137 

C-reactive protein (hsCRP) in blood. HsCRP was measured on a Hitachi 917 analyzer (Roche 138 

Diagnostics, GmbH, D-68298, Mannheim, Germany) using a particle enhanced immunoturbidimetric 139 

assay. The CDC/AHA definition of high cardiovascular risk (hsCRP>3 mg/L) was adopted to identify 140 

the risk group (ref. 32).  141 

Glycated hemoglobin. Glycated hemoglobin concentrations (expressed as a percentage of 142 

total hemoglobin) were measured by ion exchange high performance liquid chromatography 143 

(Variant II; Bio-Rad, Hercules, Calif) (coefficient of variation, 2.4%), a method certified by the US 144 

National Glycohemoglobin Standardization Program 145 

(http://www.missouri.edu/~diabetes/ngsp.html).  The American Diabetes Association definition of 146 

"pre diabetes" high glycated hemaglobin (>=5.7) was adopted to identify the risk group (ref. 33).  147 
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Unhealthy obesity. We created a measure for obesity status with three levels: non-obese, 148 

BMI < 30, healthy obese individuals, BMI >=30 but no metabolic syndrome (see above), and 149 

unhealthy obese, BMI >=30 and metabolic syndrome.  Of the 186 obese individuals, 101 were 150 

healthy obese and 85 were unhealthy obese. 151 

  152 

Potentially confounding variables 153 

 Current smoking was defined as smoking at least 1 cigarette daily for at least 1 month in the 154 

previous year (0 = non-smoker, 1= <10/day, 2 = 10-19/day, 3 = 20+/day).  Of the participants, 77.3% 155 

were non-smokers. Current smoking was included as a potential confounder because it is positively 156 

associated with social jetlag (in the Dunedin study, r=0.24, p < 0.0001) and because smoking may 157 

keep weight low (ref. 34-35).   158 

Socioeconomic status. At age 38, study members were asked about their current or most 159 

recent occupation.  The SES of the study members was measured on a 6-point scale that assessed 160 

self-reported occupational status and allocates each occupation to 1 of 6 categories (1 = unskilled 161 

laborer, 6 = professional). Homemakers and those not working were pro-rated based on their 162 

educational status according to criteria included in the New Zealand Socioeconomic Index (ref. 36).  163 

SES was included as a covariate in the analyses because lower social status is linked to greater social 164 

jetlag (in the Dunedin Study, r = .17, p < .001) and because of the SES-health gradient (ref. 37). 165 

Analysis 166 

 We conducted linear regressions for continuous outcomes (BMI, fat mass and waist 167 

circumference) and logistic regressions for dichotomous outcomes (obesity and metabolic 168 

syndrome). Social jet lag was treated as a continuous variable in all analyses.  In model 1, we 169 

controlled for social jetlag, sex, chronotype (MSFsc), and sleep duration.  In model 2, we controlled 170 

for the model 1 covariants and additionally added a covariant for smoking.  In model 3, we 171 

controlled for the model 2 covariants and additionally added a covariant for SES.    For linear 172 

regression models, we assessed violations of linearity, normality, and homoscedasticity using visual 173 
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inspection of histograms, residual-versus-fitted plots, and Q-Q plots, as well as skewness and 174 

kurtosis statistics (p < 0.05). All assumptions were met.  The variance inflation factor (VIF) score for 175 

the covariants used only differed slightly across models and ranged between 1.04 and 1.35.  As an 176 

example the VIF scores for the covariants in model 3 with fat mass as the dependent variable are as 177 

follows: sex (1.06), social jetlag (1.34), MSFsc (1.33), sleep duration (1.04), SES (1.18) and current 178 

smoking (1.20).    179 

 We used multinomial logistic regression to determine if social jetlag predicted metabolically 180 

unhealthy vs. healthy obesity status.  For the biomarkers of inflammation (hsCRP) and diabetes 181 

(glycated hemoglobin), we first conducted the analyses as stated above and then repeated them 182 

after excluding the remaining healthy obese individuals (n=100).   183 

 Six individuals had extreme values of social jetlag (values > 5 hours).  To address these 184 

individuals, we conducted the above analyses both with these individuals removed and with these 185 

individuals recoded to a social jetlag score of 5 hours.  These two approaches yielded nearly identical 186 

results; we present the data with the recoded values.  187 

 Our study members are still relatively young (age 38) and only a few are taking diabetes 188 

medication (n = 4) or statins (n = 18). Study members were assessed for their use of medications 189 

with anti-inflammatory effect, including: systemic steroids, respiratory steroids, nonsteroidal anti-190 

inflammatory drugs, prophylactic aspirin, anti-gout medications, anti-rheumatic medications, and 191 

estrogens. Use of anti-inflammatory drugs was not related to social jetlag (r = .01, p = .68).  In 192 

sensitivity analyses (via statistical control and via exclusion), we verified that medication use did not 193 

influence the statistical or substantive findings reported in this article. 194 

 All analyses were conducted using SPSS (IBM SPSS Statistics for Windows, Version 22.0. 195 

Armonk, NY: IBM Corp).   196 

 197 

RESULTS 198 
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Social jetlag was significantly associated with overweight phenotypes and phenotypes 199 

indexing metabolic dysfunction (see Figure 1), even after taking into account chronotype and sleep 200 

duration (see Table 1). Individuals with greater social jetlag scores had higher average BMIs (β = 0.10 201 

hours/(kg/m2), s.e. = 0.2, p = .012) and more fat mass (β = 0.08 hours/kg, s.e. = 0.5,  p = .031), were 202 

more likely to be obese (odds ratio (OR) = 1.2 [95% confidence interval (95% CI): 1.0 to 1.5], p = .045) 203 

and to meet criteria for the metabolic syndrome (OR = 1.3 [95% CI: 1.0 to 1.6], p = .031).  There was 204 

also a trend for these individuals to have larger waist circumference (β = 0.07 hours/cm, s.e. = 5.1, p 205 

= .052). We thus found that greater social jetlag was generally associated with elevated measures of 206 

obesity and metabolic dysfunction.  207 

As tobacco smoking has a suppression effect on weight, we added current smoking levels to 208 

our statistical models, anticipating that doing so would strengthen the associations between social 209 

jetlag and these measures.  Consistent with this expectation, in smoking-adjusted models the 210 

associations between social jetlag and overweight phenotypes and phenotypes indexing metabolic 211 

dysfunction increased in strength by 15-30% (summarized in Table 2).  We thus found that the 212 

suppression effect of smoking on weight was likely masking the association between social jetlag 213 

and obesity.   214 

Socioeconomic status (SES) is known to predict health outcomes, with people of lower SES 215 

generally having worse scores on indicators of health, such as obesity (ref. 38).  Additionally, as 216 

irregular working hours may be related to occupational status and can affect social jetlag, we added 217 

SES to the linear regression models.    Overall, social class differences slightly attenuated the 218 

associations between social jetlag and both the overweight phenotypes and the phenotypes 219 

indexing metabolic dysfunction, although associations with BMI, fat mass, waist circumference and 220 

obesity remained significant   (summarized in Table 2).  221 

As social jetlag was a significant predictor of the metabolic measures, we investigated 222 

whether it was also associated with biomarkers of inflammation (hsCRP levels), and diabetes 223 

(glycated hemoglobin). Although both analyses suggested that individuals with higher social jet lag 224 
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scores had marginally elevated levels of hsCRP and glycated hemoglobin, the association did not 225 

reach significance for hsCRP (OR = 1.2 [95% CI: 1.0 to 1.4], p = .12) and there was only a trend 226 

towards significance for glycated hemoglobin (OR = 1.1 [95% CI: 1.0 to 1.4], p = .073). 227 

 Recent obesity research has suggested it is useful to distinguish between obese individuals 228 

who are metabolically healthy versus unhealthy (ref. 24,26).   Using metabolic syndrome to 229 

differentiate between healthy and unhealthy obese individuals, we conducted a multinomial logistic 230 

regression to determine if social jetlag predicted obesity status.  We found that social jetlag did 231 

predict obesity status such that higher social jetlag levels predicted increased risk for being in the 232 

metabolically unhealthy obese group (OR = 1.4 [95% CI: 1.1 to 1.8], p = .008, summarized in figure 2). 233 

High levels of social jetlag did not, however, predict increased risk for being in the metabolically 234 

healthy obese group (OR = 1.1 [95% CI: 0.8 to 1.4], p = .60).   235 

As the healthy obese individuals may not have an increased risk of developing and dying 236 

from obesity-related disorders, possibly because they do not have high levels of inflammation and 237 

diabetes-related pathophysiology (ref. 24-26), they might be masking associations of social jetlag 238 

with biomarkers of inflammation and diabetes in the metabolically unhealthy obese.  We thus 239 

excluded the healthy obese individuals and re-estimated the associations between social jetlag, 240 

hsCRP levels and glycated hemoglobin. Upon removing these individuals we found that individuals 241 

with higher social jetlag scores were more likely to have clinically-elevated levels of hsCRP (OR = 1.3 242 

[95% CI: 1.0 to 1.6], p = .046) and glycated hemoglobin (OR = 1.3 [95% CI: 1.0 to 1.6], p = .018), 243 

though these associations became weaker once we controlled for smoking ((OR = 1.2 [95% CI: 1.0 to 244 

1.5], p = .102) and (OR = 1.2 [95% CI: 1.0 to 1.6], p = .053), respectively) and SES ((OR = 1.2 [95% CI: 245 

1.0 to 1.5], p = .092) and (OR = 1.2 [95% CI: 1.0 to 1.5], p = .112), respectively)  (summarized in Figure 246 

3 and Table 3).   247 

 248 

DISCUSSION 249 
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We successfully replicated the association of social jetlag with BMI in an independent cohort 250 

(ref. 14).  We additionally found that social jetlag was associated with a number of clinically assessed 251 

metabolic measures, albeit modestly.  Furthermore, we found that social jetlag was associated with 252 

disease indicators for obesity-related disorders, especially in “unhealthy obese” participants.    Taken 253 

together these data show that social jetlag is likely a risk indicator for both obesity and the 254 

metabolic consequences frequently associated with obesity.   255 

As social jetlag is a measure of the discrepancy between our internal clock and our external 256 

environment, it is possible that circadian disruption underlies these associations.  A number of 257 

studies have shown that circadian disruption leads to similar metabolic consequences.  Sleep 258 

restriction and circadian disruption caused decreases in resting metabolic rate, increased plasma 259 

glucose concentrations after eating and inadequate pancreatic insulin secretion (ref. 39). Chronic 260 

circadian disruption in mice led to metabolic disruption, weight gain, increased leptin and insulin 261 

levels (ref. 40-41).  Furthermore, disruption of a circadian gene led to the disruption of hepatic lipid 262 

homeostasis in mice (ref. 42), while myeloid cell specific disruption of Per1 and Per2 expression in 263 

mice exacerbates both diet-induced inflammation and insulin resistance (ref. 43).  A recent study 264 

found that mistimed sleep disrupts the daily regulation of global gene expression in humans (ref. 265 

44).  As social jetlag disrupts sleep timing, it is thus possible that social jetlag has similar effects on 266 

gene expression.  Taken together these studies suggest that our findings may be explained by the 267 

circadian disruption caused when our internal clocks are at odds with our external schedules, 268 

possibly by affecting the timing of gene expression.  In addition, it is also likely that social jetlag 269 

disrupts healthy habits (e.g., diet) that may compromise health.   270 

The nature of our observational design prevents us from making causal inferences.     271 

Additionally, reverse causation could in theory apply, if poor health associated with obesity dictates 272 

lifestyle choices, such as occupation type, that increase social jetlag.  In order to control for potential 273 

confounding effects we added both smoking and SES to our statistical models, and found that 274 

afterwards social jetlag was still significantly associated with most of the metabolic measures.  275 
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Interestingly, controlling for smoking increased the strength of the association between social jetlag 276 

and the metabolic measures, which is in line with previous findings that nicotine acts as an appetite 277 

suppressant and smoking keeps weight low (ref. 34-35). As people with social jetlag have previously 278 

been shown to be more likely to smoke (ref. 16), it is important to consider this confound in any 279 

future replication studies, particularly as it may mask real associations of social jetlag and metabolic 280 

measures.  Controlling for SES conversely decreased the strength of these associations, possibly 281 

because lower SES is associated with poor health, including obesity (ref. 38).   282 

While the obesity epidemic has traditionally been thought to be caused primarily by changes 283 

in decreased levels of activity and food marketing, recent research has suggested that a number of 284 

alternative factors, including sleep debt and sleep duration, also play a role (ref. 18-19, 40-42).  This 285 

multi-determinant hypothesis for obesity is compatible with our findings.  Moreover, as obesity 286 

phenotypes likely have multiple determinants, large effect sizes would not be expected for any 287 

single risk factor; it is thus not surprising that the effect sizes associated with social jetlag are 288 

relatively modest in size. 289 

This is the first study to find that social jetlag is associated with biomarkers for diabetes and 290 

inflammation.  Given the association of social jetlag with obesity, it is not surprising to find a similar 291 

association with inflammation as inflammation has long been known to be associated with obesity 292 

(ref. 20).   Although we cannot make causal inferences from our data, the fact that on average 293 

individuals with a social jetlag of 2 hours had similarly increased CRP levels as those with even higher 294 

levels of social jetlag suggests that there may be a threshold of social jetlag required for these 295 

associations. Interestingly, a similar threshold-like pattern was seen for both BMI and fat mass.  It 296 

should be noted that the associations of social jetlag with these biomarkers became weaker or non-297 

significant once we controlled for smoking and SES, suggesting that these factors may partially 298 

underlie these associations.   299 

We additionally found that a higher social jetlag predicted an increased risk for being in the 300 

metabolically unhealthy obese group, but not in the metabolically healthy obese group.  Regardless 301 
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of the causality underlying this association, this finding suggests that an individual’s social jetlag may 302 

be a marker for whether individuals are at risk for obesity with adverse metabolic consequences.  303 

This points to the need, and potential benefit, of directing health campaigns at social jetlag.    304 

 305 

CONCLUSIONS 306 

In conclusion, we found that greater social jetlag was associated with unfavorable metabolic 307 

symptoms and disease indicators for obesity-related disorders.  The findings are compatible with 308 

evidence that circadian disruption causes unfavorable metabolic symptoms in animals and humans.  309 

These novel findings are consistent with the hypothesis that the conflict between our internal clocks 310 

and our external schedules in modern life may be a contributory factor in the recent obesity 311 

epidemic.  Further research aimed at determining the physiological mechanisms underlying these 312 

associations may give insight into the management of obesity, possibly by altering factors that 313 

promote social jetlag and by aligning our internal clocks with our social clocks. 314 
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Figure 1. Social jetlag associated with metabolic measures. 477 

Social jetlag is significantly associated with:  A) body mass Index (kg/m2); B) fat mass (kgs); D) 478 

obesity and E) Metabolic Syndrome, but not with C) waist circumference (mm).  The bars 479 

represent the mean values or percent of specific measures organized into 1 hour bins, with the 480 

number inside the bar representing N. The error bars represent standard errors.  * p-values < 481 

0.05.  482 
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Figure 2. Social jetlag differs between metabolically healthy and unhealthy obese individuals. 483 

 484 

Social jetlag predicted obesity status such that there were higher social jetlag levels in 485 

metabolically unhealthy obese individuals compared to non-obese individuals. There were no 486 

significant differences between healthy obese individuals and either non-obese or unhealthy 487 

obese individuals.  The bars represent social jetlag scores of non-obese, healthy obese, and 488 

unhealthy obese individuals, with the number inside the bars representing N.  The error bars 489 

represent standard errors.  * p-values < 0.05.    490 
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Figure 3. Social Jetlag associated with obesity-related biomarkers for inflammation and diabetes. 491 

Social jetlag was associated with the obesity-related disease indicators for A) inflammation, C-492 

Reactive Protein levels (CRP) and B) diabetes, glycated hemoglobin (p-values < 0.05 see Table 3).  493 

The bars represent the mean values of specific measures organized into 1 hour bins, with the 494 

number inside the bar representing N.   The error bars represent standard errors.  * p-values < 495 

0.05.    496 
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Table 1. Social jetlag is associated with metabolic measures: BMI, Fat Mass, Waist Circumference, 497 

Obesity and Metabolic Syndrome. 498 

 499 

Table is in landscape format, so is an additional document (called Table 1). 500 

 501 

We used linear regression models to test associations with continuous outcome measures of BMI 502 

(kg/m2), fat mass (kg), and waist circumference (cm).  We used logistic regressions to test 503 

associations with binary outcome measures of obesity and the metabolic syndrome.  Significant p-504 

values (p < 0.05) are shown in bold. The units for the covariants are: sex was coded as female =1, 505 

male =2; chronotype is unitless, sleep duration (hours) and social jetlag (hours).    506 

  507 
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Table 2. Associations between social jetlag and weight and metabolic measures are increased by 508 

controlling for smoking and decreased by controlling for socioeconomic status (SES). 509 

Weight and 
Metabolic measures 

Controlling for Sex, 
Chronotype, and Sleep 

Duration  
And controlling for 

smoking1  
And controlling smoking 

and SES2  
β (s.e.) p-value β (s.e.) p-value β (s.e.) p-value 

BMI  0.10 (0.24) 0.012 0.13 (0.24) 0.002 0.12 (0.24) 0.004

Fat mass 0.084 (0.48) 0.031 0.11 (0.48) 0.005 0.10 (0.48) 0.009 

Waist circumference 0.072 (5.2) 0.052 0.09 (5.2) 0.017 0.08 (5.2) 0.034 

 OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value 

Obesity 1.2 (1.0 to 1.5) 0.045 1.3 (1.0 to 1.5) 0.019 1.2 (1.0 to 1.5) 0.035 
Metabolic Syndrome 1.3 (1.0 to 1.6) 0.031 1.3 (1.0 to 1.6) 0.043 1.2 (1.0 to 1.5) 0.063

We used linear regression models to test associations between social jetlag and continuous outcome 510 

measures of BMI, fat mass, and waist circumference; the table shows the standardized coefficient 511 

(β), standard error (s.e.) and p-values for social jetlag as a predictor variable. The units for β for BMI, 512 

fat mass and waist circumference are hours/(kg/m2), hours/kg and hours/cm, respectively.  We used 513 

logistic regressions to test associations between social jetlag and binary outcome measures of 514 

obesity and the metabolic syndrome; the table shows the odds ratio (OR), 95% confidence interval 515 

for the odds ratio (95% CI) and p-values for social jetlag as a predictor variable.  516 

1Individuals who smoked had lower BMI (r = -.13, p < .001), less fat mass (r = -0.14, p < .001), smaller 517 

waist circumference (r = -.09, p = .003) and lower risk for obesity (r = -.08, p = .02).  Smoking was not 518 

associated with risk for metabolic syndrome (r = .02, p = .51).   519 

2Lower SES status was significantly associated with higher BMI (r = -.09, p = .009), greater waist 520 

circumference (r = -.08,  p = .02), and higher risk for obesity (r = -.08, p = .03).  Lower SES status was 521 

also marginally significantly associated with more fat mass (r = -.06, p = .09) but not with risk for the 522 

metabolic syndrome (r = -.05, p = .13).    523 
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Table 3. Social jetlag is associated with obesity-related disease indicators for inflammation and 524 

diabetes. 525 

Obesity related 
disease indicators  

Controlling for Sex, 
Chronotype, Sleep duration 

And controlling for 
smoking1  

And controlling for 
smoking and SES2  

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value 
High sensitivity C-
reactive protein 
levels (hsCRP) 

1.3 (1.0 to 1.6) .046 1.2 (1.0 to 1.5) .102 1.2 (1.0 to 1.5) .092 

Glycated 
Hemoglobin 

1.3 (1.0 to 1.6) .018 1.2 (1.0 to 1.6) .053 1.2 (1.0 to 1.5) .112 

This table shows the odds ratio (OR), 95% confidence interval for the odds ratio (95% CI) and p-526 

values for social jetlag as a predictor in logistic regression models after excluding the healthy obese 527 

individuals (n=100).   528 

1Individuals who smoked were more likely to have high glycated hemaglobin levels (r = .11, p < .001) 529 

but not high hsCRP levels (r = .03, p = .33).   530 

2Lower SES status was related to high glycated hemaglobin levels (r = -.10, p = .007) but not high 531 

hsCRP levels (r = -.02, p = .58).  532 



Table 1. Social jetlag is associated with metabolic measures: BMI, Fat Mass, Waist Circumference, Obesity and Metabolic Syndrome. 

 

We used linear regression models to test associations with continuous outcome measures of BMI (kg/m2), fat mass (kg), and waist circumference 

(cm).  We used logistic regressions to test associations with binary outcome measures of obesity and the metabolic syndrome.  Significant p-

values (p < 0.05) are shown in bold. The units for the covariants are: sex was coded as female =1, male =2; chronotype is unitless, sleep duration 

(hours) and social jetlag (hours).    

 

Predictor 
Variable 

BMI (kg/m
2
) Fat Mass (kg) Waist (mm) Obesity Metabolic Syndrome 

β (s.e.) 
p-

value 
β (s.e.) p-value β (s.e.) p-value OR (95% CI) p-value OR (95% CI) p-value 

Sex 0.07 (0.4) .056 -0.27 (0.8) .000 0.39 (8.4) .000 1.0 (0.7 to 1.3) 0.806 2.1 (1.4 to 3.2) 0.000 

Chronotype -0.06 (0.2) .166 -0.03 (0.4) .528 -0.04 (4.3) .289 0.9 (0.8 to 1.1) 0.353 1.2 (1.0 to 1.4) 0.121 

Sleep Duration -0.04 (0.2) .333 -0.02 (0.4) .432 -0.05 (4.3) .123 0.9 (0.8 to 1.1) 0.192 1.0 (0.8 to 1.2) 0.679 

Social Jetlag 0.10 (0.2) .012 0.08 (0.5) .031 0.07 (5.1) .052 
1.2 (1.0 to 1.5) 0.045 1.3 (1.0 to 1.6) 0.031 
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