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ABSTRACT  

There is a growing body of evidence for diverse ways of modulating neuronal 

processing to improve cognitive performance. These include brain-based feedback, 

self-regulation techniques such as EEG-neurofeedback, and stimulation strategies, 

alone or in combination. The thesis goal was to determine whether a combined 

strategy would have advantages for normal cognitive function; specifically operant 

control of EEG activity in combination with transcutaneous electro-acustimulation.  

In experiment one the association between transcutaneous electro- 

acustimulation (EA) and improved perceptual sensitivity was demonstrated with a 

visual GO/NOGO attention task (Chen et al, 2011). Furthermore reduced commission 

errors were related to an electrocortical motor inhibition component during and after 

alternating high and low frequency EA, whereas habituation in the control group with 

sham stimulation was related to different independent components.   

Experiment two applied frequency-domain ICA to detect changes in EEG power 

spectra from the eyes-closed to the eyes-open state (Chen et al, 2012). A multiple step 

approach was provided for analysing the spatiotemporal dynamics of default mode 

and resting state networks of cerebral EEG sources, preferable to conventional scalp 

EEG data analysis. Five regions were defined, compatible with fMRI studies.  

In experiment three the EA approach of Exp I was combined with sensorimotor 

rhythm (SMR) neurofeedback. SMR training improved perceptual sensitivity, an 

effect not found in a noncontingent feedback group. However, non-significant 

benefits resulted from EA. With ICA spectral power analysis changes in frontal beta 

power were associated with contingent SMR training. Possible long-term effects on 

an attention network in the resting EEG were also found after SMR training, 

compared with mock SMR training. 

  In conclusion, this thesis has supplied novel evidence for significant cognitive 

and electrocortical effects of neurofeedback training and transcutaneous 

electro-acustimulation in healthy humans. Possible implications of these findings and 

suggestions for future research are considered. 
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SD  Standard deviation  
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μV  microvolt 
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CHAPTER 1 BACKGROUND 

 

This chapter will serve to introduce a knowledge base of the historical origin and 

significantly developed analytic methods, including the topics of the 

electroencephalograph (EEG), EEG rhythm and current quantitative methods for 

analysing the EEG. This chapter also provides the concepts of EEG artefact rejection, 

quantitative EEG (qEEG), and then the independent component analysis (ICA) 

method, developed in order to optimize clinical and research applications of the EEG. 

Other relevant background issues of the three experiments, for example, acupuncture, 

electroacustimulation (EA), and neurofeedback training (NFT), will be introduced in 

the next three chapters respectively.  
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1.1 Overview of Research Aims 

The thesis rests upon the principle that the brain, and the central nervous system 

(CNS) as a whole, has an extraordinary capacity to be changed by exogenous 

stimulation, and endogenously regulate itself. Moreover, as is well-known plasticity is 

an essential characteristic par excellence in the evolution of the brain for which it 

relies on its basic constituents, the neurons. The flexibility of the CNS provides an 

advantage in the most important brain function: the principle of adaptation to local 

conditions. In fact, to learn is ultimately to adapt.  

Firstly, the ‘hardware’ or neural circuitry of brain will be considered, describing 

the generation of ‘brain electrophysiological activity’ within brain regions. Following 

this, the way in which exogenous and endogenous factors are thought to enhance or 

inhibit this hardware to influence brain function or behavioural performance will be 

considered along with consideration of ‘reliable functional imaging suited to address 

the dynamics of brain source activity’. The EEG provides a non-invasive method of 

recording the voltage differences of scalp potentials created by cerebral sources. Only 

the EEG has the sufficient time resolution (sampled at a high rate, typically 256 Hz or 

more) to capture the macroscopic dynamics of brain activation and synchronization 

(Delorme et al., 2002).   

Furthermore, the EEG inverse technique, known by the mathematical method for 

recovering the locations and activities of brain processes from these locations, has 

been developed to face the problem of reconstructing the intracranial brain sources 

from the observed EEG signals, and to separate the generated EEG processes which 

overlap both in time and space, becoming inextricably mixed in EEG recordings. Here 

in the thesis the new statistical technique, ICA, is applied to separate EEG mixed 
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sources and artefacts at scalp electrodes (Bell and Sejnowski, 1995; Makeig, et al., 

1996).  

Recently, the functional organization of the brain’s resting state is conceived of 

in terms of resting state networks (RSNs) and default mode networks (DMNs), 

clusters of mostly cortical regions, inter-connected anatomically and functionally (e.g., 

Damoiseaux et al., 2006; Mantini et al., 2007). In addition, the study of RSNs has 

shifted its focus from the localization of specialized brain activations to the 

interpretation of inter-relationships in brain dynamics (e.g., Mantini, et al., 2007). A 

main advantage of eyes-closed (EC) and eyes-open (EO) resting state protocols is that 

they may be carried out without requiring subjects to perform a specific task, and 

therefore be easily deployed in clinical settings. The EEG-alpha rhythm is the 

predominant component in the resting states. Therefore, EEG alpha power 

correlation-based RSNs, resolved with ICA and power spectral analysis, may provide 

a useful measure of functional connectivity, since resting-state connectivity has been 

shown to correlate with behavioural performance and cognitive measures (for a 

review, see Greicius, 2008). 

Then, the last experiment focuses on combining exogenous stimulation and 

endogenous self-regulation strategies EA and NFT. The aim of this thesis is to 

provide a framework of converging evidence which logically supports the use of a 

variety of modern neuromodulation techniques such as neurofeedback towards 

“optimizing” the neurocognitive mechanisms and functional networks responsible for 

the enhanced performance of cognitive function.  

Three designed experiments with their relationship and explicit aims are depicted 

by the Venn diagram. 
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The thesis is organized into six chapters. Chapter 1 provides the background 

information about the EEG and the analytic methods with which to deal with offline 

EEG. Chapter 2 gives the aims of each experiment, towards the main goal of this 

thesis namely the validation of the enhanced cognitive function by exogenous and 

endogenous stimulations. Chapter 3 for Exp I depicts the EA (exogenous) stimulation 

effects on attention, and the benefit of using the ICA method for analysing EEG 

components of repetitive attention tasks. Chapter 4 presents EEG-alpha associated 

networks in the resting states, compared with current fMRI research for RSN and 

DMN, in order to demonstrate the functional networks found in the EEG recordings. 

The applications of EEG RSNs found in the neurological signals and research are also 

mentioned. In Chapter 5, the theory of neurofeedback training (NFT) for enhancing 

cognitive function (the endogenous factor) and the role of EA for assisting NFT are 

analysed by ICA power spectra and QEEG ratio studies. Chapter 6 provides the 

general discussion and conclusions according to the results obtained by the three 

experiments. 
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1.2 Physiological Basis of the Electroencephalography (EEG) 

 This section provides the brief history of the discovery of the EEG, an 

introduction to the electrophysiology of the EEG, and the various types of electrical 

activity that are generated in the brain (commonly referred to as “brain waves”). 

Importantly, the study of the basic mechanism of brain rhythms informs our 

understanding of the underlying processes of neuronal networks within the human 

brain. 

1.2.1   Brief History of the Discovery of the EEG 

 Richard Caton, discovered electrical brain signals by probing directly on the 

surface of exposed brains of animals, and published his results in 1875 (Caton, 1875; 

Haas, 2003). In 1924, Hans Berger, a German psychiatrist, performed the first EEG 

recording in humans (Haas, 2003; Jasper and Carmichael, 1935), and discovered the 

existence of rhythmic activity oscillating at approximately 10 Hz, particularly during 

relaxed wakefulness, and described the alpha waves for the first time. Berger was also 

the first researcher to suggest that the periodic fluctuations of the human EEG may be 

associated with mental processes and consciousness. Over the years, because of 

developments in data collection (EEG recording) and analyses, the EEG has become 

one of the prime techniques for studying the human brain. To understand these 

developments in the EEG field it will first be necessary to detail the physiological 

basis of the EEG signal. Subsequently, important issues associated with data 

acquisition, signal processing, artefact rejection, and quantitative analyses will be 

introduced.  
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1.2.2  EEG generation.  

The brain’s neurons transmit electrical currents to each other along dendrites and 

axons. Electrical current is a flow of charged particles through chemical conduction 

that make up the current in a nerve impulse. However, even if the current has not yet 

occurred, the potential for a current flow is still there. The term “potential” is a 

technical term here and refers to the separation of charges between two places. In 

other words, the greater the initial potential, the stronger the current will be when it is 

released. In contrast, if there is no potential, no current will flow. EEG records 

summate extracellular field potentials from large pyramidal neurons in the cerebral 

cortex.  

1.2.2.1 A. Post-synaptic potentials in cortical pyramidal neurons 

The “field potentials” reflected in the scalp-recorded EEG mainly originate from 

oscillations in dendritic transmembrane currents. The neural membrane can be either 

excited (depolarized) or inhibited (hyperpolarized), resulting in excitatory 

post-synaptic potentials (EPSP) or inhibitory post-synaptic potentials (IPSP) 

respectively (Cantor, 1999). For example, excitation of the neural membrane caused 

by excitatory neurotransmitters, such as acetylcholine, changes the neural cell 

membrane’s permeability to sodium ions in the extracellular fluid. The resulting 

influx of positive charge creates an EPSP. Enough inputs from a summation of EPSPs 

are sufficient to trigger a corresponding axonal action potential (Cantor, 1999; W. J. 

Freeman, 1999). However, inhibitory neurotransmitters, such as gamma amino 

butyric acid (GABA), work by increasing the membrane’s permeability to negatively 

charged ions, which causes the intracellular negativity. Thus, neural cells become 

inhibited from firing and an IPSP is created (Cantor, 1999; W. J. Freeman, 1999). 



19 

 

Billions of individual action potentials, the summation of IPSP and EPSP field 

potentials from large groups of cortical neurons, make up the rhythmic EEG 

phenomena (Niedermyer, 1987). 

The oscillatory activity recorded at the scalp is the sum of electrical field 

potentials generated by cortical neurons in the proximity of the electrode site (Nunez, 

1995). Moreover, random fluctuating electrical potentials will not be detected by the 

scalp electrode due to the counterbalancing of their haphazard fluctuations. Therefore, 

only when synchronous activity of a large number of neurones occurs, is the electrical 

activity detectable at the scalp. Some types of neurons can display spontaneous 

oscillatory behaviour and enable them to generate rhythmic activity in vitro (Llinas, 

1988; Steriade and Llinas, 1988). However, the autorhythmic neuronal activity in the 

functional brain is dependent upon modulation through interaction with a large pool 

of neurons and by projections from neuromodulator systems (Steriade and Llinas, 

1988). These “pacemakers”, both autorhythmic neurons and interactions in local 

neuronal networks, can produce summed oscillations at very different frequencies and 

result in propagation of global rhythmic activity (Steriade et al., 1990; Thompson and 

Thompson, 2003).  

1.2.2.2 B. Thalamocortical networks 

The rhythmic cycles observed in scalp-recorded EEGs are generally agreed to be 

the result of neural activity between the thalamus and the cortex. Interactions between 

thalamocortical neurons in specific and non-specific nuclei of the thalamus have been 

demonstrated. The thalamic reticular nucleus formed by a sheath of inhibitory 

feedback neurons around the thalamus works with cortical neuronal populations. 

Hence, they can elicit and modulate rhythmic activity in cortex effectively (Contreras 
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et al., 1996; Steriade, et al., 1993). In other words, the thalamus is a central 

subcortical structure displaying characteristic functional states, which relays signals to 

the cortical level and relays signals between ascending and descending tracks to 

multiple brain areas. Cortical rhythmicity results from complex feedback and 

interactions between thalamocortical circuitry and both local and global 

cortico-cortical circuitry (Thatcher, et al., 1986). 

1.2.2.3 C. Local-scale and large-scale synchronization 

 The diameter of the EEG electrode is about 1cm and the area (about 0.79 cm
2
) of 

an electrode covers approximately 250,000 neurons (Baillet et al., 2001). Therefore, 

the signal recorded at the scalp is due to spatial summation of the induced current 

density from the post-synaptic potential of excited large clusters of neurons. It is clear 

that many neurons must be activated synchronously to form an EEG signal at the 

scalp.  

 Animal studies have already described substantial synchronization among 

adjacent neurons, called “local-scale synchronization” (e.g., Llinas, 1988), while for 

neuronal assemblies of distant brain regions, this is known as “large-scale 

synchronization” (e.g., Bressler and Kelso, 2001). The temporal interaction among 

neural activities, synchronization of oscillations, is a key mechanism for neuronal 

communication between spatially distributed brain networks (Schnitzler and Gross, 

2005). Animal studies also show that oscillatory processes might temporally bind 

neurons into assemblies and foster synaptic plasticity (Buzsaki and Draguhn, 2004). 

Interestingly, low frequency oscillations need larger neuronal populations, and higher 

frequency oscillations originate from smaller neuronal assemblies (Buzsaki and 

Draguhn, 2004). Furthermore, large-scale neuronal synchronization has an important 
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role in information processing that relies on constructed neuronal networks (e.g., 

language processing; Weiss and Mueller, 2003). Through EEG coherence analysis, 

those networks can be studied, and the particular methods for analysing EEG will be 

discussed further below. 

 

1.2.3 The Normative EEG Spectrum 

This section will briefly introduce common brain activities (rhythms) and their 

putative functional roles for the EEG frequency band from EEG scalp recordings in 

the resting state. The “electroencephalograph” (EEG) is an instrument to detect and 

amplify the electrical activity in the brain. Therefore, the scalp-recorded EEG 

generated by the pooled activity of billions of cortical neurons is easily influenced by 

shared activity between cortical and subcortical regions, and each EEG electrode site 

records rhythmic activity from multiple generators of EEG activity.  

The range of frequencies may be divided into six bands: Delta (1-3 Hz), Theta 

(4-7 Hz), Alpha (8-12 Hz), SMR (12-15 Hz), Beta (13-20 Hz), High Beta (20-33 Hz), 

and Gamma (36-44 Hz). This definition of frequency band components has been 

chosen in order to accommodate the bandwidths which have typically been applied in 

the NFT literature. Moreover, this definition merges the traditional frequency 

designation in other EEG literatures as well. Different oscillating patterns of the EEG 

(such as theta, alpha and beta rhythms) are thought to reflect distinct processes of 

modulation of information processing in neuronal networks. 

Not only to differentiate between functional inhibitory and excitatory activities 

but also to investigate fluctuations (increases/decreases) of EEG activity, the temporal 
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resolution at the millisecond level has allowed scientists to explore the minute 

changes due to task demands or between conditions. Low frequencies (delta and theta) 

originate from larger neuronal populations and show large synchronized amplitudes. 

However, higher EEG frequencies (e.g., beta and gamma) demonstrate small 

amplitudes due to a high degree of degree of desynchronization in the underlying 

neuronal activity (e.g., Pfurtscheller, et al., 2006; Pfurtscheller and Neuper, 1992; 

Pfurtscheller, et al., 1996). 

1.2.3.1 Delta band (1-4 Hz) 

The delta wave, often referred to as “slow wave” activity is related to restorative 

processes of repair, especially during deep sleep (Niedermeyer, 2005). Delta is also 

the predominant activity in infants during the first two years of life. In addition, slow 

delta and theta activity generally diminish with increasing age, whereas the faster 

alpha and beta bands linearly increase across the life span of adults (e.g., John et al., 

1980). Pathologically, increased delta waves will be found in a variety of serious 

disorders including head injury, coma and major depression (Laibow, 1999). In adults, 

delta power has been shown to increase in the proximity of brain lesions (Gilmore and 

Brenner, 1981) and tumors (Fernandez-Bouzas, et al., 1999). Delta activity reflects 

mostly an inhibitory rhythm. 

1.2.3.2 Theta band (4-8 Hz) 

Theta activity is prominently seen during sleep. However during wakefulness, 

two different types of theta activity have been described in healthy adults (Schacter 

1977). The first type, which is linked to the decreased alertness condition 

(drowsiness), shows a widespread scalp distribution of theta waves, indicating 
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impaired information processing. The second one, so-called frontal midline theta 

(FMT) activity, is generated in the middle prefrontal area, and it has been associated 

with anterior cingulated cortex activation (ACC, Brodmann area 24/32; Asada, et al., 

1999; Luu, et al., 2003). The ACC is the largest region with significant positive 

correlations between theta current density and glucose metabolism (Pizzagalli, et al. 

2003).  

Physiologically, activation in the septo-hippocampal circuit reveals functional 

relationships with hippocampal theta generators (Gaztelu and Buno, 1982), although 

theta has also been recorded in numerous other limbic regions, including the ACC, 

entorhinal cortex, and the medial septum (Vinogradova, 1995; Bland and Oddie, 

1998). In encoding information into episodic memory and memory-related tasks, the 

theta rhythm plays an integral role in the timing of action potentials of hippocampal 

neurons reacting to components of any given task (Hasselmo, 2005; Hyman et al., 

2005). In other words, these theta oscillations facilitate transmission between different 

limbic structures, and it has been speculated that theta activity may subserve a gating 

function on the information processing flow in limbic regions (Vinogradova, 1995).  

However, pathologically increased theta waves often are seen in psychotic states, 

delusions, and other states connected with poor reality testing and with seizure 

disorders. Theta may also appear excessively in head trauma cases (Laibow, 1999).  

1.2.3.3 Alpha band (8-12 Hz) 

In healthy adults, alpha activity can be predominantly recorded during a state of 

relaxed wakefulness and the unfocused state, “often characterized by creativity and 

dreamy thoughtfulness” (Laibow, 1999). Although large individual differences in 
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alpha amplitudes are not uncommon (Niedermeyer, 2005), alpha rhythms typically 

show their greatest amplitude over posterior regions, particularly posterior 

occipito-temporal and parietal regions during the eyes-closed (EC) state. In fact, a 

phenomenon, known as “alpha blockage” or “alpha desynchronization”, is defined by 

the greatly diminished or abolished alpha rhythm with opening the eyes, sudden 

alerting, and mental concentration. However, the physiological role of the alpha 

rhythm remains largely unclear. Some authors have suggested that alpha 

synchronization may demonstrate an electrophysiological correlate of cortical “idling” 

or cognitive inactivity (e.g., Pfurtscheller, et al., 1996). In recent years, this conjecture 

has been heavily discussed in the literature, particularly in studies investigating 

evoked EEG activity described during information processing (event-related 

potentials, ERPs; e.g., Cooper, et al., 2006; Klimesch, 1999).  

It may be pathologically decreased in all stress-related disorders, anxiety and 

attention deficit disorders (Laibow, 1999).  

1.2.3.4 Sensorimotor rhythm (SMR, 12-15 Hz) 

The SMR (sensorimotor rhythm) normally is associated with a resting body but 

active mind, an external focus of attention, paying attention, sequencing, and 

information storage and retrieval. It is often decreased in attention deficit disorders, 

anxiety and stress-related disorders (Laibow, 1999). In the study of Onton et al (2005) 

theta components worked strongly with SMR (12-15 Hz, or named a low-beta rhythm) 

activity during memorising-letter trials. Their results showed that low-beta activity 

reflected harmonic energy in continuous, sharp-peaked theta wave trains as well as 

independent low-beta bursts (Onton, et al., 2005). The observed theta and SMR 
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relation may index dynamic adjustments in medial frontal cortex to trial-specific 

behavioural context and task demands.  

1.2.3.5 Beta band (13-36 Hz) 

The beta rhythm is normally associated with higher cognitive processes and 

rational analytical, problem-solving thinking and with focused concentration (Laibow, 

1999). Moreover, the beta rhythm has been shown to increase with attention (Murthy 

and Fetz, 1992) and vigilance (Bouyer, et al., 1987) in animal studies. In adults, beta 

activity presents mainly a symmetrical fronto-central distribution, and typically 

replaces the alpha rhythm during cognitive activity. Collectively, these findings 

suggest that increased beta activity generally reflects increased excitatory activity, 

particularly during diffuse arousal and focused attention (Steriade, 1993). In the 

research of Tallon-Baudry et al. (2004) their findings suggest that the successful 

performance of a visual short-term memory task depends on the strength of oscillatory 

synchrony in the beta range (13-20 Hz) during the maintenance of the object in 

short-term memory, which matches behavioural performance (Tallon-Baudry, et al., 

2004).  

Consistent with this view of increased beta activity for attention, the high beta 

rhythm, also named the beta2-frequency (20-36 Hz) oscillation, is normally associated 

with states of physiological arousal. Beta2 frequency oscillation occurs over 

somatosensory and motor cortices during motor preparation. It can be coherent with 

muscle electrical activity (Roopun et al., 2006).  

However, pathologically it is elevated in all stress-related disorders, some mood 

disorders, with panic and anxiety (Laibow, 1999).  
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1.2.3.6 Gamma band (from 36 Hz to > 80 Hz) 

Gamma oscillations have recently received great attention given their role in 

cognition (Tiitinen, et al., 1993). Various findings indicate that gamma activity is 

directly associated with brain activation, for example, attention, arousal, object 

recognition, top-down modulation of sensory processes (e.g., Engel, et al., 2001; for 

learning, Miltner, et al., 1999). Gamma oscillations with high frequencies span from 

roughly gamma (30–80 Hz) to high gamma (>80 Hz). These oscillatory activities can 

be obtained at many levels, ranging from single cell to local field potentials in animals, 

to large-scale synchronized activities in human scalp. Gamma is often the first 

component in response to a sensory stimulus, interestingly not only in auditory but 

also in visual, somatosensory, and olfactory or even cellular levels (Moran and Hong, 

2011). Dose-dependent decreases of gamma activity have also been described during 

anaesthesia (Uchida et al., 2000). In addition, systematically decreased gamma 

activity has been described throughout the sleep-wake cycle (the highest during 

wakefulness and the lowest during slow wave sleep; Gross and Gotman, 1999).  

 

1.2.4 Artefacts 

 How to obtain "clean" data from cerebral activity without contaminated signals 

by non-cerebral artefacts? It is a substantial problem in the procedure of EEG 

recording. Physiological artefacts, such as muscular activity of scalp muscles, eye 

movements and blinks, are generated by subjects, and even extra-physiological 

artefacts from environmental electrical signals are recorded from sources outside the 

body. Nevertheless, two complementary approaches can substantially decrease or 
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eliminate artefacts. The first one, of course, is to minimise movement artefacts during 

EEG recording. The second one requires computational methods to remove artefacts 

within the EEG data. The following paragraphs will consider some of the artefacts, 

how to identify such artefacts, and introduce methods to minimise those artefacts 

(Please see a number of good sources, Beaussart and Guieu, 1977; Rowan and 

Tolunsky, 2003; Schachter and Schomer, 2005). The important computational 

methods for artefact removal will be considered in the next section. 

1.2.4.1 Muscle artefact 

Muscular contraction elicits myogenic potentials and that kind of potential is a 

major source of EEG artefact, so-called electromyographic (EMG) artefact. 

Consequently, muscular activity with high amplitudes can mask neural potentials 

altogether. For example, a historical problem with monitoring of EEG in epileptic 

patients, where there are strong spikes which can obscure the detection of epileptic 

spikes (Panych, et al., 1989). In the worst case, the fact that muscle artefact can totally 

conceal EEG activity may potentially limit EEG applications.  

EMG consists of a series of spiked discharges from underlying motor units, and 

the frequency of muscular discharges can range from 20 to 1000 Hz due to recruited 

muscle fibres for different degrees of muscular contraction (Andreassi, 2000). 

Importantly, the dominant frequency of muscular discharges is in the 50–150 Hz band, 

whereas more than 90% of the EEG’s spectral power lies within 1–30 Hz frequency. 

Therefore, the brain activity of interest lies below 15 Hz, and then we can simply use 

a low-pass filter to avoid the directly contaminated electrodes with many muscular 

artefacts, in order to facilitate adequate signal detection. 
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Indeed, muscle artefact also tends to occur in specific places and these should be 

examined. The scalp locations most affected are the temporal areas T3 and T4 which 

lie in close proximity to the bilateral temporalis muscle due to jaw tension, a 

particularly common muscle artefact. Figure 1-1 shows with increased power of 

muscular contraction and recorded at T3 and T4 on the topographical scalp map. To 

reduce this artefact, chewing should be discouraged and showing subjects how the 

effects of muscle tension on the EEG recordings is a good way to allow them to learn 

to reduce the artefact’s impact. In addition, frontal sites Fp1, Fp2, F7 and F8 lie in the 

region of the activity of the bilateral frontalis muscle (the ‘frowning’ muscle) of the 

forehead. Figure 1-2 illustrates the topographical map with strong muscular signals 

over the frontal region. 
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Figure 1-1. EEG signal and topographical map indicate jaw tension. 

 

Figure 1-2. EEG topographical map and spectral analysis indicate possible frowning 

and jaw tension. 
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 What can be done for eliminating EMG artefact? Fortunately, it becomes easy to 

distinguish between substantial EMG and EEG from the raw EEG recordings after the 

developed methods of quantitative EEG (qEEG) for spectral distribution and 

independent component analysis (ICA) for signal morphology and scalp location 

(please see the next sections). Of course, a common way of eliminating overt EMG 

(and other types of) artefact is to simply reject (delete) the contaminated portions of 

the EEG. However, when the degree of contamination is considerable, it can be the 

case that the rejection procedure results a considerable loss of hard-earned EEG data 

with perhaps unfortunate results. In this instance, more advanced post-processing 

methods such as ICA can be attempted to separate the EMG signal from the raw EEG 

signals. ICA has shown its benefit in isolating muscle artefact. ICA and other methods 

are described in the later section on computational analysis of EEG data. 

1.2.4.2 Skin artefact 

Sweat with sodium chloride and lactic acid can react with the metal of the 

electrodes and then alter impedance and signal amplitudes. Therefore, exercise is 

naturally more likely to cause sweating and produce this type of artefact. However, 

such artefact is generally found at very low frequencies below 1 Hz and subjects may 

be instructed how to reduce the influence of this skin artefact, for example, with lower 

body temperature to minimise that artefact, and the avoidance of exercise before EEG 

recording. It is also important to monitor impedances of all channels to ensure that 

differences across active and reference sources are minimal, ideally by ensuring all 

impedances are kept low (Thompson et al., 2008).  
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1.2.4.3 Eye movement and eye blinking artefacts 

Both eye blinks and lateral eye movements are universal sources of artefact. 

During an eye-blink the eyeball turns upwards, which primarily affects the frontal 

electrodes, with a large positive deflection seen at Fp1 and Fp2 (a peak amplitude of 

around 50–200 µV, lasting 200–400 ms). The peak generally presents a large wave 

recorded by other electrodes. In addition, lateral eye movement with sharply 

contoured potentials is recognisable in the fronto–temporal areas (Rowan and 

Tolunsky, 2003). There is some evidence that increased visual load decreases the rate 

of eye blinks (e.g., Bynum and Stern, 1970; Veltman and Gaillard, 1996). As dealing 

with EMG, eye blink is easily recognised in the EEG because of its signal 

morphology and amplitude with a distinctive pattern. It may contaminate delta (1–4 

Hz) and theta (4–8 Hz) bands predominantly at frontal sites (see Figure 1-3). Many 

modern techniques, such as ICA, can ameliorate/correct this problem caused by eye 

blinks. 
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Figure 1-3. Removal of eye blink artefact using ICA. Five columns (from left to right) 

show the raw EEG, corrected EEG, excluded artefact, along with EEG components 

and topographies 
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1.2.4.4 ECG artefact (electrocardiogram, ECG or EKG) 

 The electrical activity of the heart can be measured by the ECG. If the electrical 

field from each cardiac pulse is very large, the signal can be measured by the scalp 

EEG recording. ECG artefact is more likely to be seen in people with wide necks, but 

it generally does not become a big problem due to its contamination with only low 

frequencies of around 1–2 Hz (Thompson et al., 2008). This artefact can be common 

in channels connected to the ears. In addition, the rhythmic and distinct morphology 

of ECG also means that it is generally easily removed by the post-processing 

computational methods, which will be discussed in the next section.  

1.2.4.5 Respiration artefact and tongue movement 

Respiration artefact arises from the rhythmic body movement of inhalation and 

exhalation. This sort of artefact may be initially observed with high amplitude 

deflections as a delta frequency. As with ECG, this type of artefact is highly suitable 

for removal by post-processing methods.  

 Regarding tongue movement, it is created by the potential difference between the 

tip and base of the tongue and gives rise to slow potentials. This type of artefact 

usually does not occur frequently enough to cause a significant loss of data. The main 

reason for tongue movement is the need to swallow.  

1.2.4.6 Electrical interference from the environment 

Electrical noise from the environment is normally eliminated by common mode 

rejection as previously described. A very large discrepancy exists due to a poor 

quality of connection, and noise will appear commonly at the 50 Hz frequency 

(Europe) or 60 Hz in the USA. Ensuring a good quality connection and checking 
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impedance online during EEG recording may help to minimise this artefact. Active 

shielding can be used to reduce electrical noise (Thompson et al., 2008). 

 

1.2.5 Summary  

Overall, the reviewed research on EEG generation, spectrum, and artefacts 

suggests that those related explanatory mechanisms can be simulated and analysed by 

computational methods. Fortunately, solutions to the inverse problem can be found by 

postulating physiologically and anatomically sound assumptions about supposed EEG 

sources and by mathematically applying established laws of electrodynamics. The 

main purpose of the present section of introducing EEG is to review recent advances 

in the EEG field. To understand these developments it will first be necessary to 

describe the physiological basis of the EEG signal. Subsequently, important issues 

associated with data acquisition (please see the methodology part in the chapter 3), 

signal processing and quantitative analyses (for more comprehensive reviews of these 

topics, please see the next section) will be presented. 

 Regarding emerging source localization techniques that have been shown to 

localize EEG activity, perhaps the greatest advancements in the EEG field in the last 

5-10 years has been the development of these localization techniques (for details of 

this method, please see the chapter 3), particularly when used in concert with EEG 

recording, realistic head models, and other functional neuroimaging techniques. These 

achievements reveal that the spatial resolution of the EEG may be substantially and 

mathematically exact enough to open exciting opportunities for investigating 

spatio-temporal dynamics of brain mechanisms and functional networks underlying 
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mental processes (for details of EEG functional networks, please see the following 

section).  

 

1.3 From Quantitative Analysis of EEG to Source Localization 

Techniques 

 EEG involves the measurement, amplification, and registration of differences 

between fluctuating electrical field potentials as a function of time (Kamp and da 

Silva, 1999). The signals recorded at the scalp primarily reflect cortical activity which 

is the neuro-electrical activity of underlying brain cortical structures. This classical 

method for reading EEG relies on the visual analysis by a qualified specialist to 

analyse the recording of the electrical signals obtained from electrodes placed on the 

skull. It is still the first step and remains the gold standard in analysing any type of 

EEG. However, Coburn et al (2006) have described the obvious advantages of 

quantitative EEG (qEEG) when compared with other imaging methods in their 

comprehensive review (Coburn et al., 2006).  

Quantitative analysis of the EEG involves computer-assisted imaging and 

statistical analysis of the EEG, and therefore, many methodological problems have to 

be solved with caution (Kaiser, 2000). The development of several methods to 

investigate EEG signals with respect to various parameters includes waveform 

frequencies, amplitudes, phase, and coherence. The EEG analyses can be divided into 

linear and nonlinear approaches. The most widely used linear methods to quantify 

spontaneous or task-related EEG activity are spectral and coherence analyses. 

However, nonlinear approaches incorporating higher order statistics, information 
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theory, or chaos theory, started to emerge in the 1990s, and have demonstrated their 

usefulness to analyse transient and irregular EEG patterns (see Thakor et al., 2004 for 

a review).  

The advent of multi-channel EEG systems has enriched the development of EEG 

mapping techniques. Unlike traditional EEG waveform approaches, EEG mapping 

consider data in the spatial domain first, and then in the temporal domain, proving a 

display of the constantly changing spatial distribution of bran activity (Maurer and 

Dierks, 1992). For topographic mapping, at minimum the complete 10-20 system 

should be used (Nuwer et al., 1999). One of the main advantages of space-oriented 

EEG analysis is that, at any given time point, activity from all electrodes is considered 

simultaneously. A second main advantage is that, unlike waveform analyses, 

space-oriented analysis is independent from the reference electrodes. When 

examining the unfolding of momentary potential distributions over time, different 

configurations of scalp potentials are assumed to index different functional brain 

states because different scalp potential distribution must have been generated by 

different neural sources (Fender, 1987), and different neural sources likely subserve 

different functions (Kühnpast, 2008; Pizzagalli, 2007). Although EEG mapping 

represents a powerful and unambiguous approach for scalp EEG data, it is important 

to stress that this technique does not provide any additional information about the 

generating sources underlying scalp measurements (Pivik et al., 1993). Thus source 

localization techniques are required for estimating the sources of scalp-recorded 

electromagnetic activity in order to localise intra-cerebral sources.  

In general these solutions of localisation can be divided into two broad categories, 

“equivalent dipole approaches” and “linear distributed approaches”. The first 
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approach typically assumes that EEG signals are generated by a relatively small 

number of focal disconnected sources, presented as fixed or moving dipoles (e.g., 

Scherg and Ebersole, 1994). However, the numbers of dipoles, unfortunately in many 

experimental situations, cannot be determined a priori (e.g., Phillips, et al., 2002a; 

Rao, et al., 2002). In contrast the second approach, linear distributed approaches 

consider all possible source locations simultaneously. The distributed approaches 

typically allow researchers to limit the solution space by means of anatomical and 

functional constraints; for example, anatomical constraints assume that some specific 

compartments or regions of the brain (e.g., cortical structures) have a higher 

likelihood of generating scalp-recorded EEG signals than others. Various source 

localization techniques will be presented in the following sections (for more technical 

reviews, see Baillet et al., 2001; Hamalainen and Ilmoniemi, 1994; Grave de Peralta 

and Gonzalez Andino, 2000; Phillips, et al., 2002a; Phillips, et al., 2002b; 

Pascual-Marqui, et al., 2002; Trujillo-Barreto, et al., 2004). 

 

1.3.1 Quantitative EEG (QEEG) 

In comparison with other techniques of brain imaging, although qEEG has a 

weaker spatial resolution, qEEG offers many advantages with, for example, no 

ionizing radiation and an ideal temporal resolution in the millisecond time domain for 

the processing of neuronal information. Of course, qEEG also produces non-invasive 

images from both excitatory and inhibitory cortical neuronal activity, but not from 

circulatory (e.g., the measurement of cerebral cortical blood flow) nor from metabolic 

activity (the measurement of regional cerebral cortical metabolic rate of oxygen and 

carbon dioxide) (Gleichmann et al., 1962). Furthermore, a variety of factors can 
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display their effects on EEG patterns, including metabolic rate of oxygen, 

biochemical, hormonal, neuroelectric, and behavioural factors (Bronzino, 1995). 

Therefore, the standard procedure of EEG recordings is the essential element in order 

to validate EEG changes under standard conditions. Thus EEG signals can be 

computerized and analysed by software for specific frequencies at specific sites 

without controversy. Calculations can be obtained, including ratios, standard 

deviations and other statistics. 

1.3.1.1 Spectral analyses 

 Probably the most common method of frequency analysis to analyse EEG signals 

is the spectral analysis. The algorithm of fast Fourier transform (FFT) to study the 

frequency of the spectrum of EEG is used for the spectral analysis (Thompson and 

Thompson, 2003). FFT is a mathematical calculation to transform the raw EEG from 

the time related domain to the frequency domain. The principal rationale is that any 

signal can be analysed and redrawn as a combination of sine and cosine waves of 

various phases, frequencies and amplitudes (Fisch, 1999). When FFT is applied to 

EEG recordings containing rhythms, these rhythms appear in the corresponding 

spectra in the form of peaks (Cantor, 1999), and the root-mean-square average 

amplitude or the power (the square of the amplitude) is used to quantify its 

contribution to the measured EEG signal.  

 Spectral analyses assume that the EEG is a stationary signal. Accordingly, 

segments entered in FFT analyses cannot be too long because of potential violation of 

the stationary assumption of EEG (Gasser and Molinari, 1996). At least 60 seconds of 

artefact-free data should be used for spectral analyses (Nuwer et al., 1999; Pivik, et al., 

1993), in order to obtain reliable estimation of spectral features and to reduce the 
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impact of second-to-second variability in EEG signals. Furthermore, the window 

approach is used for abrupt changes in EEG signals at the beginning and the end of 

the EEG segments. The Hanning (cosine) window has been commonly utilized. This 

window tapers the beginning and end of the EEG segment to zero, whereas the middle 

of the segment retains 100% of its amplitude (see Dumermuth and Molinari, 1987 for 

a review of various windowing approaches), and overlapping segments (e.g., 50%) 

are often used to restore the amount of data for spectral analyses.  

 Importantly, several methodological points should be highlighted in this section. 

First, the frequency range for a given oscillatory activity (e.g., alpha activity) can 

show considerable individual differences (Klimesch, 1999), indicating substantial 

effects from specific bands on the findings. Second, measures of absolute or relative 

power can be derived from spectral analyses. Absolute power reflects the amount of a 

given frequency within the EEG, and relative power is calculated as the amount of 

EEG activity in a given frequency band divided by the total power. Generally 

speaking, absolute power should be preferred as it is more easily interpreted. Third, 

transformations (e.g., log) are often used before statistical analyses to estimate a 

Gaussian distribution (Davidson et al., 2000). Fourth, many ratios have been used to 

investigate left-right (L-R) differences or the parameters of neurofeedback training 

(please see the chapter 5). Those ratios allow a straightforward interpretation in terms 

of asymmetry or tendency to be normally distributed (Pivik, et al., 1993).  

1.3.1.2 Coherence analyses 

 In EEG studies, the investigation of large-scale neuronal synchronization 

becomes particularly important in hypothesized experimental situations for recruiting 

distributed neuronal networks (e.g., Llinas, 1988). Therefore, the coherence measures 
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are developed and computed in order to quantitatively measure the dynamic 

functional interactions among EEG signals from different scalp locations.  

 Based on the frequency-dependent dataset, coherence computation is similar to a 

correlation algorithm, and it can be mathematically obtained by dividing the 

cross-spectrum between two time series by the root of the two spectra (Pizzagalli, 

2007). In addition, cross-power spectrum is from the multiplied Fourier transform of 

one signal with the complex conjugate of another signal, allowing the quantification 

of relationships between different EEG signals (Pizzagalli, 2007).  

 In other words, coherence estimates the linear cross-correlation between two 

signals as a function of frequency. EEG coherence estimates the degree of synchrony 

between the electrical activities of the two brain regions, focusing on a certain 

frequency or EEG band as well (Cvetkovic and Cosic, 2009). Accordingly, the 

estimated coherence ranges from 0, indexing the absence of any synchrony (the 

activities of the signals with the minimum linear correlation for this frequency), to 1, 

indicating maximal synchrony between the frequency components of two signals (the 

maximum linear correlation for this frequency), irrespective of their amplitudes 

(Cvetkovic and Cosic, 2009; Pizzagalli, 2007). In general, synchronized brain regions 

are assumed to show increased coherence during a given cognitive process ("neuronal 

synchronization within specific EEG frequency bands"), depending on the nature and 

difficulty of the task (Weiss and Mueller, 2003).  

It is important to note that coherence analyses show a promising approach to 

assess the degree of synchronization between different brain regions, but they cannot 

inform us about the causality of these interactions or the direction and speed of the 

information transferred. However in recent years, advanced methods for assessing 
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these important aspects of brain function have been described, for example, the 

Directed Transfer Function (DTF) and the Directed Mutual Information (DMI) (for a 

review, see Thakor and Tong, 2004). 

1.3.1.3 Time-frequency analyses 

Although spectral analyses can provide essential information about how many 

frequency compositions within EEG oscillations, they cannot give any information 

about when such frequency shifts occur. Therefore, the approaches allowing the 

exploration of dynamic and time-varying changes in the frequency domain of EEG 

oscillations appear particularly important. Many time-frequency analyses methods 

have been developed, for example, short-time Fourier Transform (STFT) and wavelet 

analysis. STFT allows to compute an FFT-based spectrogram, and wavelet analysis 

allow a approach with more adaptive time-frequency resolution to resolve EEG 

waveforms into specific time and frequency components (for a conceptual tutorial, see 

Samar, et al., 1999), rather than a composition of sine waves with varying frequencies 

as in the FFT (Pizzagalli, 2007).  

Compared to the Fourier transform in the spectral analysis, the STFT evaluates 

the frequency and possibly the phase change of a signal over time. However, the 

Fourier transform cannot show us these changes of frequency over time. To achieve 

the STFT, the signal is cut into blocks of finite length, and then the Fourier transform 

of each block is computed. To improve the result, blocks are overlapped using overlap 

add or overlap save method and each block is multiplied by a window that is tapered 

at its end points (for a conceptual tutorial, see Proakis, 2003). 
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1.3.2 Blind Source Separation (BSS) 

Blind source separation (BSS), is a technique for estimating individual source 

components from their mixtures at sensors. This is called “blind” because, the 

estimation is done without prior information on the sources, that is their spatial 

location and time activity distribution; and on the mixing function, i.e. information 

about the mixing process. Several BSS algorithms estimate the source signals from 

observed mixtures (Cardoso, 1998). The solutions of BSS have become increasingly 

important in the area of signal processing due to their prospective application in 

medical signal processing, brain imaging (for example, EEG and fMRI), and audio 

signal separation (Hyvarinen, et al., 2001). In these applications, signals are mixed 

and make blind source separation difficult (Benesty, et al., 2005). Many reports have 

been studying the problem of BSS and numerous ways have been proposed to solve 

the problem. Recently attention has been drawn to Independent Component Analysis 

(ICA), which is a very important statistical tool for solving the BSS problem. ICA 

transforms the observed signals into mutually statistically independent signals 

(Hyvarinen and Oja, 2000) (see details in the next section). 

Let us imagine that there are two persons in a room speaking simultaneously, let 

us denote the signal emitted from Speaker1 with S1(t) and Speaker2 with S2(t) 

correspondingly, and there are two microphones placed at different locations in the 

same room. These microphones will produce two time signals which we can called 

X1(t) and X2(t), where t is the time index. Each of these recorded signals is a sum of 

the speech signals from the two speakers, because each microphone is “hearing” the 

two speakers at the same time. We could express this as a linear equation as shown 

below 
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x1 = a11 * s1+ a12 * s2 

x2 = a21 * s1 + a22 * s2 

Where * represents convolution and aij are some parameters that depend on the 

distances of the microphones from the speakers and on the room properties, these 

parameters are referred to as the room impulse response. 

This scenario is normally refer to as the cocktail-party problem, it would be very 

useful if the original speech signals S1(t) and S2(t) could be estimated. What it then 

means is that if we knew the values of a11, a12, a21, a22 (i.e. the impulse responses), 

X1(t) and X2(t) (the two time signals), we could easily solve the linear equation above 

with any of the classical methods available. ICA can be used to estimate these values 

and allow us to separate the two original signals S1(t) and S2(t) from their mixtures 

X1(t) and X2(t). Even we have N source signal Si(t) that are mixed and observed (see 

details in the next section). 

 

1.3.3 Independent Component Analysis (ICA) 

 ICA was introduced as a statistical model to express a linear transformation of 

non-Gaussian, mutually-independent variables in signals processing (Sanchez and 

David, 2002). Applications of BSS/ICA methods have contributed to the popularity of 

this field of study and their application, for example, the blind separation of EEG, 

electrocardiographic (ECG), magnetoencephalographic (MEG), and fMRI data for 

separating neurologic signal components. Moreover, the BSS/ICA has been applied 

on analysing biological modelling of feature extraction, speech enhancement, data 

mining, communications, as well as exploratory data analysis (Sanchez and David, 
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2002). ICA is a powerful higher order statistical technique used to separate 

independent sources that were linearly mixed together through a medium and received 

at several sensors.  

Let us assume that we observe N source signal Si(t) (linear mixtures) that are 

mixed and observed at M sensors (independent components) as Xj(t): X1(t), 

X2(t), ………XN(t) of M independent components. It’s always assumed that the 

number of sources N is known or can be estimated and the number of sensors M is 

equal to or greater than N; M > N. Thus mathematically we can write the linear 

mixing model of ICA is given as:  

 

Where Si(t) is the N dimensional vector of unknown source signals, Xj(t) is the 

M dimensional vector of observed signals. Assuming no noise, the matrix 

representation of mixing model is written as: 

X = AS 

, or graphically as:   

 

Here X and S are M×T and N×T matrices whose column vectors are observation 

vectors x(t1),…, x(tT) and sources s(t1),…, s(tT), A is an M×N full column rank 
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matrix , called mixing matrix. Then the objective of ICA is to find the separating 

matrix W which inverts the mixing process such that 

Y =WX 

Where Y is an estimate of original source matrix S and W is the (pseudo) inverse 

of the estimate of the matrix A. An estimate of the sources with ICA can be obtained 

up to a permutation and a scaling factor. There are different approaches for estimating 

the ICA model using the statistical properties of signals. Some of these methods are: 

ICA by maximization of nongaussianity, by minimization of mutual information, by 

maximum likelihood estimation, by tensorial methods (Choi, et al., 2005; Gursoy and 

Niebur, 2009; Hyvarinen, et al., 2001; Lee, et al., 2000). 

 

1.3.3.1 Statistical Independence 

First, the concept of statistical independence can easily be explained with an 

example. Let us assumed that y1 and y2 are scalar valued random variables, y1 and y2 

are said to be independent if the information of the value of y1 does not give any 

information of the values of y2 and vice versa. It’s important to note that we are 

referring this to the sources (si) alone and not the mixtures (xi), which generally are 

highly dependent. In probability theory, independence can be defined by the 

probability densities. Let   P1(y1) denote the Marginal Probability Density Function 

(i.e. the probability density function when y1 is considered alone) and let P(y1,y2) 

denote the Joint Probability Function (i.e. considering y1 and y2 together). 
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We say y1 and y2 are independent if and only if the Joint Probability Density 

Function can be factorised in the following way: 

 

In other words, two events are statistically independent if the probability of their 

occurring jointly equals the product of their respective probabilities (Cao and Murata, 

1999; Choi, et al., 2005). 

1.3.3.2 Nongaussian Distribution 

Second, the fundamental restriction or assumption in ICA is that the independent 

component must be nongaussian or at most may have one Gaussian distribution, for 

ICA to be possible; the reason is because the joint probability densities of Gaussian 

random variables are completely symmetric (Hyvärinen, et al., 2002; Hyvarinen, 1999; 

Hyvarinen and Oja, 2000). Nevertheless if not more than one of the components are 

Gaussian it is still possible to identify the nongaussian independent components as 

well as the corresponding columns of the mixing matrix. In other words without 

nongaussianity, estimation of the ICA model is not possible at all.  

1.3.3.3 Infomax ICA algorithm 

In this present thesis, for example how to apply the method of BSS/ICA on 

analysing EEG data, the details of the Infomax ICA algorithm can be found in (Bell 

and Sejnowski, 1995). This Infomax algorithm was implemented in EEGLAB 
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software (Delorme and Makeig, 2004), and successfully applied for both analysis of 

independent components of EEG, ERP (for review see (Onton, et al., 2006), and for 

artefacts correction procedures (Delorme, et al., 2007). The same Infomax algorithm 

was also implemented in WinEEG software (WinEEG 2.83 software, Mitsar, Ltd. 

http://www.mitsar-medical.com), applied in the thesis, for analysing all raw EEG and 

ERPs of all experiments in the thesis.  

Briefly, the method implemented in this thesis is as follows. The input data are 

the collection of individual EEGs arranged in a matrix W of 19 channels (rows) by N 

time points (columns). The ICA finds an ‘‘unmixing” matrix W that, when multiplied 

by the original data X causes the matrix S of the sources (independent components or 

activation curves).   

S = WX. 

Where S and X are 19 × N matrices, and W is 19 × 19 matrix (19 channels EEG 

recording). S(t) are maximally independent. In the present study, matrix W is found 

by means of infomax algorithm, which is an iteration procedure that maximizes the 

mutual information between S. According to the linear algebra, 

X = W
-1

 S. 

Where W
-1

 is the inverse matrix of W (also called mixing matrix). Further, according 

to the linear algebra, 

 

where Wi

-1
 is the i-th column of the mixing matrix W

-1
 (represents the topography of 

independent component, IC), and Si , is the raw of S (i.e. time course of the 
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independent component). As mentioned in the section 1.3.3, where X is an estimate of 

original source, and matrix W
-1

 is the inverse of the estimate of the mixing matrix. In 

other words, each column of the (W
-1

) mixing matrix represents the relative projection 

weight at each electrode of a single component source (IC topography). Mapping 

these weights to corresponding electrodes on a cartoon head model allows 

visualization of the scalp projection or scalp map of each source. The source locations 

of the components are presumed to be stationary for the duration of the training data. 

That is, the brain source locations and projection maps (W
-1

) are assumed to be 

spatially fixed, while their ‘activations’ (S) reveal their activity time courses 

throughout the input data. Thus, the IC activations (S), can be regarded as the EEG 

waveforms of single sources, although obtaining their actual amplitudes at the scalp 

channels requires multiplication by the inverse of the unmixing matrix (W
-1

). Then 

the statistically independent component with corresponding EEG topography can be 

obtained mathematically (e.g., Grin-Yatsenko, et al., 2010).  

 

1.3.3.4 Application of ICA in EEG and ERP 

 ICA can be used for the analysis of encephalographic signals like EEG and ERP 

only if certain conditions are satisfied, at least approximately: 

1. Statistical independency of the brain sources involved in the generation of the EEG 

signal. This independence criterion considers solely the statistical relations between 

the amplitude distributions of the signals involved, and not the morphology or the 

physiology of neural structures. 
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2. Instantaneous mixing at the electrodes. Because most of the energy in EEG signals 

lies below 1kHz, the so-called quasi-static approximation of the Maxwell equations 

holds, and each time instance can be considered separately (Bossetti, et al., 2007). 

Therefore, the propagation of the signals is immediate, there is no need for 

introducing time-delays, and the instantaneous mixing is valid. 

3. Linear mixing. Because the volume conduction through the cerebrospinal fluid, 

skull, and scalp is thought to be linear, the EEG and the ERP are assumed to be a 

linear mixture of the potentials associated with synchronous activation of neuropil (a 

synaptically dense region) in each stimulated area (Alonso-Nanclares, et al., 2008; 

Makeig, et al., 1997). 

4. Stationarity of the mixing and the independent components. Stationarity is 

generally assumed in the analysis of the EEG and related signals. 

Another common application of ICA is the separation of ERP components 

(details in the next section 1.4). Several studies (e.g., Makeig, et al., 1997; 

Marco-Pallares, et al., 2005) have shown that ICA is able to obtain a blind 

decomposition of the ERP without imposing any a priori structure on the 

measurements. Those studies concluded that ICA can successfully detect ERP 

components in a single trial and grand averaged paradigms what are very difficult to 

achieve using traditional methods. Thus, ICA allows the study of the brain dynamics 

arising from intermittent changes in subject’s state and/or from complex interaction 

between task events. 
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1.3.4  Source Localisation Techniques 

Estimating the source of scalp-recorded electromagnetic activity has attracted 

considerable interest, and various solutions have been described. The solutions of 

localisation can be divided into two broad categories, “equivalent dipole approaches” 

and “linear distributed approaches”.  

1.3.4.1 Equivalent dipole approaches (Dipole Source Modelling) 

The equivalent current dipole (ECD) model is the most basic source localization 

technique and assumes that scalp EEG potentials are generated by one or few focal 

sources (for review, see (Fuchs, et al., 2004). A dipole does not reflect the presence of 

a unique and discrete source (Baillet et al., 2001). In fact, the position of a dipole can 

provide clues about the extent and configuration of the activated cortical area: 

superficial dipoles typically reflect localized cortical activity, whereas deeper dipoles 

reflect the activity of an extended cortical area (Lopes da Silva, 2004). Focal sources 

are modelled by an ECD through six parameters: three location parameters (X, Y, Z), 

two orientation parameters, and one strength (amplitude) parameter.  

In general, some caution should be exerted when interpreting dipole modelling 

solutions because user’s interventions and decisions about the number of underlying 

sources are required in dipole fitting. The method, called multiple signal classification 

(MUSIC), attempts to decompose the signal to identify underlying components in the 

time series data (Mosher and Leahy, 1998; Mosher and Leahy, 1999; Mosher, et al., 

1992). Furthermore, substantial progress has been made to extend the original dipole 

fitting approach implemented using simplified spherical head models to more realistic 

geometry head model constructed from single subject’s MRI images in recent years, 
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in particular using boundary element methods (BEM) or finite element methods 

(FEM). The best average localization that could be achieved with spherical head 

model was 10 mm (Cuffin, et al., 2001), and a more accurate localization can be 

achieved by using realistic head models (e.g., Fuchs, et al., 2001). 

Moreover, studies combining electrophysiological and hemodynamic measures 

have further extended dipole source localization approaches by using PET- or 

fMRI-identified activation loci, providing informed guess about the putative location 

of sources (e.g., Heinze, 1994; Woldorff, et al., 2002). A more promising (and 

potentially less biased) approach involves independent EEG/MEG source modelling, 

which is then weighted based on hemodynamic findings to select the most likely 

solution (e.g., Dale and Halgren, 2001; Liu, et al., 1998).  

Although dipole source modelling has been successfully used to localize 

spatially restricted and focal sources, its main limitation is that the exact number of 

dipoles often cannot be determined a priori. Further, since intracranial recordings 

have provided very little support for the notion that only a few sites in the brain are 

active in generating ERP or spontaneous EEG recording (e.g., Towle, et al., 1998), 

dipole fitting results should be interpreted with caution. 

 

1.3.4.2 Linear distributed source localization techniques 

Considering the intrinsic limitation of dipole modelling (the number of 

underlying sources), distributed source modelling approaches have been developed 

considerably. These approaches are based on the estimation of brain electric activity 

at each point within a 3-dimensional solution space. Each point, in turn, can be 
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considered a dipole. Unlike equivalent dipole models, these “dipoles” have fixed 

positions (e.g., Pascual-Marqui, et al., 1999) and sometime fixed orientations (e.g., 

Phillips et al., 2002a; Phillips et al., 2002b), which are determined by anatomical and 

physiological constraints implemented within the localization algorithms. As these 

methods are used to estimate the strengths (and in some cases, the orientation) of the 

source, the equations describing distributed solutions are linear.    

 

Mathematically, so-called “regularization methods” can be understood as 

mathematical representations of the physiological/structural assumptions implemented 

in a given method, in order to limit the range of allowable solutions and identify the 

“optimal” or “most likely” solution. Various regularization methods have been 

developed and utilized in many researches. Some of the most widely used include 

minimum norm solution (Hamalainen and Ilmoniemi, 1994), maximal smoothness 

(Pascual-Marqui, et al., 1994), structural/functional priors (Phillips et al., 2002a; 

Phillips et al., 2002b), and fMRI-weighted solution space (Dale, et al., 2000). In the 

following section, a review of distributed source localization techniques is presented. 

Especially, the LORETA algorithm has been used extensively by researchers in the 

field (e.g., Kropotov, 2008; Lavric, et al., 2001; Pascual-Marqui, 2002; 

Pascual-Marqui, et al., 2002; Pascual-Marqui, et al., 1999; Pizzagalli, et al., 2005), 

and therefore, a more extended discussion as well as limitations of LORETA will be 

in the relevant section. 

 

1.3.4.2.1  Minimum norm solutions 

The Minimum norm (MN) solution (Hamalainen and Ilmoniemi, 1994) was one 

of the first linear inverse solutions. In the MN approach, the head model is first 
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mapped onto a 3D grid, and three mutually perpendicular dipole current sources are 

placed at each grid point (Koles, 1998). The goal of the MN approach is to estimate 

the distribution and strengths of these tens of thousands of dipole. The MN approach 

selects the least energy, i.e., minimal overall current density within the brain, and MN 

does not incorporate any prior information. In particular, MN solutions do not impose 

any spatial correlation among sources, but other methods do (e.g., Pascual-Marqui et 

al., 1994; Phillips et al., 2002a; Phillips et al., 2002b). In fact, simulation studies have 

shown that the MN solution typically favours weak and localized activation patterns, 

and can misplace deep sources onto the outermost cortex (Pascual-Marqui, 1999). 

Accordingly, MN does not completely fulfil the promise of a 3D source localization 

technique. However, LORETA, as we will see in the following section, was the first 

approach that successfully extended the good localization properties of the 2D MN 

solution to 3D solution space.  

 

1.3.4.2.2  Weighted Minimum norm solutions 

Then to compensate for the depth dependency of MN solution, in particular the 

tendency to favour superficial sources, various weighting factors have been suggested. 

The weighted MN solution uses a lead field normalization for compensating for the 

lower representation of deeper sources (e.g., Jeffs, et al., 1987). One more solution, 

called FOCUSS (Focal Underdetermined System Solution; (Gorodnitsky, et al., 1995), 

is a nonparametric algorithm, in which the weights are iteratively modified according 

to the solution estimated in a previous step. Although these weighted MN approaches 

gave some promising results for reducing the low spatial resolution (blurring) of all 

MN solutions and for reducing the depth-dependency of sources (Michel, et al., 2004), 
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it is important to point out that weighting is selected based on mathematical 

operations rather than physiological assumptions. 

 

1.3.4.2.3  Low resolution Electromagnetic Tomography (LORETA) 

 

LORETA (Pascual-Marqui et al., 1994), a form of Laplacian-weighted MN 

solution, assumes that: (1) neighbouring neurons are synchronously activated and 

display only gradually changing orientations; and (2) the scalp-recorded signal 

originates mostly from cortical gray matter. The first assumption is mathematically 

implemented by computing the “smoothest” of all possible activity distributions 

(consistent with neurophysiological studies in animals; e.g., (Haalman and Vaadia, 

1998; Vaadia, et al., 1995). The smoothest solution is assumed to be the most 

plausible one giving rise to the scalp-recorded EEG signal. Furthermore, the second 

assumption constrains the solution space to cortical gray matters (and also 

hippocampi), as defined by a standard brain template.  

LORETA uses a three-shell spherical head model registered to the Talairach 

brain atlas (available as digitized MRI from the Brain Imaging Centre, Montreal 

Neurological Institute, MNI; (Evans, et al., 1993) in recent implementations 

(Pascual-Marqui et al., 1999). EEG electrode coordinates derived from 

cross-registrations between spherical and realistic head geometry (Towle et al., 1993). 

The solution space is restricted to cortical gray matters and hippocampi, as 

defined by a digitized probability atlas provided by the MNI. Under these constraints, 

the solution space includes 2394 voxels at 7 mm spatial resolution. For analyses in the 

frequency domain, LORETA computes current density as the linear, weighted sum of 
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the scalp electrical potentials, and then squares this value for each voxel to yield 

power of current density in units proportional to amperes per square meter (A/m
2
). 

Furthermore, Pascual-Marqui (in 2002) introduced a variant of the LORETA 

algorithm, in which localization inferences are based on standardized current density 

(standardized LORETA, or sLORETA). Conceptually using a two-step process, Dale 

et al. first estimated current density using the MN solution (Dale, et al., 2000); 

subsequently, current density was standardized using its expected standard deviation, 

which was assumed to fully originate from measurement noise. Although sLORETA 

uses a slightly different implementation that considers simultaneously two sources of 

variations (variations of the actual sources and variations due to noisy measurements), 

its localization inference is also based on standardized values of current density 

estimates (Pizzagalli, 2007). Compared to LORETA, sLORETA does not introduce 

Laplacian-based spatial smoothness and does not compute current density but rather 

statistical scores. In initial simulations, sLORETA was reported to have 

zero-localization error (Pascual-Marqui, 2002). Independent simulations replicated 

that sLORETA had higher localization accuracy than LORETA or MN solutions 

(Wagner, et al., 2004).  

In more recent years, important cross-modal validation has come from studies 

directly combining LORETA with functional fMRI (Mulert, et al., 2004; Vitacco, et 

al., 2002), structural MRI (Worrell, et al., 2000), PET (Dierks, et al., 2000; Gamma, et 

al., 2004), and intracranial recordings (Krakow, et al., 1999; Seeck, et al., 1998). In 

two recent EEG/fMRI studies LORETA localizations were, on average 16 mm 

(Mulert et al., 2004) and 14.5 mm (Vitacco et al., 2002) from fMRI activation loci, a 

discrepancy that is in the range of the spatial resolution of LORETA (~1-2 cm). 

Although substantial consistency between LORETA findings and other traditional 
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neuroimaging techniques has been reported, some controversy in the field about the 

localization capability of LORETA (Grave de Peralta Menendez and Gonzalez 

Andino, 2000).  

The LORETA algorithm has received important cross-modal validation, but 

however it is important to highlight three factors of the spatial resolution of this 

method and the limitation of LORETA. First, the vast majority of LORETA studies 

have used a three-shell spherical head model, and a more complex head model that 

better represents the geometry of gray and white matter regions (e.g., FEM) can 

substantially improve the spatial resolution of LORETA (Ding, et al., 2004). Second, 

most of the studies have used a general (average) brain template (Evans et al., 1993). 

Clearly, use of individual anatomical MRI scans is expected to improve the precision 

of the solution space. Third, digitization of electrode positions for individual subjects 

is expected to further improve the spatial resolution of LORETA. In addition to three 

factors, some more conceptual limitations should be mentioned. First, due to the 

smoothness assumption, LORETA is incapable of resolving activity from closely 

spaced sources. The generating source is known to be well-represented by a single 

dipole (e.g., early sensory ERPs), and dipole fitting procedures might be preferred, 

when LORETA will tend to blur the solution (e.g., Fuchs, et al., 1999; Moffitt and 

Grill, 2004). Second, some authors have argued that the electrophysiological and 

neuroanatomical constrains used by LORETA are somewhat arbitrary. In particular, 

concerns have been raised about whether the assumption of maximal synchronization 

between neighbouring neuronal populations can be appropriately extended to adjacent 

voxels (Kincses, et al., 1999).  
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1.3.4.2.4  Variable resolution electromagnetic tomography (VARETA) 

Frequency-domain VARETA has been used to estimate sources of EEG 

frequency bands (Bosch-Bayard, et al., 2001; Valdes-Sosa, et al., 2000). Conceptually, 

it belongs to the family of weighted MN solutions. VARETA utilizes different 

amounts of spatial smoothness for different types of generators. This is achieved by a 

data-driven procedure that estimates the spatial covariance matrix through the scalp 

cross-spectra, which ultimately selects the amount of spatial smoothness required at 

each voxel in the brain (Valdes-Sosa, et al., 2000). A further key difference between 

LORETA and VARETA algorithm is that VARETA is able to estimate discrete and 

distributed sources with equal accuracy (Fernández-Bouzas, et al., 1999; 

Fernández-Bouzas, et al., 2001).  

In VARETA, current sources are also restricted to gray matter, as defined by a 

probabilistic brain atlas. However, a limited number of studies have used VARETA, 

although encouraging results have been reported for localizing EEG current density 

during normative mental processes (e.g., Fernández, et al., 2000) as well as in 

pathological conditions (e.g., Fernandez-Bouzas et al., 1999). Additional testing from 

independent laboratories will be important to assess the validity of this promising 

approach. 

 

1.3.4.2.5  Simulation studies comparing different distributed inverse 

solutions 

As evident from the previous sections, the past decade has witnessed substantial 

progress in developing distributed source localization techniques. Although these 

approaches have similarities and an identical goal, they often differ in the nature and 

extent of the anatomical, physiological, and/or statistical assumptions they implement. 
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Ultimately, no matter how sophisticated their mathematical and biophysical 

implementations are, the validity and reliability of any of these methods should be 

exclusively evaluated by their ability to provide physiologically meaningful solutions, 

in relations to other neuroimaging techniques (e.g., fMRI, PET). 

Over the years, several simulations have been published. Pascual-Marqui (1999) 

reported that only LORETA was capable of correct localization with, on average, 

localization error of 1 voxel resolution, whereas the other methods showed large 

localization errors, in particular with deep sources. Although LORETA showed the 

best 3D localization accuracy, it is important to stress that LORETA tended to 

underestimate deep sources and that correct localization was achieved with some 

degree of blurring. In a later simulation, Pascual-Marqui et al. (2002) compared the 

localization error and spatial dispersion (i.e., resolution) of sLORETA, MN 

(Hamalainen and Ilmoniemi, 1994), and a new tomographic method described by 

Dale et al. (2000). Findings showed that sLORETA had smaller localization error and 

higher spatial resolution, irrespective of the presence or absence of noise and source 

orientation. Indeed, sLORETA was the only algorithm achieving zero-error 

localization. Moreover, the spatial blurring of sLORETA was smaller than the one 

achieved by the method employed by Dale et al. (2000).  

Recently, Ding et al. (2004) recently evaluated the localization accuracy of 

LORETA using a realistic geometry head model (BEM). As expected, the LORETA 

localization error was lower when using the BEM compared to the spherical head 

model (approximately 10 mm vs. 20-30 mm) (Ding, et al., 2004). Yao and Dewald 

(2005) compared the performance of moving dipoles, MN solution, and LORETA 

using simulated EEG data and real ERP data. Compared to the other methods, 

LORETA had the smallest localization error, as well as the smallest percentage of 
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undetected sources and falsely-detected sources in simulated EEG data, but however 

LORETA, as well as the other methods, was unable to separate two discrete sources 

spaced only by 5 mm (Yao and Dewald, 2005).  

Other simulations, however, have challenged the localization accuracy of 

LORETA. For example, Trujillo-Barreto et al. (2004) compared LORETA with an 

extension of the Bayesian model incorporating probabilistic maps derived from 

segmentation of standard brain template within 71 separate brain regions, and found 

that the latter method gave higher localization accuracy and less spatial distortion (i.e., 

higher spatial resolution), particularly when subcortical regions were implicated 

(Trujillo-Barreto, et al., 2004). Better localization accuracy of a Bayesian model 

incorporating structural and physiological priors compared to LORETA was also 

reported by Phillips et al. (2002a, b).  

In fact, as mentioned above, distributed source localization techniques have been 

developed to resolve multiple and spatially distributed sources, and thus physiological 

validation through other techniques is necessary. Encouraging cross-modal validity 

has started to emerge for the LORETA algorithm, particularly in studies comparing 

LORETA with functional fMRI, structural MRI, PET, and intracranial recordings 

(details in the section 1.3.4.2.3). Similar cross-modal validity will be necessary for 

evaluating the localization accuracy of new-developed distributed source localization 

techniques. 

 

1.3.5  Summary  

The main goal of any quantitative EEG analysis and EEG source imaging 

technique is to draw reliable conclusion about sources underlying scalp-recorded 

signals, in order to find the accurate localization in situations of highly focal 
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activations. Importantly, the choice of the relevant method depends on the 

experimental situation. Dipole fitting method, for example during somatosensory 

stimulation or epileptic discharges (Michel et al., 2004; Fuchs et al., 2004), can 

provide accurate localization in situations of highly focal activations. On the other 

hand in more complex cognitive or pathological conditions that likely recruit 

widespread neuronal networks, distributed source localization imaging techniques, for 

example LORETA and sLORETA, are expected to perform better. 

 

To sum up, a given example with a specific selected EEG record, the 

event-related potential (ERP, details in the next section 1.4), can generally present 

how to deal with the EEG data from quantitative analysis to EEG source localization 

(e.g., Marco-Pallares, et al., 2005). The ERP gives an electrophysiological index 

capable of detecting changes, and it has a temporal resolution of milliseconds but 

appear to result from mixed neuronal contributions whose spatial location is not fully 

understood. Thus, it is important to separate these sources in space and time. To 

tackle this problem, a designed approach combining the ICA and LORETA 

algorithms has been reported to analyze the spatiotemporal dynamics of ERP and 

cerebral sources. First, ICA separated signals’ statistically independent contributions, 

which was used to find temporally independent and spatially fixed components of 

ERPs. The Infomax ICA algorithm, in which components are obtained through 

minimization of mutual information among output components, has recently been 

used to separate mixed information into spatially stationary and temporally 

independent sub-components in some ERP studies (Jung et al., 2001; Makeig et al., 

1999, 2002). Second, the spatial maps associated with each ICA components, 
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statistically independent components, were analyzed, with use of LORETA 

(Pascual-Marqui, 1999; Pascual-Marqui et al., 1994), to locate its cerebral sources.  

 

1.4 Event-related potential (ERP) 

ERP was introduced in cognitive neuroscience more than 40 years ago (in 1960s) 

in order to assess the neural information processing of cognition. A wide variety of 

ERPs can be elicited by repeated occurrences of cognitive, motor or sensory events. 

Sensory evoked potentials, which are perhaps the most extensively studied type of 

ERPs, can be elicited by taste, somatic, auditory, various types of visual detection and 

recognition tests in different modalities (e.g. details in the visual GO/NOGO test, 

please see the following section and (Kropotov, 2009b).  

The majority of EEG research has focused on electrical responses, which are 

time- and phase-locked to an event, thus termed ERPs. ERPs do not represent activity 

generated from a single nerve cell; instead, they reflect the summed postsynaptic 

potentials. Due to their relatively small amplitude (usually in the range of μV) and to 

the high levels of environmental and biological noise in the EEG signal, ERPs only 

become distinguishable after averaging of multiple repetitions. They are typically 

characterized in terms of polarity, peak latency and scalp topography. The 

neurophysiological mechanisms which underlie the generation of the ERPs are still 

under debate. Importantly, those mechanisms are associated with a group of distinct 

psychological operations, for example, detecting stimuli, updating working memory, 

initiating and suppressing action, monitoring the results of actions and so on. In 

addition, the involved temporal activation/inhibition patterns of neurons locate in 

certain brain areas. The classical view supports the existence of an “evoked model”, 
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according to which the ERPs are independent from the ongoing cortical rhythms and 

are simply superimposed over the background oscillatory activity and noise (e.g., 

Jervis, et al., 1983). An alternative and more recent view suggests that the ERPs are 

generated by phase resetting of the ongoing cortical rhythms without any amplitude 

modulation (pure phase resetting) (Sayers, et al., 1974) or with a parallel increase in 

amplitude (phase resetting with enhancement) (Basar, et al., 1980). However, 

although increasing evidence supports the existence of a phase resetting mechanism 

(Hanslmayr, et al., 2005; Hanslmayr, et al., 2007), the important role of 

stimulus-evoked activity in ERPs generation cannot be disregarded (Sauseng, et al., 

2007; Shah, et al., 2004). 

 

At the early years of ERP studies the components were associated with peaks 

and troughs on ERPs themselves or on ERPs difference waves. The difference waves 

were obtained by subtraction of ERPs in a task condition that presumably did not 

involve a studied psychological operation from ERPs in another task condition that 

presumably included this operation (e.g., Bechtereva and Kropotov, 1984). Potential 

deflections at difference waves could be divided into classes on the basis of their 

latency and direction of positive or negative deviation, such as P100, N100, N200, 

P200, P300, N400, where P stands for positivity and N for negativity. The number 

stands for the peak latency in milliseconds. However, latency of peaks and troughs 

does not really capture the essence of a component. Therefore, for example the 

detected peak latency of a so-called P3b component (details in the following section) 

may vary by hundreds of milliseconds among subjects depending on the difficulty of 

the target–non-target discrimination. Even polarity of a certain components may 

depend on conditions of recording.  
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Another type of classification of components presumes their functional meaning. 

There are several ERP components that are elicited in certain type of behavioural 

paradigms and that have specific names according to their presumed function (e.g., 

the mismatch negativity, MMN, as an indicator of change detection in repetitive 

sound by Marco-Pallares, et al., 2005). The first attempts to decompose ERPs into 

separate components were made in 1970 by means of factor analysis and principle 

component analysis (e.g., Brown, et al., 1979). Recently emerged methods of 

objective separation of components, for example ICA (details in the section 1.3.3), 

lack this disadvantage of old methods without accurate presentation of ERP 

components, and open a new horizon in this field. Accumulating knowledge shows a 

diagnostic power of independent ERP components as endphenotypes of brain 

dysfunctions (e.g., Grin-Yatsenko, et al., 2010). The separated ERP components are 

presumed to reflect distinct psychological operations carrying out in distinct systems 

of the brain. The all studied independent ERP components in the present thesis are 

based on their functional meaning and the same ICA method for decomposing ERPs 

as well. 

 

1.4.1  Late positive components in ERPs 

From ERP studies the time interval of 250–400 ms is associated with a family of 

late positive components, usually called “P300” or “P3” components (Polich, 2007). 

The P300 components are elicited by behaviourally meaningful stimuli. The 

traditional two-stimulus oddball presents an infrequent target in a background of 

frequent standard stimuli. The subject is instructed to respond mentally or physically 

to the target stimulus, but not to respond to the non-target. The P300 component is 

measured by assessing its amplitude and latency. The definition of amplitude (μV) is 
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the difference between the mean pre-stimulus baseline voltage and the most robust 

positive peak of the ERP waveform within a time window. Latency (ms) is defined as 

the time from the onset of the stimulus to the peak point of the maximum positive 

amplitude within a time window (Polich, 2007). Therefore, ERP data are analysed in 

the time domain by assessing the amplitudes and latencies of eminent and robust 

peaks. From current neuroelectric and neuroimaging data analysis, the understanding 

of the P300 derived primarily from functional analysis is now thought to be 

constructed of various parts that reflect the cognitive processing flow when attentional 

and memory mechanisms are involved (Polich, 2007). There are two 

neuropsychological subcomponents in the P300, P3a and P3b. 

An earlier component with relatively short peak latency, P3a component, stems 

from “stimulus-driven” frontal attention mechanisms. It is enhanced in response to a 

sudden and noticeable change in sensory stimulation and is associated with orienting 

to the stimulus change and shift of attention (Polich, 1989; Polich, 2007). The 

frontal/central P300 can be extracted when an infrequent distracter stimulus is 

inserted randomly into the target/standard sequence. The P3a is elicited by the 

non-target distracter, and therefore it is not a task relevant potential but an indicator of 

an involuntary switch of attention (Polich, 2007). 

In contrast, P3b, the task relevant potential, is elicited during target stimulus 

processing (Polich, 2007; Snyder and Hillyard, 1976). The P3b stems from 

temporal–parietal activity, and P3b component is enhanced in response to targets, 

such as pressing a button or counting the number of targets for responding a rare 

stimulus or tone. Therefore, it is associated with attention and appears related to 

subsequent memory processing, as an index of updating working memory (Kropotov, 

2009b; McCarthy, et al., 1989; Polich, 2007). These reports favour a relation between 
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P300 and the attentional processing of target events and the results appear connected 

to memory processing. Attention and working memory are interconnected operations: 

to keep the item in working memory one must attend to it, and vice versa to attend to 

some expected stimulus one must keep it in memory. PET and fMRI studies in 

humans indicate that neuronal networks for these operations are similar. A network 

consisting of areas in the parietal and frontal cortex has been found to be activated in 

a variety of visuospatial tasks that require attention and working memory (Buschman 

and Miller, 2007; Ungerleider, 2000). 

 

1.4.1.1  P3a component 

When a sudden change occurs in the environment an inside sensory system 

detects this new event and shifts attention toward the new object with a goal of 

exploring it more closely. This mechanism of this kind of involuntary nature 

“orienting response” enables humans and animals to adapt in constantly changing 

situations. The brain constructs this sort of model to sense surrounding environment 

and maintains this model in the sensory system. An ERP component associated with 

the orienting response – the P300a or P3a – was first described in 1967 (Sutton, et al., 

1967).  

In a typical P3a experiment, a subject performs an auditory target detection task 

with simple pure tone stimuli, and occasionally hears a contextually novel sound. 

Then these novel sounds repeatedly elicit a scalp-recorded potential that peaks about 

200–300 ms after the stimulus and that is largest over the central and frontal scalp 

electrodes (Polich, 2007). It should be stressed here that neuronal circuits for 

generators of P3a are not only limited by the premotor areas, but also found in a 

variety of cortical and subcortical structures, including prefrontal, parietal, lateral 
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temporal, and medial temporal cortical areas as well as subcortical structures such as 

the basal ganglia and thalamus (Halgren, et al., 1994; Kropotov, 2009a). Obviously 

this heterogeneous network includes several systems with different functions. 

Importantly, some of these structures, such as anterior cingulate and prefrontal cortex, 

are responsible for orienting attention in order to process the deviations from the 

background simulation (Patel and Azzam, 2005; Posner and Dehaene, 1994).  

 

1.4.1.2  P3b component 

The experimental evidence in humans indicate that the P3b appears show 

features: (1) P3b appears after target stimuli in oddball paradigms, and (2) it depends 

on the behavioural significance and attention paid to eliciting stimuli, (3) P3b is 

greater for hits than for false alarms or misses in a signal-detection task (Kropotov, 

2009a; Polich, 2007). In 1990s P3b was studied by using intracranial recordings in 

patients with implanted electrodes, and the evoked P3b-like components were found 

in the frontal and parietal cortical areas (including lateral, medial parts, and anterior 

cingulate) as well as the basal ganglia and thalamic nuclei only in the active condition 

when deviant stimuli required actions (pressing a button) (Kropotov and Etlinger, 

1999; Kropotov, et al., 1995). These intracranial ERPs components were in the 

latency range of P3b scalp recorded component, but in contrast to the positive 

deflections in scalp were both of positive or negative polarities in intracranial 

recordings.  

P3b component is the most studied in the scientific literature component both in 

theoretical and clinical fields. There were several reasons for that: First, the P3b is 

elicited in the odd ball task which is quite simple to perform for almost all categories 

of neurological or psychiatric patients. Second, the P3b is a relatively large 
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component which is quite easy to discriminate as a difference wave between 

responses to target deviants and non-target standards. Third, the P3b seems to have a 

diagnostic power because the impairments of the P3b were found in several executive 

dysfunctions such as schizophrenia (e.g., Neuhaus, et al., 2010; Olbrich, et al., 2005) 

and attention deficit hyperactivity disorder (ADHD) (e.g., Becker and Holtmann, 

2006; Gow, et al., 2012).  

 

1.4.1.3  Visual continuous performance task (VCPT) 

Based on the traditional two-stimulus oddball with target and non-target stimuli, 

the VCPT condition consists of a typical visual GO/NOGO (GNG) paradigm, 

reflecting the electrophysiological characteristics of selective attention mechanisms 

(Polich and Herbst, 2000; Polich and Kok, 1995). Subjects are required to attend and 

respond to certain target stimuli by pressing a button in a typical “active oddball 

paradigm” with “GO” pictures of visual stimuli, but not to respond to the non-target, 

“NOGO” pictures of visual stimuli. It has been documented that “on-task” measures 

during attention-requiring activities reproduce reliably between testing session 

(McEvoy, et al., 2000). The on-task measures can induce more homogeneous arousal 

levels and cognitive processing demands across subjects and repeated testing.  

The GNG task is also a useful behavioural model for studying executive 

functions, which are needed for optimizing behaviour. The term “executive functions” 

refer to the coordination and control of motor and cognitive actions to attain specific 

goals. The relevant ERP components associated with selection of attention and action 

in executive control are in the following section.  

Basically in the VCPT, the electrophysiological signature of selective attention 

mechanisms is investigated by comparisons between ERP components to “GO” and to 
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“NOGO” stimuli in attended visual tasks. “GO” stimuli require attention and response 

to certain stimuli for the assessing of voluntary attention. Of particular interest in 

relation to the demand-characteristics of GNG attention measures is the “P3GO”, the 

P300 (P3b) ERP component. This P3GO component reflects a positive deflection in 

the ERP wave around 300 ms at the parietal site (Pz) after presenting a target stimulus 

in the GNG task (Kirmizi-Alsan, et al., 2006; Pfefferbaum, et al., 1985). However, the 

“P3NOGO” ERP component occurs around 400 ms with a centro-parietal maximum 

in a semantic GNG paradigm (Kirmizi-Alsan et al., 2006; Pfefferbaum, 1985). The 

P3GO has the same characteristics as the traditional oddball-P3, but the P3NOGO has 

a different topography, which implies that it corresponds to a separate neuronal 

process from the P3GO.  

Furthermore, considering the N2 component elicited in the NOGO condition in a 

visual task, the difference in ERPs between the NOGO and the GO conditions is a 

negative wave with a frontocentral distribution, peaking around 200-260 ms which is 

labelled as the N200 motor inhibition component (Bekker, et al., 2005; Kropotov, 

2009b; Pfefferbaum, 1985) (details in the following section). However, in the auditory 

modality, this N200 component in some variants of the GO/NOGO paradigm was 

either absent or reduced (Falkenstein, et al., 1995). Briefly, the N2-P3 component in 

the GO/NOGO paradigm has been reported in association with response inhibition 

(Bekker, et al., 2005; Falkenstein, et al., 1999b; Smith, et al., 2008) and conflict 

monitoring (Nieuwenhuis, et al., 2003). 

 

1.4.2  ERP components in the selective attention and executive control  

The term “executive functions” has long been used as a synonym for frontal lobe 

function in neuropsychology. The need for the executive control mechanism has been 
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postulated for selecting an appropriate action from variety of options, inhibition of 

inappropriate actions, and keeping in working memory the plan of action as well as 

the results of actions (Kropotov, 2009b). A modern view with several 

sub-components in the presumed executive mechanisms is from Smith and Jonides 

(1999). They distinguished between mechanisms relating to (a) attention and 

inhibition, (b) task management, (c) planning, (d) monitoring, and (e) coding (Smith 

and Jonides, 1999). Recent research has been concentrated on those sub-processes and 

distinguished the following operations on actions: (1) selection operations such as 

engagement and disengagement procedures, (2) working memory, and (3) monitoring 

operations (Kropotov, 2009b; Smallwood, et al., 2004) (details in the following 

sections). These operations are well defined at psychological level. It is assumed that 

these different functions are sub-served by different neuronal mechanisms and are 

reflected in different components evoked by actions. 

 

1.4.2.1 ERP components in the engagement and disengagement operations 

In the typical GNG paradigm, Gemba and Sasaki found a specific 

premotor/motor cortical circuit involved in motor suppression (Gemba and Sasaki, 

1990; Sasaki, et al., 1993). They showed in monkeys that excitation of cells in the 

principle sulcus during regular responses yielded a decrease of activity in primary 

motor cortex and either a delay or the complete suppression of responses while direct 

electric stimulation of this area suppressed a prepared response to GO stimulus 

(Sasaki, et al., 1989). In humans a frontally distributed negative ERP component, 

called N200 NOGO, peaks at about 200–260 ms poststimulus has been observed in 

numerous studies (Falkenstein, et al., 1999a; Kopp, et al., 2007). This component had 

greater amplitude for NOGO in comparison to GO stimuli and was associated with 
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response inhibition in GNG paradigms. Note that in all classical studies the N2 

component was separated simply as a difference between ERPs for GO and NOGO 

cues.  

To sum up, N2 NOGO ERP component (N200 motor inhibition component) is 

elicited after NOGO cues and expressed in frontally distributed negativity. NOGO 

cues elicit a strong negative wave with peak latency at 260 ms, and the negative 

fluctuation is followed by a positive component with the frontal distribution.  

 Furthermore according to recent ICA-based ERP analyse, the negative 

fluctuation in the raw ERP (N200 motor inhibition component) is actually a sum of 

negative fluctuations generated in three different components (sensory comparison, 

motor inhibition, and action suppression components) revealed by ICA in the 

engagement and disengagement operations (Kropotov, 2009b). This association 

between raw ERPs and their independent components shows us that the ICA provides 

decomposition of ERPs into several independent components each of them having 

specific temporal–spatial pattern and specific functional meaning. In addition, the 

power of ICA in discriminating separate psychological operations is superior to 

conventional methods of ERP analysis. Moreover, independent components may 

represent with a better success in diagnosis of different brain dysfunctions associated 

with impairments in specific operations such as comparison, motor inhibition, and 

action suppression operations (details in the following sections).  

 

1.4.2.1.1  Sensory comparison component 

The inhibition of prepared action is performed by a complex brain circuit with 

the lateral prefrontal cortex (PFC) as a part. The PFC receives the sensory information 

from the sensory systems (visual, auditory, and somato-sensory) and is in position to 
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make decision whether to GO or NOGO depending on the results (Hester, et al., 2004; 

Kropotov, 2009b; Swainson, et al., 2003). One can speculate that to inhibit a prepared 

action, the brain must first compare the current sensory situation with the sensory 

model and to detect the mismatch.  

Then the result of these comparison operations is transferred to the PFC to 

activate the circuits responsible for inhibition of the prepared action. This thinking 

process is supported by results of ICA performed on ERPs computed for GO and 

NOGO cues in the two stimulus GO/NOGO task (Kropotov, 2009b). In the temporal 

cortex, NOGO cues evoke an additional component in comparison to GO cues while 

in the left premotor cortex NOGO and GO cues elicit opponent reactions. The 

difference in time dynamics of the two components for GO and NOGO cues shows 

that the components are functionally different.  

 

1.4.2.1.2  Motor inhibition component 

The second component generated in the left premotor cortex is associated with 

motor suppression, and this motor inhibition component is negative in the frontal 

areas (Kropotov, 2009b). Neuronal mechanisms of motor inhibition involve the basal 

ganglia circuits. The inhibition of the prepared action seems to be performed by 

means of the indirect pathway of the basal ganglia thalamo-cortical loop with a 

cortical location in the premotor cortex. 

 

1.4.2.1.3  Action suppression component 

The existence of the third component elicited by NOGO cues is the intriguing 

part of ICA of ERPs data in a GO/NOGO task. Spatial distribution, temporal pattern, 

and contrast to GO cues are different from the previous two components. This action 
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suppression component has only one prominent peak with latency of 340 ms, and it is 

a symmetrical component with generators widely distributed over premotor and motor 

cortical areas (Kropotov, 2009b). However, it is present only in NOGO condition, and 

decreased in amplitude and increased in latency with aging. The action suppression 

component is almost three times larger than the motor inhibition component, and then 

it may have a superior diagnostic power than the motor inhibition component.  

 

1.4.2.2 ERP components in the monitoring operation 

Experimental findings indicate that the function of the dorsal part of the ACC is 

to monitor actions (e.g., Hester, et al., 2004; Van Veen and Carter, 2002). Flexible 

adjustments of human and animal behaviour require the continuous assessment of 

ongoing actions and the outcomes of these actions. The ability to monitor and 

compare ongoing actions and performance outcomes with internal goals and standards 

is critical for optimizing decision making. This ability is called action monitoring. 

In addition, the ventral part of the ACC is suggested of being involved in this 

cognitive operation (Luu, et al., 2003). The concept of monitoring must be 

distinguished from the concept of attentional control. Attentional control refers to a 

top–down, limited resource cognitive mechanism modulating sensory information 

processing, while the monitoring of actions refers to a cognitive mechanism that 

evaluates the quality of executive control and activates the executive system in the 

case of mismatch between expected and executed action (Kropotov, 2009b). 

Three requirements allow certain ERP components for the function of 

monitoring. First, the component has to be of a long latency for action initiation 

because the activation of the executed action has to be compared with the planned one. 

Second, the component has to be generated in a particular area that receives 
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information from both the planned action and the executed one in order to compare 

these two signals. Third, the component has to occur in conflict situations when a 

prepared action has to be withheld because the current situation does not match the 

expected one or when an action has been executed but its outcome does not match the 

planned one. The late positive P400 component that occurs in NOGO trials, generated 

in the ACC fulfils these requirements and therefore can be considered as a 

“monitoring” component in GO/NOGO Paradigm (Kropotov, 2009b). 

 

1.4.2.2.1  P400 monitoring component 

The P400 monitoring component is the largest NOGO ERP component in 

amplitude in medial prefrontal and anterior cingulate cortical areas. It is a 

symmetrical positive component located centrally in the 2D space with maximum at 

Cz–Fz site. The latency of the P400 monitoring component changes with age 

significantly – from 370 ms at middle age to 420 ms at early age and 460 ms at older 

age (Kropotov, 2009b). 

 

1.4.2.2.2  Function of ACC 

The P400 monitoring component is the one that is generated in the ACC. So, it is 

important to present the anatomy and physiology of the ACC in details. First of all, 

the ACC includes motor areas that receive inputs from the primary motor cortex, 

premotor, and supplementary motor areas. These motor areas thus store the precise 

image of a planned action. This part of the cingulate is also in position to initiate a 

new action. Second, the ventral part of the ACC receives inputs mostly from the 

affective (limbic) system directly (such as from amygdala) or indirectly (via the 

anterior nucleus of the thalamus). Therefore, the ventral portion of the ACC is called 
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“limbic” part. Third, the dorsal part of the ACC has strong reciprocal connections 

with the lateral, anterior, and medial prefrontal cortical areas – areas presumably 

involved in cognitive functions, and therefore, the dorsal portion of the ACC is called 

“cognitive” part (Kropotov, 2009b). 

 

1.4.3 Summary 

The executive control is needed for optimizing behaviour. Therefore, the need 

for an executive control mechanism has been postulated for non-routine situations 

requiring a supervisory system, in order to select an appropriate action from variety of 

options, inhibit inappropriate actions, and keep in working memory the plan of the 

action as well as the results of the action at the same time. The executive functions are 

implemented by a complex brain system that consists of several cortical and 

subcortical structures interconnected with each other. Together with the basal ganglia 

the prefrontal areas perform executive functions associated with engagement, 

disengagement, monitoring operations as well as with working memory. These 

operations are reflected in ERP components evoked in a GNG paradigm as well as in 

working memory tasks. The recently developed ICA provides a powerful tool for 

separating the components associated with executive functions overlap in time and 

space. The following executive components can be separated by ICA in the two 

stimulus GO/NOGO task: the motor and action suppression components associated 

with frontal negativities at 200 ms (the conventional N2 inhibition component), the 

engagement component associated with parietal positivity at 300 ms (the conventional 

P3b component), the monitoring component associated with frontal–central positivity 

at 400 ms. Those decomposed ERP components with functional meanings and ICA 
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will be applied to study the effect of electroacustimulation (EA) on the sustained 

attention and electrocortical activity (details in the chapter 3). 

 

 

1.5 Brief History of Acupuncture 

Acupuncture has been used for thousands of years. The first document that 

depicts the use of acupuncture dates to 200 B.C. It is based on a concept of inner 

power and the ancient established theory of Qi, an energy that flows through the body 

*1
. Over years, acupuncture has become a standard treatment modality in Chinese 

medicine. Acupuncture therapy has been practiced in Chinese medicine for more than 

three thousand years with applications including treating headache, recovering from 

stroke and controlling pain (Han, 2004; He, et al., 2004; Huang, et al., 2002; Wong, et 

al., 1999). 

The history of acupuncture in the West began as early as the 17th century. In fact, 

for a short-lived period in the early 19th century, it was introduced in scientific 

journals. In one Lancet publication in 1823, the author discussed its uses and offered a 

brief description of the variations of technique at that time 
*2

. However, acupuncture 

eventually achieved acceptance in the USA when an NIH consensus conference 

reported positive evidence for the effectiveness of acupuncture treatment, at least in a 

limited range of conditions (Marwick, 1997).  

 

*1
 The Chinese medical text that first describes acupuncture is The Yellow Emperor’s Classic of 

Internal Medicine (History of Acupuncture), which was compiled around 305–204 B.C. 

*2 
Acupuncturation.  Lancet. 1823. Nov. 9: 200-1 
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Acupuncture can now be considered an important complementary medicine 

practice, with increasing interest from the public, and both the National Institute of 

Health (USA) and the World Health Organization have summarized guidelines on 

acupuncture therapy (Berman, 2001; Bonnerman, 1979). The traditional theories of 

acupuncture have been challenged in the West, and ancient concepts of Qi flowing in 

meridians have been replaced by a neurological model, based on the evidence of 

stimulation, from changes of peripheral nerve endings to changes of brain function, 

particularly the intrinsic pain inhibitory mechanisms (Han and Terenius, 1982; Mann, 

2000; Ulett, 1992). (Please see the following sections). Recent years have seen 

increased interest in acupuncture therapy in neuroscience including (a) mechanisms of 

action (Kaptchuk, 2002), (b) respondent brain areas (Biella, et al., 2001; Dhond, et al., 

2007; Uchida, et al., 2003), and (c) temporal dynamics such as immediate and/or 

delayed effects (Chen, et al., 2006; Dhond, et al., 2008). With the increasing 

development of acustimulation methods for cognition, reliability requirements have 

become more critical. 

 

1.5.1 General application of acupuncture and electroacustimulation (EA) 

Peripheral electrical stimulation may be elicited via electrodes located on the 

skin (transcutaneous electrical nerve stimulation, TENS), and the process is usually 

named electroacupuncture stimulation or acustimulation (Han, 2003). Wang et al 

(1992) have demonstrated that TENS operates through very similar mechanisms to 

traditional acupuncture (Wang, et al., 1992), with the mechanism of therapeutic action 

thought to involve neurotransmitter and opioid peptide systems in order to facilitate 

the release of neuropeptides in the central nervous system (CNS) (Cheng and 
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Pomeranz, 1979; Han, 2003; Han, 2004; Mayer, et al., 1977; Wang, et al., 1992). The 

stimulus parameters of electroacupuncture (intensity, mode, frequency, etc.) can be 

controlled more precisely than by manual acupuncture. Furthermore, the 

uncomfortable pain sensation induced by needle manipulation is undesirable and an 

invasive procedure may also carry the risks of hematoma formation and infection. 

Electroacupuncture has been the procedure of choice for its comfort, convenience and 

high repeatability during an individual stimulus program. 

Different types of endorphins for analgesia have been selectively released by 

low- and high-frequency acustimulation (Han, 2003; Shen, 2001). Low-frequency 

stimulation has induced the release of enkephalins, whereas high frequency 

stimulation has increased the release of dynorphins in both animal and human 

experiments (Han, 2003; Ulett, et al., 1998). Therefore acustimulation in specific 

frequencies can facilitate the release of specific endogenous opioid peptides for 

acupuncture-induced analgesia in the central nervous system. Furthermore, through 

increases in the level of enkephalins and serotonin in the CNS and plasma 

acupuncture could affect psychological processes, hence applications for the treatment 

of depression and anxiety (Cabyoglu, et al., 2006; Ulett, 1996; Ulett, et al., 1998) 

(Acupuncture mechanisms, details in the chapter 3) 

Regarding the temporal effects, both short-term and long-term impact has been 

examined. It has been proposed that the basic mechanism of the former involves 

immediate frequency modulation of neuroplasticity (Kaptchuk, 2002), and of the 

latter gene transformation of protein synthesis in specific cortical areas as shown with 

neuroimaging (Biella, et al., 2001; Uchida, et al., 2003). Dhond et al (2008) have 

claimed that acupuncture can “enhance the post-stimulation spatial extent of resting 
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brain networks to include anti-nociceptive, memory, and affective brain regions” 

(Dhond, et al., 2008). There is a likely impact of acustimulation on cognitive 

functions aside from therapeutic outcome. There has been limited research showing 

differential effects between low versus high frequency stimulation on cognitive 

function. With the electroencephalograph (EEG), scalp maps of high versus 

low-frequency effects have been investigated in a resting eyes-closed condition, but 

not in cognitive tasks (e.g., Chen, et al., 2006). In general the relationship between 

acustimulation and task evoked brain activity is a neglected area.  

In fact by using powerful non-invasive fMRI (Wu, et al., 2002), positron 

emission tomography (PET) (Pariente, et al., 2005), and the electroencephalogram 

(EEG) (Chen, et al., 2006), not only pain related cortical regions, but more 

acupuncture-induced sites associated with other systems in the CNS have also been 

confirmed. These brain imaging techniques provide evidence supporting the effect of 

acupuncture manipulation on cortical networks and subcortical limbic and paralimbic 

structures in the human brain (Dhond, et al., 2007; Hui, et al., 2000). Recently, a 

broad search through nine electronic bibliographic databases (PubMed, Cochrane 

Library, Web of Science, ERIC, PsychINFO, Psyndex, Cinahl, Biological Abstracts, 

Rehabdata) was accomplished to evaluate the effects of Transcutaneous Electrical 

Nerve Stimulation (TENS) on non-pain related cognitive and behavioural functioning 

in patients, for example with stroke, Alzheimer's disease (AD), or coma due to 

traumatic brain injury (van Dijk, et al., 2002). Electrostimulation with TENS was also 

reported to have a moderate beneficial influence particularly on executive function 

and improvement in behavior in studying children with ADHD (Jonsdottir, et al., 

2004), showing the proved hypotheses of cortical plasticity and intracranial 
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modulation in TENS stimulation effects on cognition. Theoretical and neuroimaging 

studies of acupuncture modulating neuronal functional networks in relation to 

multiple physiological systems with diverse cortical effects have only emerged since 

2008 (e.g., Bai, et al., 2009; Dhond, et al., 2008) (mechanism of EA stimulation, 

details in the chapter 3).  

Applying acupuncture as a tool for alleviating pain and for modulating cognitive 

performance in patients and healthy subjects is developing and although acupuncture 

practice has found a niche in clinics, acupuncture is far from being accepted. There is 

a need for more scientific progress in delineating the neurobiology of acupuncture. 

Based on published scientific articles it has been shown that the effect of acupuncture 

is not just due to a so-called placebo effect (e.g., Bai, et al., 2009; Dhond, et al., 2008). 

Careful scientific studies have presented evidence of the neurochemical basis of 

acupuncture (e.g., Chen, et al., 2006; Han, 2003). Moreover, electrical stimulation has 

presented a more scientific and powerful mode of acupuncture treatment via 

frequency modulation (e.g., Chen, et al., 2006; Han, 2003). Thus, the 

electroacustimulation mode with different frequencies has been the chosen modality 

for use in this thesis. 

 

1.5.2 Effects of EA stimulation on EEG/ERP and attention 

 Although there are recent publications demonstrating significant associations 

between acupuncture and the neuroimaging (fMRI), little information has been 

reported in the literature concerning EA stimulation (or acupuncture) and the resting 

EEG. There is also limited research related to electrocortical activity and EA in 
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revealing distinguishable influences between low versus high frequency stimulation 

on cognitive function. Rosted et al. (2001) concluded that there were no changes in 

the resting EEG in the frequency range from 2 Hz to 30 Hz after very short periods 

(0.5, 1.0 and 2.0 min) of manual acupuncture stimulation. However, specific 

comparisons of high- vs. low-frequency effects have been investigated in the study of 

Chen et al. and they reported that the activity of theta power significantly decreased 

during high-frequency (100 Hz) EA stimulation in a resting eyes-closed condition and 

the localization of the decreased theta EEG power was near the frontocentral midline 

sites (Chen, et al., 2006).  

These findings and others have led to two main methodological implications. 

First, sufficient stimulation time is important to generate detectable changes in EEG, 

as also seen with the sustained hypoalgesic effect for 30 min post-stimulation in the 

study of changed pain threshold after TENS stimulation (Chesterton, et al., 2002). 

This led us to ensure that EA tested for at least 15 minutes. The second concerns the 

site of stimulation. Short-term cortical dynamic changes occurred in theta, notably at 

the frontocentral midline site, and this cortical plasticity was modulated by EA 

stimulation at the HeGu acupoint. Furthermore, the significant effects of acupuncture 

at the NeiGuan acupoint on the electroencephalogram and attenuating nausea and 

vomiting have also been studied extensively (e.g., Chang, et al., 2009; Streitberger, et 

al., 2006). Therefore, we chose these two acupoints located on the hands for our 

stimulation sites (see the methods section in the chapter 3). 

Considering the acupuncture effects on ERPs, some articles of auditory ERPs 

together with acupuncture have been published with various results (Abad-Alegria, et 

al., 1995; Bray, et al., 2005; Liao, et al., 1993). Liao et al. concluded that acupuncture 
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may promote middle latency auditory evoked potentials (MLAEPs) activity, while 

decreased P50 potential amplitude after EA stimulation was reported by Bray et al. 

(2005). Regarding a possible change in the auditory P300 amplitude after acupuncture 

stimulation, Abad-Alegria et al. (1995) reported that the real action of ShenMen 

acupoint, reflecting possible neuropsychological processes after stimulation, but no 

changes were detected in a non-acupuncture point stimulation. Additionally, the 

anatomical structure difference in the acupoints and non-acupoints may explain the 

specific acupoint-brain correlation. P150 located in bilateral anterior cingulated cortex 

and it was also observed after EA stimulation on acupoints but not non-acupoints, 

indicating a characteristic activation in response to acupoint afferent (Yu, et al., 2009; 

Zeng, et al., 2006). 

However, there are very few articles related to visual ERPs. Recently, Chae et al. 

(2010) concluded a significant effect of acupuncture on selective attention for 

smoking-related visual cues in smokers. The relevant fMRI studies on acupuncture 

effects on visual and auditory cortex activations (Beissner and Henke, 2009) showed 

that activations, deactivations or both in some part of the visual cortex (Brodman 

areas 17, 18 and 19)(Gareus, et al., 2002). For hearing-related acupoints the situation 

is similar, and Cho et al. (in 2000 and 2001) also published positive results on 

hearing-related acupoints in two books. Even in the view of treatment in the various 

diseases related to hyperactivity, acupuncture has been reported that it might be 

effectively mediated through the central nervous system, especially through the 

forebrain, shown in EEG changes in theta band power by acupuncture stimulation, 

increased during acupuncture stimulation and post-acupuncture stimulation period 

(Hori, et al., 2010; Sakai, et al., 2007).  
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Therefore based on the suggestions of prior publication in ERPs EEG and fMRI, 

two more implication can be noted. First, a new analysis method for ERPs may play 

an important role to enhance different neuropsychological processes after stimulation. 

For instance, the ICA together with sLORETA in studying cortical activity of ERPs 

and their components may reveal effects (details in the previous section 1.3), superior 

to the results from the traditional ERPs, after repeated visual attention tasks, and when 

compared with a control baseline meaning of attention before EA stimulation. Second, 

in line with the expectations of changed attention after stimulation, visual continuous 

attention task seems to be a valuable behavioural outcome measurement and a method 

to measure cortical electrophysiological activity in evaluating EA stimulation effect 

on attention (details in the chapter 3). 

 

 

1.6 Introduction of functional connectivity and functional networks 

 “Functional connectivity” refers to many possible relationships that might exist 

between the activation of distinct and often well separated neuronal populations 

(Ioannides, 2007). It may go with or without any reference to physical connections or 

an underlying causal model. In contrast with functional connectivity, “effective 

connectivity” refers to causal effects that one neuronal population applies to another, 

and it is based on an underlying way of connecting the different neuronal populations 

(Ioannides, 2007). There are diverse methodologies which have proven useful for the 

study of functional and effective connectivity, such as PET and fMRI, and 

electrophysiological and magnetic recordings, EEG and MEG, taken directly from 

multiple brain areas.  



83 

 

 MEG and EEG record the magnetic or electrical fluctuations that occur when a 

population of neurons is active. These methods are excellent for measuring the 

time-course of neural events (in the order of milliseconds,), but however generally 

poor at detecting the locations of the happening events. On the other hand, PET and 

fMRI measure changes in the composition of blood near a neural event, and those 

changes are slow (in the order of seconds). Therefore, these imaging methods are 

much worse at measuring the time-course of neural events, but are generally better at 

detecting the location. Nowadays “brain activation studies” focus on determining 

distributed patterns of brain activity associated with specific tasks according to the 

interaction of distinct brain regions. As a great deal of neural processing is performed 

via a network of several cortical regions, scientists are able to thoroughly understand 

information flow back and forth in the brain. 

 Therefore, examining functional connectivity is to validate the interregional 

neural interactions during particular cognitive or motor tasks or merely from 

spontaneous activity during rest. fMRI and PET enable creation of functional 

connectivity maps of distinct spatial distributions of temporally correlated brain 

regions called ‘functional networks’. Recent studies of functional brain connectivity 

by neuroimaging have used graph-theory-based tools for describing large-scale brain 

networks (for a review, Ioannides, 2007), and this refined technology is well 

developed for describing the connectivity of distinct brain areas at the level of 

anatomy and function. Furthermore, some direct methods to measure functional 

connectivity involve observing how stimulation of one part of the brain region will 

affect other cortical areas. Noninvasively in humans, combining transcranial magnetic 

stimulation (TMS) or EA with one of the neuroimaging tools such as PET, fMRI, or 
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EEG have been investigated (e.g., Hui, et al., 2010; Napadow, et al., 2005; Ros, et al., 

2010). 

 

1.6.1 Resting state networks (RSNs) and default mode network (DMN) 

 Typically fMRI experiments focus on the acquisition of MR images during 

periods of increased oxygen consumption, blood-oxygen level dependent (BOLD) 

signal (according to neuronal response to experimental conditions), and then the 

measured image intensities are compared with recordings obtained from a ‘rest’ 

condition. Therefore, such suitable definition of this baseline/rest signal is of 

particular importance in exhibiting complex fMRI ‘activation maps’ identified under 

the rest condition and under external stimulation (Beckmann, et al., 2005). Recently, 

this resting state activity has been termed the default-mode of brain activity to 

indicate a state in which an individual is awake and alert, but not actively involved in 

an attention demanding or goal-directed task (Raichle, et al., 2001). RSNs depict the 

neuronal baseline activity of the human brain in the absence of stimulated neuronal 

activity, reflecting functionally basic networks. 

 RSNs have been identified in the motor system (Biswal, et al., 1995), the 

language system (Hampson, et al., 2002), and the dorsal and ventral attention systems 

(Fox, et al., 2006). Not only has the hemodynamic footprint been well investigated, 

but also the underlying electrophysiological signature (e.g., Laufs, et al., 2003; 

Mantini, et al., 2007). Using simultaneously acquired EEG combined with fMRI data 

under a rest condition, at least two research teams have shown that the variation in 

alpha rhythm in the EEG (8–12 Hz) is correlated with the fMRI measurements, 

including multiple regions of occipital, superior temporal, inferior frontal and 
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cingulate cortex (Goldman, et al., 2002; Laufs, et al., 2003). These results show some 

important implications for the interpretation of RSNs and the correlation between 

RSNs and EEG-alpha dynamics. 

 Since Marcus Raichle first coined the term “default-mode” in relation to resting 

state brain function (Raichle, et al., 2001), the DMN concept has rapidly become a 

central theme in cognitive and clinical neuroscience. This DMN concept comes from 

an emergent body of evidence showing a consistent pattern of deactivation across a 

network of brain regions which includes precuneus/posterior cingulate cortex (PCC), 

medial prefrontal cortex (MPFC) and medial, lateral and inferior parietal cortex (see a 

review, Broyd et al., 2009). This DMN consists of two relatively independent major 

regions – the frontal and parietal lobes. The DMN is active in the resting brain with a 

high degree of functional connectivity between regions. Although the DMN is 

characterized as a homogenous single network, each brain area participating in the 

DMN has its own functional role. For example, attenuation of the ventral MPFC 

occurred with tasks involving judgments that were self-referential; activity in the 

dorsal MPFC increased for self-referential stimuli, suggesting the dorsal MPFC is 

associated with introspective orientated thought (Gusnard, et al., 2001); working 

memory tasks differentially deactivate the PCC (see a review, Broyd, et al., 2009). 

 However, some mental disorders show DMN abnormalities and atypical patterns 

of DMN activity. These altered patterns of DMN activity are typically characterised 

by dysfunction of introspective mental processes. For example in schizophrenia, 

positive symptom severity was correlated with increased deactivation in the MFG and 

precuneus in an oddball task (Garrity, et al., 2007). In autism however, atypical or 

reduced self-referential, affective and introspective thought is associated with low 
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activation of the DMN in the resting state (see a review, Broyd, et al., 2009). In 

ADHD, reductions in the resting state anti-correlation between dorsal ACC and PCC/ 

precuneus have been reported in an adult ADHD group. In addition, the anterior 

component of the DMN was markedly absent, with significant reduced resting state 

functional connectivity in medial PFC, superior frontal gyrus and also in 

PCC/precuneus, indicating a relationship between working memory deficits and 

attentional lapses in ADHD (Castellanos, et al., 2008). That the DMN may become a 

potentially significant clinical tool warrants further research.  

 

1.6.2 Dorsal attention network (DAN) 

Attention is not a unitary function, and it includes perception, action, language, 

and memory (Pashler, 1999). One of the better studied forms of attention is visual 

orienting, i.e., the ability to select stimuli for action, and a model has been proposed 

for different attentional operations during sensory orienting. These operations are 

carried out by two separate frontoparietal systems, a dorsal attention system and a 

ventral attention system (for a review, see Corbetta and Shulman, 2002). The dorsal 

system, also called the Dorsal Attention Network (DAN), is involved in voluntary 

(top-down) orienting and shows activity increases after presentation of cues indicating 

where, when, or to what subjects should direct their attention (Corbetta, et al., 2000; 

Shulman, et al., 2003). The DAN is bilateral and composed of the intraparietal sulcus 

(IPS) and the junction of the precentral and superior frontal sulcus (frontal eye field, 

FEF) in each hemisphere (Fox, et al., 2006). On the other hand, the ventral system is 

right-lateralized and composed of the right temporal-parietal junction (TPJ) and the 

right ventral frontal cortex (VFC). This ventral system shows activity increases upon 
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detection of salient targets appearing in unexpected locations (Corbetta, et al., 2000; 

Kincade, et al., 2005). These two systems appear to cooperate and interact during 

normal behaviour. 

 

 

1.7  Neuroplasticity and learning 

Neuroplasticity, which refers to the ability of the brain and nervous system to 

change structurally and functionally as a result of input from the environment, occurs 

on a variety of levels, ranging from learning and memorizing to cortical remapping in 

response to injury and recovery from brain damage (Shaw, et al., 2001). Although for 

most of the 20
th

 century neuroscientists generally believed that brain structure is 

relatively immutable after early childhood, this belief has been challenged by recent 

findings, which reveal that many aspects of the brain remain plastic even in adulthood 

(Rakic, 2002). In other words, it is this inherent flexibility of the central nervous 

system (CNS) that gives the more complex organisms their most important advantage: 

their ability to adapt, because to learn is ultimately, to adapt.  

To investigate the behavioural and neurophysiological processes and the EEG 

dynamics that are commonly associated with the concept of “neuromodulation” and 

the ability to appropriately adjust the nervous system for optimal function, the third 

experiment provides a feasible framework with converging evidence which logically 

supports the use of a variety of modern neuromodulation techniques – culminating in 

neurofeedback assisted by electroacustimulation – to promote or “optimize” the 

neurocognitive mechanisms responsible for the acquisition of improved levels of 

attention and enhanced perceptual sensitivity (details in the chapter 5). 
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1.7.1 Activated states for learning  

 Learning during different behavioural states may lead to different outcomes. 

Since the neurobiological functions of an organism serve to assist its adaptation to 

behaviourally challenging environments, it becomes critical to survival when it is 

necessary to accelerate and more profoundly distil the learning and refinement of 

proper skills. It seems logical to ask which clinical processes actually characterise the 

neurobiological states that appear to be beneficial to learning and/or performance in 

general? Historically speaking, previous studies have noted that the neurochemical 

and neuroelectric (EEG) operation of specific functional systems is upregulated, 

during so-called ‘activated’ states of behaviour, and references have often been made 

to increased states of ‘arousal’ (Gruzelier, et al., 2006; Neiss, 1988; Paisley and 

Summerlee, 1984). Details of this will be presented in the succeeding sections. In the 

operational sense, such states may be regarded as ‘activated’, in light of evidence that 

they require a concerted upregulation of the central nervous system (CNS) and 

metabolic activity (Ursin and Eriksen, 2004). Furthermore, it has recently been shown 

that exogenous stimulation of such systems, via magnetic and electrical methods, can 

successfully modulate and enhance learning and its associated behavioural 

performance (Hirshberg, et al., 2005). Details of this will be presented in the 

succeeding sections. It is this poignant combination of several behavioural and 

neurophysiological processes that allows a more integrated understanding of the 

phenomenon. 

1.7.2 A neurochemical for motor learning – Dopamine  

 Neurochemicals, such as serotonin and dopamine, are organic molecules that 

participate in neural activity. The brain exploits the neuromodulatory property of 
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neurochemicals to manipulate neural activity on a more global or distributed scale. 

The common neuromodulatory transmitters are usually secreted by a small group of 

neurons located in the sub-cortex (brainstem or basal forebrain regions), whose axons 

diffuse through large areas of the nervous system and, therefore, have long-lasting 

effects on multiple neurons. In addition, the structure of sub-cortical regions enables 

the nervous system to flexibly tune the level of its overall activity and those regions’ 

particular functional subsystems. For example, activity in corticostriatal circuits alters 

during the learning of new actions, but the plastic changes observed during the early 

stages of learning a new action are different to those observed after extensive training. 

Accordingly, dopamine, a critical modulator of short- and long-term plasticity in 

corticostriatal circuits, is involved differently in the early and late stages of action 

learning. (Costa, 2007).  

The dopaminergic system arises from the ventral mesencephalic neurons which 

are located in two main aggregations: the substantia nigra and ventral tegmental area 

(VTA), which is believed to be involved in reward-dependent behaviours and to be 

activated by rewards. Other reports have also documented that the dopaminergic 

system is mainly driven by craving and reward (Berridge, 2004; Hollerman and 

Schultz, 1998; Schultz, et al., 1997). Moreover, the dopaminergic system strongly 

innervates the frontal cortical regions (Briand, et al., 2007). Their axons ascend 

through the medial forebrain bundle and the synapse in the striatum (comprising the 

nigro-striatal pathway), the basal forebrain and the neocortex. In primates, the greatest 

density of dopaminergic fibres occurs in the primary motor cortex (Lewis, et al., 

1987). The neurons of the dopaminergic system may fire in both tonic and phasic 

modes and this determines the dynamics of DA release in the prefrontal cortex and 
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striatum, where relatively prolonged and frequency-dependent effects can occur, 

indicating their role as a neuromodulator of these structures (Garris and Wightman, 

1994; Lapish, et al., 2007; O'Reilly, et al., 2002). 

 In pharmacological and pathological views, firstly, pharmacological stimulation 

of the VTA is positively rewarding in animals and results in repetitive self-stimulation 

(Ikemoto and Wise, 2002). One study has reported the release of dopamine in the 

nucleus accumbens of the ventral basal ganglia (Fiorino, et al., 1993), a nucleus that 

has been implicated in addictive behaviours (Niehaus, et al., 2009). In contrast, 

cytotoxic lesion of the VTA induces behavioural akinesia (Jones, et al., 1973) and 

leads to a reduction in the fast EEG activities that are related to attentional arousal 

(Montaron, et al., 1982). Parkinson’s disease (PD), which occurs due to a depletion of 

DA in the nigro-striatal pathway, is behaviourally less characterised by motor 

paralysis, but rather by the inability to initiate or select certain motor actions 

(Kropotov and Etlinger, 1999). Moreover, children with attention deficit hyperactivity 

disorder (ADHD) have been found to have genetic mutations in their dopamine 

transporters, which indicates an impaired performance for dopamine reuptake at the 

synapse (Sharp, et al., 2009).  

DA has also been observed to regulate neuronal excitability, since direct VTA 

stimulation decreases the spontaneous firing of prefrontal pyramidal neurons, through 

local excitation of interneurons (Lewis and O'Donnell, 2000). Owing to the 

lateral-inhibition of neighbouring cells, a winner-takes-all mechanism predominates 

(Durstewitz, et al., 2000). Therefore a phasic release of DA could render the 

prefrontal cortex more reactive to behaviourally relevant stimuli.  
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 As well as ensuring efficient attention and motor performance, dopamine 

regulation is also essential during perceptuo-motor learning (Eckart, et al., 2010). 

Analogously, DA release in the basal ganglia should enable more effective inhibition 

of competing motor programs and improve the speed of action selection (Mink, 1996). 

During positron emission tomography (PET) of subjects playing a video game (Koepp 

et al., 1998), performance improvements were associated with the decreased binding 

of a radioloabeled DA antagonist, suggesting an increase in the amount of dopamine 

released in the striatum, relative to a control condition. This study is compatible with 

research in animals that demonstrates a role for dopamine in stimulus-response 

learning (Packard and White, 1991). 

 

1.7.3 Exogenous stimulation for the release of dopamine to enhance learning 

Prior studies have been replicated noninvasively in human subjects with the help 

of PET neuroimaging methods, whereby a selective release of dopamine in the 

striatum was observed following high frequency rTMS of the primary motor cortex 

and dorsolateral prefrontal cortex (Strafella, et al., 2001; Strafella, et al., 2003). 

Similarly, the clinical efficacy of electroacupuncture (EA) and moxibustion, is 

dependent on functional alterations in cerebral dopaminergic and serotonergic 

neurons, especially because of their anti-stress and psychosomatic actions (Yano, et 

al., 2004). Furthermore, long-term high-frequency EA has also been demonstrated to 

be effective in halting the degeneration of dopaminergic neurons in the substantia 

nigra and in up-regulating the levels of brain-derived neurotrophic factor (BDNF) 

mRNA in the subfields of the ventral midbrain (Liang, et al., 2002; Liang, et al., 

2003). The activation of endogenous neurotrophins by EA may be involved in the 
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regeneration of the injured dopaminergic neurons, which may explain the 

effectiveness of EA in the treatment of PD (Liang, et al., 2003). EA might regulate the 

biosynthesis of DA by altering the tyrosine hydroxylase (TH) gene transcription 

(Liang, et al., 2002; Wang, et al., 1999). 

Evidently, the dopamine precursor, Levodopa, is able to induce a significant 

boost in the performance of a serial reaction-time task for stroke patients (Rösser et al., 

2008). Hence, the combination of rTMS or EA intervention with the usual 

rehabilitative treatments could improve the outcome of neurorehabilitation in real-life 

situations. A simple explanation may be that sustained rTMS or EA gives rise to a 

cumulative release of neuromodulators (e.g., serotonin, dopamine), which then 

modulate cortical excitability and practice-dependent plasticity that is necessary for 

learning. The neuro-anatomical correlates of successful reaction-time task 

performance implicate the basal ganglia as a key structure that seems to be necessary, 

as well as being sufficient for procedural learning, which indicates that dopamine is 

crucial to motor sequence learning and synaptic plasticity in the primary motor cortex 

(Eckart, et al., 2010; Molina-Luna, et al., 2009).  

However, there is a possibility that neurofeedback training (NFT) may also 

upregulate dopaminergic tone in the motor cortex and/or basal ganglia. An animal 

study that examined the EEG dynamics, using the spectral power densities (SPDs) of 

the alpha and theta rhythms, found that the spiking frequency of supposedly 

dopaminergic (DA) neurons from the ventral tegmentum directed changes in the EEG 

characteristics, in the course of neurofeedback sessions (Kulichenko, et al., 2009). 

While the animals learned to correlate changes in the intensity of the sound signal and 

power of the EEG rhythms and to control the latter, in a conditioned-reflex mode, the 
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α/θ ratio changed, in the course of neurofeedback sessions, due to an increase in the 

SPD of the alpha EEG component and a noticeable drop in the SPD of the theta 

oscillations. Meanwhile, in a similar manner, augmentation of the spike activity of 

DA neurons was observed, which indicates the probable mechanisms for the 

involvement of the cerebral DA system in the results of neurofeedback sessions 

(Kulichenko, et al., 2009). Thus the method of combining and integrating NFT and 

stimulation strategies may enhance learning and performance, based on the likely 

system for neuromodulation. Intriguingly, the combination of feedback techniques 

and stimulation strategies may facilitate neurofeedback training (Hirshberg, et al., 

2005; Ros, et al., 2010). Electroacupuncture (EA) stimulation has also been found to 

enhance alpha power, a non-specific change, or to inhibit theta rhythmic activity, 

during high frequency EA stimulation (Chen, et al., 2006), and to enhance attention 

levels (Chen, et al., 2011). The real-time emergent pattern of the EEG may be assisted 

by other successive non-invasive brain stimulation techniques, such as rTMS or EA, 

resulting in enhanced learning and performance (e.g., stimulation to enhance rhythmic 

activity), which implies that these combined stimulation and feedback approaches 

may be more effective than either alone (Hirshberg, et al., 2005; Keck, et al., 2002). 

The close relationship between the basic modulation of the nervous system, the 

DA system and an associated improvement in attention, reward and learning has been 

extensively covered in the previous paragraphs. In addition, the probable mechanism 

that describes the effect of NFT on the cerebral DA system is based on the premise 

that neurofeedback sessions which direct change in the EEG characteristics may cause 

up-regulation of dopaminergic tone, because of the observed augmentation of the 

spike activity of DA neurons (Kulichenko, et al. 2009). It is therefore pertinent to 
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review the literature pertaining to EEG oscillation, which is relevant to particular 

enhancement and inhibition of EEG rhythms due to neurofeedback that produces an 

improvement in attention (details in the chapter 5). Most neurofeedback research to 

date has concentrated on the improvement of cognitive functions, such as attentional 

skills, and mood. 

 

1.7.4 Attention and vigilance 

Attention refers to the ability to focus on a specific thing, without becoming 

distracted, and also to a more focused activation of the cerebral cortex that enhances 

information processing (Mesulam, 1990; Oken, et al., 2006; Posner, 1989). Attention 

is different from simply being alert, because alertness refers to basic arousal, which 

refers to the state of simply being awake. For example, an alert but inattentive patient 

is attracted to any novel stimulus, but cannot screen out irrelevant stimuli in the 

environment (Oken, et al., 2006). However, one state, termed sustained attention, is 

synonymous with the most common usage of vigilance (Parasuraman, et al., 1998). 

Although there are several activation states of the cerebral cortex that impact the 

ability to process information globally or locally, no terms which have been used to 

describe these states of arousal, alertness, vigilance, or attention perfectly describe 

these states of cortical activation, since most terms are used broadly, with various 

associations, and there are no perfect physiological markers. In particular, the term, 

vigilance, has been used in many different ways by different groups of scientists. For 

example, psychologists and cognitive neuroscientists use the term specifically to 

describe an ability to sustain attention during a task and a performance that requires 

attention for a period of time (Davies and Parasuraman, 1982; Mackworth, 1964; 

Parasuraman, et al., 1998). However, clinical neurophysiologists use the term, 
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vigilance level, as well as arousal level, in the sleep–wake spectrum, without 

reference to cognition or behavioural responsiveness, because of an EEG’s great 

sensitivity to the activity of the corticothalamic networks that are fundamental to the 

sleep–wake dimension (Steriade, 1999, 2000).  

Vigilance is a term that has various definitions, but the most common scientific 

usage is to define a state of sustained attention or tonic alertness (Oken, et al., 2006). 

Vigilance implies both a degree of arousal in the sleep–wake cycle and in the level of 

cognitive performance over time. The EEG is the most common physiological 

measure of vigilance, and various measures of eye movement and of autonomic 

nervous system activity have also been used (Oken, et al., 2006). Attention tasks can 

be made progressively more complicated, but the evaluation of more complex 

functions requires vigilance (Gillig and Sanders, 2011). Problems with vigilance are 

indicated by the omission of a letter, or by signalling when the letter is not presented, 

which is called a commission error. The GNG test is also a popular format for testing 

vigilance (Gillig and Sanders, 2011; Sander, 2010).  

Interestingly, subjects who are uninterested in the environment are not as vigilant 

as those people with high motivation. In other words, the underlying brain system that 

impacts sustained attention is motivation. The motivational system includes much of 

the dopamine system and portions of the frontal lobes (e.g., anterior cingulate), as 

well as the limbic and subcortical structures (striatum, nucleus accumbens and 

amygdala) (Robbins and Everitt, 1996). The dopamine system may be related to 

reward (Schultz, 2002). Conceptually, effort (Kahneman, 1973) and motivation are 

related to sustained attention.  
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CHAPTER 2  AIMS 

 

The studies in the thesis have been conducted to provide reasonable evidence to 

validate enhanced cognitive function through a combination of exogenous and 

endogenous stimulations. Following a review of the research literature and theoretical 

thought on the application and understanding of SMR neurofeedback training and 

electrical acustimulation protocols, it is possible to identify three major goals for three 

experiments, in accordance with the literature examined. 
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Exp I – Beneficial effects of electrostimulation contingencies on sustained 

attention and electrocortical activity 

 

With regard to the change in sustained attention, an improvement in behavioural 

results (perceptual sensitivity) and their ERP is modulated by real EA stimulation 

with specific frequency (alternating frequency vs. low frequency vs. sham stimulation). 

Certainly, whether or not traditional EEG and ERP methods show significant 

changes in electrophysiology, the ICA-based EEG analysis provides significant 

results in the EEG and ERP studies.  

 

The aim of the first experiment in the thesis is also to compare the results of the 

stimuli-produced cortical activities for three conditions (before, during and after EA 

stimulation), to identify whether the attentional ERPs and performance are altered by 

EA stimulation, even in the period of post stimulation (the outlasting effect after EA 

stimulation). Meanwhile, the presumed components, reflecting synchronous cortical 

local field activity of connected networks, can be decomposed from ERP data, via 

ICA decomposition, using spatial filters for each group and each time period. 

Therefore, based on the results of the experiment, EA can be used in the later 

experiment as an assisting modality in the SMR NF training.  

The ICA method for the analysis of EEG data is a very important issue, not only 

for ERP, but also for the existing resting state EEG networks. Furthermore, the idea 

from previous studies indicates that the general effect of NFT may be better described 

by its action on the resting EEG (Egner, et al., 2004; Ros, et al., 2010), which is 
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highly correlated with the dorsal attention network (Laufs, 2008; Mantini, et al., 2007; 

Uddin, et al., 2009). Therefore, in order to provide more evidence of enhanced 

attentional performance, using NFT and NFT assisted by EA, the following 

experiment focuses on exploring the default and attentional networks. In order to 

improve the application of ICA, the methods of the second experiment serve to 

validate that any improvement to the attention network is correlated with trained 

oscillations (in the third experiment). 
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Exp II – Dynamic changes of ICA-derived EEG functional connectivity in the 

resting state 

 

EEG epochs, as fMRI volumes of individual-subject data, can be concatenated 

across subjects, along the time axis to apply the ICA algorithm to group data. 

Furthermore, combining ICA with time-frequency and cross-correlation analyses 

performed on the power spectra of selected ICs at the group-level reveals information 

about resting EEG networks, with regard to neural synchronization (Chen et al., 2009; 

Grin-Yatsenko, et al., 2010).  

 

This experiment focuses on the steps to model and examine the effective resting 

EEG networks established by similarity in the components’ alpha power, in order to 

investigate: (a) the topographical maps of EEG components in both EC and EO states; 

(b) the associated EEG sources according to their alpha power correlation coefficients 

in both states; (c) the localization of circumscribed groups associated with relevant 

EEG components, from the EC to the EO state; (d) the alpha power-associated 

functional connectivity between ICs and the difference between EC and EO states and 

(e) the changes in spectral power in the circumscribed groups, from the EC to the EO 

state. Then, based on the previous two experiments’ results, the third experiment 

investigates the effect of a combination of NF training and EA stimulation on the 

attention performance, the enhanced and inhibited oscillation after NFT and the 

improvement in spectral power, within circumscribed regions of attention network. 
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Exp III –The increased perceptual sensitivity in attention performance and the 

enhanced beta power of the attention network in the resting state caused by a 

combination of neurofeedback self-regulation and electroacupuncture 

stimulation.  

It is plausible to utilize the lasting effect of post-EA stimulation outlasting to 

boost the improvement in attention performance, while undertaking NF training to 

increase SMR and decrease theta activity, during the post-EA interval. This 

improvement does not occur in the non-contingent (sham feedback) group. However, 

superior cognitive benefits result from NF training assisted by EA stimulation, as 

validated by the increase in regional attention-related spectral power of the formerly 

developed EEG attention network. 

Finally ICA-based EEG power spectra are used to study the differences between 

pre- and post- NF training. Comprehensive data for the identified EEG components 

and networks is collected, to identify the source of differences in attentional 

performance between the four groups (AE+SMR, LE+SMR, SMR, and 

non-contingent SMR). To the best of the author's knowledge, no studies have 

specifically investigated a potential improvement in attentional performance and the 

EEG dynamics of the dorsal attention network, due to a combination of NFT and EA. 

Importantly, no study to date has studied the differences in attentional performance 

due to SMR and the non-contingent SMR (pseudo-feedback) NF training, or in EEG 

dynamics. The third experiment attempts to validate the possible long-term effects of 

NF training. 
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CHAPTER 3  EXPERIMENT ONE  

Beneficial Effects of Electrostimulation Contingencies on Sustained 

Attention and Electrocortical Activity 

 

3.1 Introduction 

3.1.1 Proposed Mechanisms of Acupuncture 

As acupuncture has evolved from the realm of traditional Chinese medicine 

towards an adjuvant role in the western medicine, scientists have tried to understand 

its basic mechanism and its efficiency in treating disorders in accordance with modern 

scientific principles. The first magnetic resonance imaging (fMRI) study on 

acupuncture represented a major first step toward understanding oriental acupuncture 

in relationship to brain function (Cho, et al., 1998). Several fMRI reports on manual 

acupuncture and electroacupuncture stimulation have also been published (e.g., Kong, 

et al., 2002; Wu, et al., 2002). There are some suggested mechanisms of action of 

acupuncture, for instance, involving the gate control theory of pain 
*3 and 

neurohormonal theory (Ulett, et al., 1998b) (details in the section 3.1.2).  

The theory of central pain blockade in the brain via stimulating the release of 

endogenous opioid neurohormones, such as endorphins and enkephalins (naturally 

occurring morphines), has been demonstrated in a series of acupuncture studies (Han, 

2003, 2004; Han and Terenius, 1982; Ulett, et al., 1998a; Ulett, et al., 1998b).  

 

*3
 Melzack, R., Wall, P.D., 1965. Pain mechanisms: a new theory. Science 150, 971-979.   

http://en.wikipedia.org/wiki/Gate_control_theory_of_pain
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Similar results were also obtained in animal experiments showing that the effect is not 

from a so-called placebo effect, but from a real physiological phenomenon (Takeshige, 

et al., 1992; Takeshige, et al., 1990). In the past ten years, systematic reviews and 

studies have provided more reliable evidence of acupuncture’s value in treating 

nausea (e.g., Ezzo, et al., 2006; Streitberger, et al., 2006), back pain (e.g., Haake, et al., 

2007; Itoh, et al., 2006), osteoarthritis of the knee (Itoh, et al., 2008; Miller, et al., 

2009), headache (Wang, et al., 2007), and selective attention (Chae, et al., 2010; 

details in the section 1.5.2). To sum up, such pain pathways in the central nervous 

system (CNS), including the peri-aqueductal gray, thalamus, and the feedback 

pathways from the cortex back to the thalamus, can be modulated by acupuncture 

stimulation, reflecting the potential role of acupuncture and electro-acustimulation in 

investigating the functional areas of the human brain.  

 

3.1.2  Proposed Mechanisms of EA and TENS 

 TENS has the advantage of fewer side effects than traditional invasive needle 

acupuncture (details in the section 1.5.1). Furthermore the main concern for research 

in this thesis was its combination with neurofeedback training without interruption 

from painful sensation. As used in clinics as one of EA types, TENS has fewer side 

effects than manual acupuncture and the frequency of stimulation has been 

extensively studied as an important parameter of stimulation (e.g., Chen, et al., 2006; 

Napadow, et al., 2005; Ulett, et al., 1998b; Zeng, et al., 2006; Zhang et al., 2003).  

Published studies during the past few decades have provided scientific evidence 

for EA and TENS usage and have greatly facilitated their widespread application. It is 
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now known that the effects of EA and TENS may be mediated via multiple 

mechanisms at peripheral and central sites. Mechanisms involved are summarised 

below (Kotz and Simpson, 2008). 

 

3.1.2.1  Short-term effects of EA and TENS 

Gate control: Stimulation of Aβ fibres activates inhibitory neurons in the 

substantia gelatinosa (lamina II) of the dorsal horn. This causes release of non-opioid 

inhibitory neurotransmitters, leading to inhibition of the upward transmission of 

painful C-fibre impulses (Sluka and Walsh, 2003). The "gate control theory of pain" 

(developed by Ronald Melzack and Patrick Wall) (Melzack and Wall, 1967) proposed 

that pain perception is not simply a direct result of activating pain fibres, but is 

modulated by the interplay between excitation and inhibition of the pain pathways. 

According to the theory, the "gating of pain" is controlled by inhibitory action on the 

pain pathways. That is, the perception of pain can be altered (gated on or off) by a 

number of means physiologically, psychologically and pharmacologically. The 

gate-control theory was developed in neuroscience independent of acupuncture and 

the gate theory as a mechanism to account for the hypothesized analgesic action of 

acupuncture in the brainstem reticular formation was proposed in Germany in 1976 

(Melzack, 1976). Furthermore, this development led to the theory of the central 

control of pain gating, i.e., pain blockade in the brain (a central pain control system in 

the brain rather than at the spinal cord or periphery) via the release of endogenous 

opioid neurotransmitters (peptides), such as endorphins, enkephalins and dynorphins 

(naturally occurring morphines), described in the next paragraphs. 
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3.1.2.2  Long-term effects of EA and TENS: (e.g., sustained analgesia after 

acupuncture) 

Production of endogenous opioids: Several studies support this mechanism, 

including animal and human studies (Lin, 2006; Sluka and Walsh, 2003; Ulett, et al., 

1998b). Acupuncture and TENS are partially reversed by naloxone and 

cross-tolerance develops between opioids and regular TENS (Watkins and Mayer, 

1982). It is hypothesized that differential neurotransmitters and neuromodulatory 

effects are released (e.g., enkephalin, endorphin and dynorphin) by high- vs. 

low-frequency stimulation and this hypothesis of neurochemical induction in the brain 

by differential frequency modulations has gained strong support (Han, 2003, 2004). 

Both high- and low-frequency stimulation-induced analgesia are mediated by opioid 

peptides via different receptor effects and the low-frequency stimulation exerts effects 

on the central hypothalamus, which has descending inhibition via enkephalin at PAG, 

medulla, and dorsal horn of spinal cord on mu receptors. However, the 

high-frequency stimulation exerts effects directly on parabrachial nuclei, 

perioqueductal gray, medulla, and dorsal horn via dynorphin on kappa receptors 

(Chen, et al., 2006) and see review, (Han, 2003). In fact, even EA stimulation with the 

dense-disperse mode (mixed or alternating frequencies) may produce differential 

release of met-enkephalin and dynorphins into the spinal fluid and has suggested a 

synergistic effect with exogenously administered opioid analgesics without 

interference from each other (Han and Sun, 1990). 

Two issues of importance have been introduced in recent reports. First, gate 

control seems to be less important than the production of endogenous opioids at the 

spinal cord and in the limbic system (Cabyoglu, et al., 2006; Han, 2003). Secondly, 
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the role of endogenous opioid peptides in the mediation of the effects of acupuncture 

is not only on pain relief, but also on mental functions (Sher, 1998). The endogenous 

opioid system is involved in various mental processes and regulates activity in 

different neurotransmitter pathways, and for instance, effects of acupuncture on mood, 

behaviour, learning, and memory (Sher, 1998, 2001). The action of acupuncture on 

mental functions involves interactions among different neurotransmitter systems, 

which is consistent with the complexity of the brain. Moreover, the endogenous 

opioid system may be one of the key mediators. Prior studies have produced 

substantial evidence that the endogenous opioid system has significant effects on 

memory and learning (Schulteis and Martinez, 1992; Shen and Li, 1995). The 

endogenous opioid system is closely linked to different neurotransmitter systems in 

the brain, including dopaminergic, noradrenergic, serotoninergic, GABAergic, and 

glutamatergic systems (see a review, Zhao, 2008), with effects on learning and 

memory (see a review, Bodnar, 2008).  

 Impact on functional connectivity: Based on prior fMRI findings of EA 

stimulation, studies with resting fMRI data taken before and after verum and sham 

acupuncture have been undertaken to explore impact on functional connectivity 

(Dhond, et al., 2008; Hui et al., 2009). Following verum, but not sham, acupuncture 

there was increased default mode network (DMN) connectivity with pain (anterior 

cingulate cortex (ACC), periaqueductal gray), affective (amygdala, ACC), and 

memory (hippocampal formation, middle temporal gyrus) related brain regions, and 

increased sensorimotor network (SMN) connectivity as well. This is an important 

approach for demonstrating that acupuncture can enhance the post-stimulation spatial 

extent of resting brain networks (Dhond, et al., 2008). In addition, the default mode 
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network (task-negative) and the anti-correlated task-positive network in response to 

stimulation were also reported, indicating that acupuncture mobilizes the two 

anti-correlated functional networks of the brain to mediate its actions, and that the 

effect is dependent on the psychophysical response (Hui, et al., 2009) (DMN will be 

described in chapter 4). 

 

3.1.3 Hypotheses for Experiment One 

The first experiment was conducted in order to (a) confirm the findings from 

prior research of improved visual attention with EA stimulation (detail in the section 

1.5.2 and the page 80), and (b) to compare subjects of experimental and control 

groups on other putative correlates with behavioural tasks (e.g., perceptual sensitivity) 

and brain electrophysiological activity (e.g., ERPs and ERP components). On the 

basis of the prior research in EA stimulation and opioid analgesics (details in the 

section 3.1.2.2; Han and Sun, 1990), enhanced attention with alternating frequency 

electro-stimulation (AE) was expected to be greater than with low frequency 

electro-stimulation (LE), and effects on attention would be superior to sham 

electro-stimulation (SE). In addition, inclusion of three conditions (pre-, during, and 

post-stimulation) enabled a test of whether effects on attention would outlast TENS 

and inform whether this was a useful and effective modality of exogenous stimulation 

to enhance cognitive performance.  

Hypothesis 1: sustained effects on perceptual sensitivity in attention. 

 That attention will improve with EA and this improvement will outlast 

stimulation which behaviourally will be indexed by an increase in d-prime, largely 
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due to a reduction in errors of commission, for young adults tend to make few 

omission errors (Egner and Gruzelier, 2001). That improvement in attention will be 

greater with alternating than lower frequency stimulation.  

 

Hypothesis 2: sustained effects on visual attention ERP latency. 

Improvement in attention with EA will have a counterpart in ERP components, 

with shorter ERP latencies in the stimulation groups than the control group. 

Correspondingly, subjects in the AE group would have the shortest ERP latencies, and 

the LE group would have shorter latencies than the SE group. 

 

Hypothesis 3: sustained effects on visual attention ERP amplitude. 

That improvement in attention will also coincide with increased ERP amplitudes 

in the different stimulation groups. Correspondingly, subjects in the AE group would 

have the most robust ERP amplitudes, and the LE group would have more robust 

amplitudes than the SE group. 

 

Hypothesis 4: Decomposed independent components (ICs) of visual attention 

ERPs. 

Application of the ICA method to decompose visual attention ERPs into ICs was 

expected to reveal changes in ERP components related to cognitive activation after 
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the sustained attention task. This may disclose the benefit of applying ICA to 

conventional ERP methods of analysis. 

Hypothesis 5: Decomposed components will correlate with habituation after the 

repetition of the visual attention task. 

That the control group through an absence of EA effects will show habituation 

across the three conditions as measured by particular component amplitudes. In line 

with this hypothesis, the ICA and decomposed components may explain subjects’ 

enhanced attention performance following EA stimulation due to the absence of a 

habituation effect of EA stimulation on important components, which are associated 

with working memory, motor inhibition, and visual discrimination processes. 

 

3.2  Materials and Methods of Experiment One 

3.2.1 Subjects  

 Data were recorded from 30 individuals, but because of technical problems or 

excessive artefacts, three data sets were excluded from further analysis. 27 healthy 

volunteers (20 female, 7 male), mean age = 22.5 (SD = 1.56, range 18-30 years) from 

Goldsmiths, University of London, participated in the study. Subjects were excluded 

if they had any history of epilepsy, drug abuse, head injury, or psychiatric disorders. 

Those participants currently having any sore, pain, cut, skin problems on the hands or 

receiving psychoactive medication were also screened out. All subjects had not 

experienced acustimulation before our testing. All had normal hearing and normal (or 

corrected-to-normal) eyesight. Written consent was obtained prior to the start of the 
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experiment in accordance with the Helsinki Declaration, and the current investigation 

received the ethical approval from the College Research Ethics Committee.  

 

 Participants were randomly assigned to one of three experimental groups of 

equal size (N=9) with the method of randomly permuted blocks 

http://www.randomization.com. Group 1 (alternating frequency electrostimulation, 

AE) who received stimulation with alternating low (5 Hz) and high (100 Hz) 

frequencies; Group 2 (low frequency electrostimulation, LE) received stimulation 

with the low frequency (5 Hz) only; Group 3 (sham electrostimulation, SE) received a 

control condition with the minimal intensity for electroacupuncture.  

 

3.2.2 Experimental Design 

 Each subject was asked to perform a continuous performance visual attention 

task and sat in a comfortable armchair throughout the duration of the experiment in a 

quiet room. They were seated facing a computer screen, 100 cm in front of them, and 

were instructed to press a response button whenever a visual target stimulus picture 

occurred and to withhold responses to other stimuli. Detection accuracy and response 

time were recorded during the repetitive tasks. All subjects were blind to the 

stimulation mode and effect. They were told that the machine could stimulate 

acupuncture points through high-frequency or low-frequency stimulation, and this 

may or may not give a sensation. Transcutaneous electric acupoint stimulation 

(HANS: Han’s acupoint nerve stimulator, Wearnes Technology, Singapore) was 

applied. The selected acupoints were LI-4 (HeGu point) and P-6 (NeiGuan point) of 

http://www.randomization.com/
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both hands. The HeGu point is located at the first inter-interosseous muscle of the 

hand. The NeiGuan point is located on the anterior surface of the wrist between the 

tendons of the flexor carpi radialis and the palmaris longus, next to the median nerve, 

and on average 3-5 cm proximal to the flexor crease. The two acupoints of each hand 

were stimulated at the same time as a circuit in one output channel of HANS (Figure 

3-1.) in order to prevent unusual current overflowing across the body inducing 

arrhythmia. Subjects received stimulation via four adhesive surface electrodes (size: 4 

cm × 5 cm) at the aforementioned bilateral acupoints. The stimulation intensity for the 

real acustimulation was adjusted to a maximal but comfortable level, slightly below 

the pain or discomfort threshold, ranging from 7 to 15 mA. For the sham 

acustimulation the intensity was set at less than 5 mA (Chao, et al., 2007). Based on a 

literature review (Chao, et al., 2007; Hsieh, et al., 2001; Itoh, et al., 2006; Lund and 

Lundeberg, 2006; Shen et al., 2000; White, et al., 2004; Wu, et al., 2002; Zhang, et al., 

2003), we selected sham acustimulation applied to the same points with minimal 

intensity as our control placebo model, and only the intensity parameter of stimulation 

was different from the real stimulation groups.  

Each subject was instructed to pay no attention to the sensation induced at the 

stimulated site, and to focus on the attention task. All 27 subjects were assessed by 

evaluating their behavioural results from the attention task and the event-related EEG 

measures in the three study stages (before stimulation, during stimulation and 5 

minutes post-stimulation). Each study stage consisted of 5 minutes eyes closed 

baseline EEG, 5 minutes eyes open baseline EEG and 20 minutes of the attention task. 
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(a)          (b)          (c) 

Figure 3-1. The location of two acupoints: HeGu (a), NeiGuan (b), and the application of the 

stimulator device on both acupoints (c). 

 

3.2.3 Procedures 

3.2.3.1 Attention paradigm 

The two-stimuli go and nogo task is a subtype of the general go and nogo 

paradigm. When the “go” stimulus is presented a manual response is required whereas 

when a “nogo” stimulus is presented the response is to be withheld. The purpose of 

this design is to examine two types of errors, namely those representing 

inattentiveness and impulsivity. The task presents stimuli in pairs so that the subject 

would implicitly be ready to make a decision after the first stimulus in the pair and to 

respond as fast as possible after the second stimulus is shown on the screen. Here the 

images were flashed on the screen in pairs within 3 seconds with the instruction to 

press a button when the target pair occurred. The stimuli were non-language based 

and consisted of a total of 20 different images of animals (A), plants (P) or humans 

(H). In addition, each human picture was presented together with a pure tone of 500 

Hz of 20 ms duration. Four different categories of trials were shown: “Animal-Animal 
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(A-A)”, “Animal-Plant (A-P)”, “Plant-Plant (P-P)”, and “Plant-Human (P-H)”. The 

duration of the stimuli was 100 ms, and trials were presented in a random order with 

equal probability. Inter-stimulus intervals were 1400ms, and long enough for subjects 

to prepare their responses; the total interval between trials was 3100ms. The task 

consisted of 400 trials, divided into 4 sessions with 100 trails each, and took around 

20 minutes. The subject had to press a button as fast as possible when the A-A pairs 

were presented on a screen and ignore other pairs of stimuli (A-P, P-P, P-HS, Figure 

3-2.) (Psytask user manual, http://www.mitsar-medical. com) (Kropotov, 2009b).  

 

Figure 3-2. Stimulus presentation in the visual attention task. (1) Pre-stimulus interval, (2) 

First stimulus, (3) Inter-stimulus interval, (4) Second stimulus, (5) Post-stimulus interval, (6) 

Subject response. Two arrows and lines represent the continuous time axis during the task 

with four pairs of pictures randomly shown. The first pair, the Animal-Animal (A-A) pair, 

represents the “go” cue, to which the subject should press the button. The second pair, the 

Animal-Plant (A-P) pair, represents a “nogo” cue, and the subject should not respond. The 

remaining two Plant-Plant (P-P) and Plant-Human (P-H) pairs are control condition trials, and 

the subject should ignore them. 
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3.2.3.2 EEG recordings and pre-treatment of EEG 

 Topographical EEG and ERP data of all participants were recorded during the 

attention task. All neuroelectric data were recorded using the Mitsar 21-channel EEG 

system, the “Mitsar-201” (CE 0537) manufactured by Mitsar, Ltd. 

(http://www.mitsar-medical.com), with a 19-channel electrode cap with 

silver-chloride electrodes that included Fz, Cz, Pz, Fp1/2, F3/4, F7/8, T3/4, T5/6, 

C3/4, P3/4, O1/2. The cap was placed on the scalp according to the standard 10-20 

system (Electro-cap International, Inc. http://www.electro-cap.com/caps.htm). 

Electrodes were referenced to linked earlobes (off-line) and the input signals were 

sampled at a rate of 250 Hz (bandpass 0.5–30 Hz). The ground electrode was placed 

on the forehead. Impedance was kept below 5 kΩ. Electro-oculogram (EOG) data 

were recorded from electrodes (Fp1/2) placed above the frontal muscles to monitor 

eye blinking or movements. An EOG correction procedure (by ICA, details in the 

sections 1.2.4.1, 1.2.4.3 and 1.3.3) to remove artefacts was performed and 

non-specific artefacts were rejected offline. ERP waveforms were averaged and 

computed off line. All participants performed the attention task three times: before, 

during and 5 minutes post-stimulation. 

3.2.3.3 Data management: ICA and standardized low-resolution brain 

electromagnetic tomography (sLORETA) 

EEG data analysis was performed using WinEEG 2.83, the commercial software 

from the Mitsar, Ltd. (http://www.mitsar-medical.com). First, data were digitally 

filtered using a linear filter to minimize drifts and line noise (bandwidth 0.5 - 30 Hz; 

notch filters 45-55 Hz). ERP data epochs were extracted (0 to 3000 ms) and baseline 

corrected (-100 to 0 ms). Epochs containing unique, non-stereotyped artefacts (e.g., 

http://www.mitsar-medical.com/
http://www.electro-cap.com/caps.htm
http://www.mitsar-medical.com/
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swallowing, extreme muscle activities with amplitudes over 35 µV, electrode cable 

movements, etc.) were automatically rejected from further analysis, whereas epochs 

containing repeatedly occurring artefacts (e.g., eye blinks, heart beat artefacts, etc.) 

were corrected using the ICA method (Jung, et al., 2000; Jung, et al., 2000). It was 

implemented in the software (http://sccn.ucsd.edu/ eeglab) (Makeig, et al., 1997), 

WinEEG, and written by Valery A. Ponomarev (Kropotov, 2009a).  

The independent components of average ERPs are computed using selected in 

ERP database array of individual (subject or observation) ERPs as a source data. The 

parts of ERP waveforms corresponding to specified time intervals are merged to 

continuous time series and then this data are decomposed to independent components. 

Grand average ERPs are computed separately for each independent component. 

Individual ERP component waveforms, grand average ERP components and 

component topographies are displayed in ICA window and are available for analysis. 

Additional assumption is also suggested that cortical localization of components is 

similar between subjects due to performing the same task, so that it is viable to 

implement the ICA on array of ERPs. 

sLORETA is a method that computes images of electric neuronal activity from 

EEG. EEG measurements do not contain enough information for the unique 

estimation of the electric neuronal generators. sLORETA imaging is one of methods 

for locating cortical generators provided source computations for the independent 

components (ICs) using freeware provided by the Key Institute for Brain-Mind 

Research in Zurich, Switzerland (http://www.uzh.ch/keyinst /loreta.htm) 

(Pascual-Marqui, 2002).  

 

http://sccn.ucsd.edu/eeglab
http://www.uzh.ch/keyinst%20/loreta.htm


115 

 

3.2.3.4 Data management: Behavioural dependent variables 

 The behavioural parameters included errors of omission (indicative of 

inattentiveness), errors of commission (indicative of impulsivity), reaction time (RT) 

and reaction time variability (RTV). We also introduced the parameter “d-prime” (d') 

derived from signal detection theory (Green and Swets, 1966; McNicol, 1972). This 

takes into account both the ratio of hit rate (H) and the false alarm rate (F) and is used 

as measure of perceptual sensitivity. Conventionally in calculating d', H is defined as 

[‘H’ = 1-(number of omission errors/number of targets), and F as [‘F’ = number of 

commission errors/number of non-targets]. From these formulae, however, the d' is 

not simply [H – F], rather, it is the difference between the z-transforms of these two 

rates and was calculated as [d' = z(H)- z(F). In other words, d' measures both of these 

two error types as an index of perceptual sensitivity (Egner and Gruzelier, 2001, 

2004). 

 

3.2.3.5 Statistical analysis 

To evaluate the effectiveness of acustimulation relative to the sham procedure, a 

mixed-design ANOVA was used to examine the effects of Group (AE, LE, SE) and 

Time (before, during, after acustimulation) on behavioural measures. Separate 

ANOVAs were performed on each of the five measures: omission errors, commission 

errors, RT and RTV and d' with the Bonferroni correction for post-hoc comparisons. 

Given the exploratory nature of the study, an uncorrected significance threshold of 

p=0.05 was used for each of the five ANOVAs in order to preserve a reasonable 

sensitivity for detecting real effects (i.e. to maintain a reasonable type I error rate). 
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Given this, caution must be used in interpreting each effect, with greater credence 

given to those effects specifically predicted a priori, as outlined in the Introduction. 

So that the reader can judge which effects would survive a harsher significance 

criterion, an adjusted alpha of 0.01 was also calculated using a Bonferroni adjustment 

based on the number of tests (i.e. 0.05 / 5). The nature of any significant interactions 

that emerged were explored using contrast tests comparing mean scores across time 

periods (i.e. before vs. after, before vs. during, after vs. during) for each of the three 

groups, in line with the primary goals of the study, including parameters of ERP and 

ICs (latencies and amplitudes) in both conditions (go and nogo cues). 
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3.3 Results of Experiment One 

3.3.1 Hypothesis 1: Sustained effects on perceptual sensitivity in attention. 

3.3.1.1 Perceptual sensitivity 

 

 Here it was hypothesised that young adults would have improvement of 

perceptual sensitivity in repetitive visual attention tasks due to EA stimulation, 

indexed by an increase in d-prime. Correspondingly, with a significant reduction in 

errors of commission and few omission errors, the improvement in attention would be 

greater with alternating (the AE group) than lower frequency stimulation (the LE 

group) and sham stimulation (the SE group) after stimulation.  

 

 Table 3-1 shows the means and standard deviations of the d', commission errors, 

omission errors, RT and RTV scores of the attention task for the three groups, and in 

Table 3-2 the results of ANOVA with repeated measures.  
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The groups were first examined for differences at baseline (before stimulation) 

with a one-way ANOVA, followed by Bonferroni post-hoc tests. There was a 

significant Group effect for omission errors (F(2,26)=3.368, P=0.051) due to lower 

error rates in the AE group than the controls (p=0.055, Bonferroni; for LE p=1, 

Bonferroni); for commission errors (F(2,26)=3.429, P=0.049) due to fewer errors in 

the control group than the LE group (p=0.062, Bonferroni; for AE p=0.178, 

Bonferroni), the opposite to the omission error difference. D-prime yielded a Group 

effect that approached significance at the P<0.05 level, with a lower-d-prime in the 

LE group than the control group (F(2,26)=2.860, P=0.077; for LE p=0.075, 

Bonferroni; for AE p=0.646, Bonferroni). As omission and commission errors make 

an equal contribution to d-prime, and because the differences between the AE and 

control groups for the two variables were in the opposite direction their indices were 

accordingly not differentially affected. There were no baseline differences in the RT 

measures (for AE p=0.280 and for LE p=0.975, Bonferroni).  

The effects of task repetition with or without EA stimulation were examined with 

repeated measures ANOVA with baseline as a covariate in the case of d-prime, 

omission and commission errors in view of the baseline differences, and with the 

change between baseline (before stimulation) and during stimulation and post 

stimulation as the within subject factor (Table 3-2). Considering first d-prime there 

was a highly significant group difference (F(2,23)=9.236, P=0.001) with no difference 

between stimulations (F(2,23)=1.997, P=0.159). Post-hoc analysis indicated that the 

increment in d-prime differed significantly between the control and AE groups, during 

and post stimulation (for during stimulation p=0.043 and for post stimulation p=0.043, 

Bonferroni). For the increment in d-prime differed significantly between the control 
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and LE groups, post-hoc analysis only indicated that the effect in the during 

stimulation period significantly (for during stimulation p=0.021 and for post 

stimulation p=1, Bonferroni). For omission errors there were no effects of group 

(F(2,23)=1.673, P=0.210) or of stimulation (F(2,23)=0.862, P=0.435). For 

commission errors there was a significant groups effect (F(2,23)=5.255, P=0.013) but 

no difference between stimulations (F(2,23)=0.251, P=0.780). The findings of 

increased perceptual sensitivity in both AE and LE groups were consistent with the 

hypothesis.  

Furthermore turning to the RT measures, the effects of task repetition with or 

without EA stimulation were examined with repeated measures ANOVA with 

baseline as a covariate in the case of RT and RTV in view of the baseline differences, 

and with the change between baseline (before stimulation) and during stimulation and 

post stimulation as the within subject factor (Table 3-2). For RT there was 

approaching effect of group (F(2,23)=3.256, P=0.057) but no effect of stimulation 

(F(2,23)=1.331, P=0.284). For RTV there was no groups effect (F(2,23)=1.404, 

P=0.266) and no difference between stimulations (F(2,23)=0.933, P=0.408).  

 

3.3.1.2 Sustained stimulation effects 

 In line with supporting the hypothesis that attention will improve with EA and 

this improvement will outlast stimulation, the sustained improvement of perceptual 

sensitivity post stimulation is found only in the AE group.  

With AE the increase in d' with stimulation (t(24)=2.532, p=0.018; in Figure 3-3, 

t1) was sustained post stimulation (t(24)=2.932, p=0.007; in Figure 3-3, t2), whereas 
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with LE the increase with stimulation (t(24)=3.494, p=0.002; in Figure 3-3, t3) was 

not sustained post stimulation (t(24)=-2.884, p=0.008; in Figure 3-3, t4; 

non-significant before vs. after stimulation, t(24)=0.611, p=0.547; in Figure 3-3, t5). 

Moreover, the consequent difference between the AE and SE groups post stimulation 

showed higher d' scores following AE stimulation (t(24)=2.695, p=0.013, contrast 

test). 

 

 

Figure 3-3. Electrostimulation changes on mean d' scores (± SEM) in the attention task for 

both AE and LE groups relative to the SE control group (★ denotes P < 0.05; AE, 

alternating frequency electrostimulation; LE, low frequency electrostimulation; SE, sham 

electrostimulation; t1, the contrast test during vs. before stimulation in the AE group; t2, the 

contrast test after vs. before stimulation in the AE group; ns, not significant during vs. after 

stimulation in the AE group; t3, the contrast test during vs. before LE stimulation; t4, after vs. 

during LE stimulation; t5, before vs. after LE stimulation, ns, not significant).  
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The finding of increased perceptual sensitivity largely due to reductions in 

commission errors in the AE group post stimulation was consistent with the 

hypothesis. Underscoring the pattern of results with d', whereas with AE stimulation 

there was a decrease in commission errors (contrast test, t(24)=-4.082, p=0.0004, in 

Figure 3-4, t1) which was sustained post stimulation (contrast test, t(24)=-3.674, 

p=0.001, in Figure 3-4, t2), with LE there was a tendency towards a decrease in errors 

with stimulation (contrast test, t(24)=-1.868, p=0.074, in Figure 3-4, t3) which was 

not sustained post-stimulation (contrast test, t(24)=-0.934, p=0.360, in Figure 3-4, t4). 

However, the absence of such an effect in the LE group post stimulation was 

unexpected. In contrast to the hypothesis, there was not sustained improvement in 

commission errors post-stimulation in the LE group. 

 

Figure 3-4. Electrostimulation changes on mean commission errors (± SEM) in the attention 

task for both AE and LE groups relative to the SE control group (★ denotes P < 0.05; t1, the 

contrast test during vs. before stimulation in the AE group; t2, the contrast test after vs. before 

stimulation in the AE group; t3, the contrast test during vs. before LE stimulation; t4, after vs. 

before LE stimulation; t5, after vs. before SE stimulation).  
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Furthermore turning to the RT measures, there was a mean reduction in RTs post 

stimulation in the AE group compared with the SE group (Figure 3-5). Although 

exploratory post hoc analyses with the Bonferroni correction indicated that the 

reduction in RT differed significantly between the SE and AE groups post stimulation 

(p=0.023), however according to repeated measures ANOVA with baseline as a 

covariate, there was approaching effect of group (F(2,23)=3.256, P=0.057) but no 

effect of stimulation (F(2,23)=1.331, P=0.284) for the RT measure (Table 3-2). 

Therefore, the RT change post stimulation may reflex the group difference but not the 

real stimulation effect. 

 

 

Figure 3-5. Post electrostimulation changes on mean response times (± SEM) in the attention 

task for the AE, LE and SE control groups (★ denotes P < 0.05; RT, response time). 
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3.3.2 Hypotheses 2 and 3: Sustained effects on visual attention ERP latency 

and amplitude. 

3.3.2.1 Visual attention ERP latency and amplitude 

 Here it was hypothesised that improvement in attention with EA would have a 

counterpart in ERP components, with shorter ERP latencies and more robust 

amplitudes in the stimulation groups than the control group. The shortest ERP latency 

would coincide with the most robust ERP amplitude in the AE group, and the LE 

group would have more robust amplitude and shorter latency than the SE group. 

However, All three groups showed no statistically reliable changes in the early ERP 

components (with latencies of 80-180 ms), or in the late positive components 

(180-420 ms), and all groups displayed a trend of decreasing amplitude, but with no 

statistically significant findings (see also Tables 3-3 and 3-4). The group grand 

averages of the two conditions (go and nogo) in the attention task for the midline 

electrodes for each time period (before, during and after stimulation) are illustrated in 

Figure 3-6.  

 The hypotheses of increased ERP amplitude and shortened latency and such 

sustained stimulation effects on improvement in attention post EA stimulation were 

not supported. There was no improvement in attention revealed by a counterpart in 

ERP components. In addition, a further unexpected finding was a trend of decreasing 

amplitude in repetitive visual attention tasks (of three time periods, before, during and 

after stimulation, respectively) in all three groups. Therefore, the following hypothesis 

with the application of ICA to decompose attention ERPs into ICs would become 

critical. 
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Figure 3-6. Grand average ERPs for each group and time block for the midline electrodes in 

the attention paradigm. A frontally distributed negative ERP component had greater 

amplitude for NOGO in comparison to GO stimuli and was associated with response 

inhibition in GO-NOGO paradigms (upper panel). No significant changes in amplitudes and 

latencies among three groups and three time periods (before, during and after stimulation, 

repeated measures ANOVA) were found. (See also Tables 3-3 and 3-4.) 
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3.3.3 Hypothesis 4: Decomposed independent components (ICs) of visual 

attention ERPs. 

3.3.3.1 Components of visual attention ERPs 

 It was hypothesised that application of the ICA method to decompose visual 

attention ERPs into ICs was expected to reveal changes of ERP components related to 

cognitive activation. Importantly, analysis of the grand mean ERPs in response to the 

difference between go and nogo cues revealed a relatively large frontocentral positive 

deflection in all groups, especially in the AE group (left columns of Figure 3-7(A)). 

For the AE group at Fz, Cz and Pz, the motor inhibition component extracted by the 

ICA method and spatial filters had a significantly decreased peak from 372 ms to 396 

ms, compared with the pre-stimulation stage (during vs. before stimulation, p=0.0156 

in Figure 3-7) (Bekker, et al., 2005; Bokura, et al., 2001a; Smith, et al., 2008). 

Whereas there were no differences in the LE group, the hypothesis of expected 

changes of ERP components related to cognitive activation during LE stimulation was 

not supported. 

 

3.3.3.2 Sustained stimulation effects 

 Again, for disclosing the benefit of applying ICA to conventional ERP methods 

of analysis, it was hypothesised that the decomposed visual attention ICs was 

expected to correlate with cognitive activation post stimulation. Only in the AE group 

at Fz, Cz and Pz channels, the motor inhibition component extracted by the ICA 

method and spatial filters had a significantly decreased peak from 372 ms to 396 ms, 

compared with the pre-stimulation stage (after vs. before stimulation, p=0.0143 in 
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Figure 3-8) (Bekker, et al., 2005; Bokura, et al., 2001a; Smith, et al., 2008). However, 

the sustained stimulation effects on the motor inhibition component were not found in 

the LE group, and the hypothesis of expected changes of ERP components related to 

cognitive activation post LE stimulation was not supported. 
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During vs. before stimulation
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Figure 3-7. (A) Grand mean extracted motor inhibition ICs at midline scalp sites and 

correlated ERP of nogo-go cues, during stimulation (blue lines) compared with 

pre-stimulation (red lines) in the three groups. Red lines showed the pre-stimulation baseline 

of grand mean ERPs and grand mean motor inhibition components in the three groups. The 

animal pairs were the targets of the manual responses (GO cues), and nogo-go means the 

component difference between GO and NOGO cues. Superimposed blue lines gave the grand 

mean ERPs and grand mean motor inhibition components during electrostimulation in the 

three groups. (B) Horizontal bars below each trace represent t-test results from 0-1500 ms 

after the second stimulus onset, with values p<0.05 represented in grey between 372 ms and 

396 ms. The corresponding time courses are presented at the electrodes (indicated by letters 

Fz, Cz, and Pz) at which the projected components reach their maximums or minimums. 

(Y-axis, amplitude in μV at the corresponding electrode; X-axis, time in ms) (e.g., Kropotov, 

et al., 2011; Kropotov, 2009a). (C) The perspective views (top, sagittal and coronal views) 

showed the highest density of the motor inhibition component, according to sLORETA 

images for cortical generators. 
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After vs. before stimulation
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Figure 3-8. (A) Grand mean extracted motor inhibition ICs at midline scalp sites and 

correlated ERP of nogo-go cues, after stimulation (blue lines) compared with pre-stimulation 

(red lines) in the three groups. Layout as for Figure 3-7(A), 3-7(B), and 3-7(C).  

 

 

3.3.4 Hypothesis 5: Decomposed components will correlate with habituation 

after the repetition of the visual attention task. 

3.3.4.1 Decomposed components correlated with habituation 

 Here it was hypothesised that the control group through an absence of EA effects 

will show habituation across the three conditions as measured by particular 

component amplitudes. These decomposed particular components may explain 

subjects’ enhanced attention performance following EA stimulation due to the 

absence of a habituation effect of EA stimulation on such important components. 

Thus to evaluate if a putative habituation effect in controls would be inhibited by the 

stimulation with task repetition, we used the ICA method to reveal the fundamental 

components in the ERPs. The related ICs of ERPs were compared for the first and last 

task in each group. Of eleven components that were identified by the spatial filters 

based on the ICA from the Human Brain Indices (HBI) reference database. 

(http://www.mitsar-medical.com) (Kropotov, 2009c), seven components responding 

to the “go and nogo” cues were meaningfully related to the visual attention task as 

follows: visual comparison component at the left temporal area, visual comparison 

component at right temporal area, P400 working memory component at the frontal 

area, P300b component at the parietal area, slow wave component at the hippocampus, 
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P300 suppression component at the frontal area and P400 action monitoring 

component at the anterior cingulated cortex (ACC) (Kropotov, 2009c). 

However, only significantly changed ICs were considered further, as the goal of 

this report to describe and investigate the ICA features that significantly changed by 

applying electroacupuncture and/or attention task repetition (details in the next 

paragraphs). 

The ICA decomposition of the attention task revealed similar components in the 

three conditions. Between-group differences in mean IC topographies in the 

pre-stimulation stage were barely visible, suggesting a good reproducibility of the 

component characteristics (Olofsson and Polich, 2007). However, only with the 

control group did the differences between the first and the third repetition in mean IC 

topographies show fatigue according to time-on-task effects showing significantly 

decreased amplitudes of the ICs (Gonsalvez and Polich, 2002; Kato, et al., 2009; 

Polich, 1989; Ravden and Polich, 1998). Four ICs showed obvious differences, 

including the left visual comparison component, the P400 action monitoring 

component, the P400 working memory component, and the passive auditory P300 

component. The average characteristics of the ICs as identified in the control group 

from the beginning to the end of the three tasks are shown in Figures. 3-9 and 3-10, 

with details in the next paragraphs. Then there were findings in line with the 

hypothesis to explain the enhanced attention performance following EA stimulation 

due to the absence of the habituation effect of EA stimulation on important 

components. 
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3.3.4.2 Components with significant differences due to task repetition 

Visual comparison component, left 

 The normalized grand-mean component in Figure 3-9, (Figure 3-9A, upper row), 

revealed a large negative deflection between 100 and 400 ms post second stimulus 

onset, peaking around 236ms (p<0.05), with a left temporal topography. The 

significant change of this component in left temporal topography was also projected 

on to a mean-MRI brain image (Montreal Neurological Institute, Canada), according 

to the sLORETA images of the components (Figure 3-9A, bottom row) (Kropotov, 

2009; Protzner, et al., 2009).  

 

P400 action monitoring component 

 As illustrated in Figure 3-9B, the second IC of interest was labelled the P400 

action monitoring component in the ACC area due to its time course and topography, 

which was characterized by a later and slower ERP positivity from 260 ms to 520 ms 

with a peak latency around 400 ms (Figure 3-9B, upper row). The P400 action 

monitoring component location was in deep brain frontocentral regions through the 

ACC area (Figure 3-9B, bottom row) (Kaufman, et al., 2003; Kropotov, 2009). 

Briefly, the characteristics of the significantly decreased amplitude of P400 action 

monitoring component (p<0.05, around the peak) outlined in Figure 3-9B strongly 

suggested a relation between fatigue with task repetition, and the declined amplitude 

of the P400 action monitoring component as a function of a time-on-task effect (Kato, 

et al., 2009; Olofsson and Polich, 2007). 
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Figure 3-9: The independent components difference between the first and third task repetition 

in the sham stimulation group: (A) the visual comparison component difference between go 

and nogo cues; (B) the P400 action monitoring component in the nogo condition. The upper 

row of the panel for each component shows the grand mean component in amplitude-time 

plot at Cz (upper left), the scalp topographic map (upper middle), and the single equivalent 

current dipole locations for each component (upper right). The lower row shows the highest 

density of each component, according to sLORETA images, from three different perspectives 

(top, sagittal and coronal views). Each red line shows the grand mean component of the first 

attention task. Each superimposed blue line gives the grand mean component of the repeated 
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third task. Horizontal bars below each trace represent t-test results from 0-1500 ms post 

second stimulus onset, with values p<0.05 represented in grey. The corresponding time 

courses are presented at the electrodes (3-9A, T5; 3-9B, Cz) at which the projected 

components reach their maximums or minimums, in order to illustrate significant differences 

between the first and the third repeated tasks.(Y-axis, amplitude in μV at the corresponding 

electrode; X-axis, time in ms) (e.g., Kropotov, et al., 2011; Kropotov, 2009a) 
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P400 working memory component 

 The P400 working memory component was presented with positive double-peak 

morphology between 148 ms and 540 ms post second stimulus onset (peak latency 

around 360 ms; Figure 3-10A, upper row). This projected component on sLORETA 

images appeared to be more accurate than the 2D scalp map for assessing the spatial 

distributions of current density in the deep sources. The P400 working memory 

component location was in the deep inferior prefrontal region (Figure 3-10A, bottom 

row) (Kropotov, 2009; Muller and Knight, 2006). To come to the point of related 

findings, the characteristics of the P400 working memory component mostly 

demonstrated a relation between fatigue with task repetition and the declined 

amplitude of the P400 working memory component (p<0.05, around the peak) in the 

current study, also as a function of time-on-task (Kato, et al., 2009; Olofsson and 

Polich, 2007). 

 

Passive auditory P300 component 

 As illustrated in Figure 3-10B, the passive auditory P300 component includes 

auditory N1/P2 peaks (Polich, 2007), thus serving as a good indicator of the 

functioning of the auditory attention system in the attention task. The peak of the 

passive auditory P300 component is around 348 ms and lasting roughly 900 ms. The 

passive auditory P300 responding to deviant auditory stimuli can be elicited without 

active attention. The 2D topography and the sLORETA images showed the highest 

density over the central scalp electrodes (Figure 3-10B, bottom row) (Kropotov, 2009; 

Polich, 2007; Polich and McIsaac, 1994). In addition, the characteristics of the passive 

auditory attention P300 component possibly showed a significant relation between 
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fatigue with repetition and the strongly declined amplitude of the passive auditory 

P300 component (p<0.01, around the peak) in the present study, also as a function of 

time-on-task (Kato, et al., 2009; Olofsson and Polich, 2007). 
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Figure 3-10: The independent components difference between the first and third task 

repetition in the sham stimulation group: (A) the P400 working memory component in both 

the go and nogo conditions; (B) the passive auditory P300 component in the control condition. 

Same layout as for the panels in Figure 3-9(A) and 3-9(B) with values p<0.05 and p<0.01 

represented in grey and black. The corresponding time courses are presented at the electrodes 

(3-10A, Pz; 3-10B, Cz) at which the projected components reach their maximums or 

minimums, in order to illustrate significant differences between the first and the third repeated 

tasks.(Y-axis, amplitude in μV at the corresponding electrode; X-axis, time in ms) (e.g., 

Kropotov, et al., 2011; Kropotov, 2009a) 

 

 

3.4 Discussion of Experiment One 

 

 The primary purpose was to explore the effects of electroacupuncture stimulation 

on a repetitive visual continuous performance attention test and accompanying 

attention-related ERPs using behavioural performance indices and ERP components 

extracted by the ICA method. Whereas a number of EEG studies have explored 

acupuncture effects without the popular ERP methodology (Chen, et al., 2006; 

Litscher, 2004; Pilloni, et al., 1980; Rosted, et al., 2001; Tanaka, et al., 2002), our 

current investigation was designed to complement these through the neglected field of 

topographical EEG, and also to learn more about the recent development of electrical 

stimulation. It was of particular interest to determine whether putative benefits would 

outlast stimulation, and whether stimulation with alternating high and low frequencies 

would be superior to low frequency stimulation. It was hypothesized that stimulation 

would result in a significant behavioural change with increased sensory sensitivity (d'), 

largely due to a decrease in errors of commission, as found previously with university 

students performing the visual continuous performance task (Egner and Gruzelier, 

2001; Gruzelier, et al., 2006). Students tend to be highly motivated to attend, 
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producing few errors of omission, whereas the motivation to achieve may lead to over 

eagerness, resulting in impulsive errors of commission. It was further hypothesized 

that their performance would be reflected in ERP components with different types of 

ERPs generated on’go’ versus ‘nogo’ trials. Another purpose of this study was to 

examine if a putative habituation effect in controls would be inhibited by stimulation 

with task repetition. For this purpose response synchronized ICs of ERPs were 

compared for the first and last task in each group. 

 

Behavioural results – compatible with hypothesis 1: sustained effects from EA 

stimulation on perceptual sensitivity in attention. 

 There was some suggestion of differences in commission errors, but given that 

the p-value was not significant with the conservative Bonferroni adjustment, caution 

must be applied and further research is warranted. However, d' was significantly 

changed differentially by parameters of stimulation (Table 3-2), particularly in 

relation to attention during and after stimulation with alternating frequencies (Figure 

3-3). 

The findings overall indicated that stimulation with alternating frequencies was 

superior to low frequency stimulation in having sustained effects during the task, 

benefits which continued post-stimulation. In contrast, low frequency stimulation 

while effective during stimulation did not produce sustained benefits. These effects on 

the visual sustained attention task were disclosed through higher d' scores (Green and 

Swets, 1974; Lloyd and Appel, 1976). As anticipated, the improved d' score was 

largely due to a reduction in commission errors. Reaction time was less definitively 
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influenced, though exploratory post-hoc tests confirmed shorter RTs following 

alternating frequency stimulation in the post-stimulation condition when compared 

with sham stimulation. 

 

ERPs to the go- and nogo-stimuli – incompatible with hypotheses 2 and 3: 

sustained effects on visual attention ERP latency and amplitude. 

 Compared to the pre stimulation stage, the grand average ERPs showed a trend 

of decreasing peak amplitudes of the late components because of task repetition, but 

no changes in those early components having latencies between 80 to 180 ms. 

Previous studies using non-affective targets have reported decreased P300 amplitudes 

at fronto-central sites both as a function of time-on-task and with sequence repetition, 

(Gonsalvez and Polich, 2002; Polich, 1989; Ravden and Polich, 1998). Another study 

employing unpleasant, neutral and pleasant stimuli has reported that P300 amplitude 

decreased with repetitive picture processing (Codispoti, et al., 2006). In the current 

study the stimuli were mainly non-emotional and hence the results were in line with 

previous studies, notwithstanding the novel introduction of acustimulation 

 

Application of ICA, spatial filter and sLORETA 

 Applying ICA with spatial filtration disclosed a variety of interesting results 

which confirm and extend efforts to decompose ICs of ERPs recorded during the 

visual attention task (Li, et al., 2009). Mathematically, ICs are often characterized by 

scalp maps fitting the projection of a single equivalent current dipole, which is 

compatible with each presumed IC reflecting synchronous cortical local field activity 
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of a connected network. However, only a few ICs can be approximately calculated by 

a single dipole because some ICs are most likely to be generated by distributed 

neuronal circuits. Therefore standardized low resolution electromagnetic tomography 

(sLORETA) images were used instead of dipole approximations. Overall the present 

findings strongly suggest that the main features of averaged ERP ICs can be 

successfully decomposed from ERP data via ICA decomposition combined with 

spatial filters (from HBI database) for each group and each time period, especially for 

the pre vs. post stimulation comparison. The components reflected motor inhibition, 

visual comparison, P400 action monitoring, working memory, and passive auditory 

P300 components.  

 

Acupuncture effect induced by stimulation in the real vs. the sham group  

The typical HeGu and NeiGuan (LI-4 and P-6) acupoints are among the 

traditional points used in modulating cortical plasticity, relieving pain and treating 

nausea and vomiting (Chao, et al., 2007; Chen, et al., 2006; Streitberger, et al., 2006). 

The HeGu acupoint lies at the midpoint between the first and second carpal bones of 

the first web space on the dorsal side, and the NeiGuan acupoint is located on the 

anterior surface of the wrist, approximately 3 cm proximal to the wrist between the 

tendons of the flexor carpi radialis and the palmaris longus, next to the median nerve. 

These junctures are full of peripheral nerve extensions from the sensory nerve and 

muscle tendons (Lu, 1983), and with lower focal transcutaneous resistance they can 

provide effective electrical stimulation without much current. In contrast, the sham 

(fake) electroacupuncture at the same acupoints (placebo electrostimulation), 

generates insufficient sensory input to cortex. Thus the observed changes of behaviour 
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and the motor inhibition component in the ERP could be due to the differences in the 

nerve conduction and excitability of stimulated acupoints of the two real 

electroacupuncture groups and the selected minimal stimulation in the sham group 

(Chao, et al., 2007). Certainly the differential stimulation effects between real vs. 

sham stimulation on the same sites in behavioural performance and changes in 

independent components encourage the use of sham stimulation as a control for the 

study of brain function and associated acupuncture effects.  

 

Acupuncture effect induced by stimulation in alternating frequency mode vs. 

low-frequency mode – compatible with hypotheses 1 and 4: sustained effects from 

EA stimulation on perceptual sensitivity in attention, expected to reveal the ERP 

component related to cognitive activation after the repetition of attention tasks. 

 Our study confirmed that only stimulation with alternating frequencies 

(5/100Hz), but not with a low-frequency delivered at 5 Hz, had the sustained post 

stimulation effect in improving d' scores and decreasing mean commission errors. 

Low stimulation at 5 Hz had only short lived benefits. In addition, compared to the 

baseline without stimulation, alternating stimulation induced a significantly decreased 

motor inhibition component during stimulation and post stimulation, which 

theoretically was compatible with improvements in commission errors which reflect 

motor impulsivity (Bekker, et al., 2005; Bokura, et al., 2001a; Smith, et al., 2008).  

 For clinical practice, the result of a prolonged effect due to alternating high and 

low frequencies has become an important issue for treatment (Tong, et al., 2007). A 

recent study with resting functional Magnetic Resonance Imaging (fMRI) data using a 
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probabilistic ICA method demonstrated for the first time that the post-stimulation 

effects of acupuncture can enhance the spatial extent of resting brain networks 

(Dhond, et al., 2008). Interestingly, such sustained post-stimulation effects have been 

hypothesized to alleviate pain by altering neurotranmission in the CNS in both 

animals and man (Han, 2004; Somers and Clemente, 2009). Differential release of 

opioid peptides in the CNS by electroacupuncture stimulation has been noted, with a 

low frequency of 2-15 Hz triggering the release of enkephalins and Beta endorphins, 

and a high frequency of 100 Hz stimulation increasing the release of dynorphin at the 

spinal cord level (Han, 2004). A combination of both frequencies with an alternating 

current of 2 and 100 Hz may allow synergistic interaction among the 

neurotransmitters and so provide a more powerful effect than sham stimulation (Chao, 

et al., 2007; Streitberger, et al., 2006). Napadow et al. (2005) with fMRI have claimed 

that the limbic system is central to acupuncture effects regardless of the specific 

acupuncture modality, although some differences do exist in the underlying 

neurobiologic mechanisms for different modalities. The findings may also provide 

hints for optimising acupuncture in clinical applications (Napadow, et al., 2005). 

 

Further potential clinical applications – compatible with hypotheses 4 and 5: 

expected to reveal the ERP component related to cognitive activation. This may 

disclose the benefit of applying ICA to conventional ERP methods of analysis. 

Although most of the studies of electroacupuncture stimulation have explored the 

role of acupuncture in analgesia, neuroimaging research has also revealed possible 

brain networks and regions for potential influence on attention and memory (Chen, et 

al., 2006; Dhond, et al., 2008; Napadow, et al., 2005; Wu, et al., 2002; Zhang, et al., 
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2003). Manual stimulation showed increased regional cerebral blood flow (rCBF) 

mainly in the parahippocampal gyrus, premotor area, frontal and temporal areas 

bilaterally and the ipsilateral globus pallidus (Lee et al., 2003). In a recent report of 

electroacupuncture-induced analgesia examined by fMRI, several areas with positive 

correlation of analgesic effects for low-frequency stimulation included the 

contralateral motor area, the supplementary motor area, and the ipsilateral superior 

temporal gyrus. In contrast with high-frequency stimulation the response occurred in 

the contralateral inferior parietal lobule, ipsilateral anterior cingulate cortex (ACC), 

nucleus accumbens, and pons (Zhang, et al., 2003; Zhang, et al., 2004). Functional 

MR imaging has demonstrated the CNS pathways involved in acupuncture 

stimulation. Even the subcortical gray structures, hypothalamus-limbic system and 

hypothalamus-pituitary-adrenal axis (HPA axis) have been related to 

electroacupuncture stimulation (Cho, et al., 2006; Wu, et al., 2002; Zeng, et al., 2006). 

In the case of low-frequency stimulation, high activation has been elicited over the 

hypothalamus and primary somatosensory-motor cortex, with deactivation over the 

rostral segment of anterior cingulate cortex (Wu, et al., 2002). 

 The findings of our study also support the assumption that electroacupuncture 

stimulation has an effect on specific brain areas, and the improved performance in 

cognition is possibly related to enhanced cortical activity. While previous studies have 

demonstrated a sustained post stimulation effect for pain relief, gastric mobility and 

heart rate variability (HRV) (Chesterton et al., 2002; Claydon, et al., 2008; Imai, et al., 

2008), to our knowledge no prior published research has examined sustained attention 

during stimulation and post-stimulation periods in healthy young adults. This 

conclusion followed a search of nine bibliographic databases for the effects of 
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transcutaneous electrical nerve stimulation (TENS) on non-pain related cognitive and 

behaviour which found only reports on patients (van Dijk, et al., 2002).  

 

The guidelines for electroacupuncture safe practice in dual-site electroacupuncture 

stimulation of the experimental design 

 In clinical practice, the more distal acupoint location of the electrodes on hands 

and wrists seems much more practical than the proximal location of the limbs, 

paraspinal muscles, and neck or head regions. Our design with a pair of acupoints on 

each hand followed the guidelines for safe practice recommended by the British 

Medical Acupuncture Society (BMAS) to avoid adverse events. Especially, 

electroacupuncture should not be applied such that the current is likely to traverse the 

heart. If the application of electrostimulation is likely to cross the heart (for example, 

from one shoulder to the other shoulder (Thompson and Cummings, 2008), this 

placement is prohibited. A study has also reported that electrical fields generated by 

pairs of needles below the knee or elbow do not create a detectable spread of the 

currents along the limb or into the chest (Thompson and Cummings, 2008). The 

safety guidelines are rarely mentioned in scientific reports.  

 

Limitations and recommendations for future research 

Notwithstanding the beneficial outcome on sustained attention that we have 

demonstrated, our study has potential limitations or at least issues warranting further 

examination. First, an optimal washout period of the neurobiological effects generated 

by stimulation remains unknown. The effective post stimulation period was for a 
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minimum of 30 minutes in our study, similar to the report of Claydon et al. (2008) 

using pressure pain threshold (Claydon, et al., 2008). Second, the optimal sites for 

influencing cognition have not been systematically examined. HeGu (Li4) and 

NeiGuan (P6) are the well studied acupoints, but other acupoints such as Zusanli 

(St36) and Taichong (Liv3) might be helpful adjuncts for improving cognitive 

function. Third, the relative contribution of the mechanism for the synergistic action 

produced by different combinations of neuropeptides is still not well understood, and 

therefore, the effectiveness of alternating frequency stimulation must be verified with 

neuroimaging. Meanwhile, various stimulation frequencies may involve different 

mechanisms. Several neurotransmitters such as serotonin and dopamine are also 

believed to contribute to attention and memory systems (Boulougouris and Tsaltas, 

2008; McNab, et al., 2009; Muller and Carew, 1998). It is not clear, however, to what 

extent these neurotransmitters are involved and how they are coordinated with each 

other during and after electrical stimulation. Further research should be conducted to 

combine the behavioural, electrophysiological and neurochemical modulation data. 

The risk of unblinding and the limitations of a single blind study include the 

interaction between subjects and the researchers. First, we asked participants to 

perform and focus on the repetitive visual attention task, and not pay attention to the 

sensation induced at the stimulated site, in order to blind any effect from the 

interaction between subject and the researcher. Second, the requirement of recruiting 

subjects was that all subjects had no experience about electroacupuncture prior to our 

testing. Complying with ethical considerations, although all subjects were blind to the 

stimulation mode and effect, they were told that the machine could generate 

transcutaneous stimulation on the acupoints of the hands with various frequencies, 
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which may or may not give a sensation. However, because subjects had no experience 

of electrostimulation, they were blinded to the relationship of stimulation modes and 

effects. Importantly, only the intensity parameter of stimulation in the sham group 

was different from the real electroacupuncture groups, and possibly any emotional 

reaction to the thought of minimal tactile sensation was unlikely to influence 

responding; as mentioned earlier the sham stimulation itself has been shown not to 

affect sensory cortex (Chao, et al., 2007; Wu, et al., 2002).   

Finally, electroacupuncture stimulation presented in this study is one method for 

modulating neuronal processing in order to improve cognitive performance. This may 

be useful in the range of neurological and psychopathological conditions mentioned 

above where the continuous performance paradigm has disclosed deficits (Arns, et al., 

2009; Lubar, et al., 1995; van Dijk, et al., 2002). Two studies related to the effects of 

TENS on cognition and behaviour showed a moderate beneficial influence on 

cognitive functions in children with ADHD (Jonsdottir, et al., 2004) and in aging 

(Scherder, et al., 2000).  

EEG-neurofeedback is another approach (Gruzelier, 2009; Gruzelier, et al., 2006; 

Lubar, et al., 1995). In addition, combining feedback techniques with stimulation 

strategies has become a potential method for exploring brain function and effective 

protocols than either alone (Hirshberg, et al., 2005; Ros, et al., 2010). Studies of the 

neurofeedback training to improve attention and memory performance have implied 

the promising evidence for employing electroacupuncture stimulation as an assisting 

tool, according to the fundamental cortical electrophysiological activities (Egner and 

Gruzelier, 2001, 2004; Vernon et al., 2003). The prospective approach in combining 

these two techniques will be valuable and will be investigated in our future studies. 
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3.5 Summary 

 This single-blind randomized placebo-controlled study showed that 

electroacupuncture stimulation with alternating frequencies on pairs of acupoints of 

both hands resulted in significantly better sustained behavioural performance and 

sustained cortical activation with decreased motor inhibition component in a repeated 

visual continuous attentional performance task than low frequency stimulation, which 

in turn was superior to placebo. No obvious adverse effect in healthy subjects was 

noted. Evidence was provided that ICA with spatial filtration, applied to ERP data, 

successfully decomposed the spatiotemporally overlapping ERPs into a range of 

underlying EEG processes whose localization was congruent with a range of 

behavioural functions: visual comparison, P400 action monitoring, working memory 

and passive auditory P300. The alternating frequency stimulation could be an adjunct 

for helping adults successfully enhance their sustained attention and inhibit competing 

motor responses both during and post stimulation, indicating its potential therapeutic 

benefit for psychiatric disorders with compromised attention and cognition. When the 

baseline was compared with the pre-stimulation and post-stimulation period in the 

control group with the placebo stimulation, the IC-derived ICs disclosed evidence of 

habituation. The absence of habituation in the experimental groups suggests a 

potentially successful activation for preventing fatigue. Further randomized trials with 

a larger sample size will be conducted to compare and combine electroacupuncture 

stimulation with a more established modality, such as EEG-biofeedback. Interestingly, 

these further trials will clarify the role of applied acustimulation on self-regulation, 

cognitive function, and cortical activation. 
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CHAPTER 4  EXPERIMENT TWO  

Dynamic changes of ICA-derived EEG functional connectivity in the 

resting state  

 

4.1  Introduction 

4.1.1 The introduction of experiment two 

The identification of a resting baseline state is an essential issue in neuroscience 

in order to interpret brain activation and to disentangle the mechanisms behind 

neuronal cooperative activity, which form the core of all cognitive, perceptive and 

motor-driven activities. Since its discovery by Hans Berger in the 1930s, 

electroencephalography (EEG) has been a reliable method for monitoring brain 

dynamics, contributing an early focus on the electrophysiological changes from the 

eyes-closed (EC) to the eyes-open (EO) resting condition. This transition has 

traditionally been characterized by a suppression of occipital alpha activity through 

visual stimulation in the EO state, classically termed “alpha blocking” (Pollen and 

Trachtenberg, 1972), or more recently “alpha desynchronization” (Klimesch, et al., 

2000; Klimesch, et al., 2007; Klimesch, et al., 2007; Neuper and Pfurtscheller, 1992; 

Neuper, et al., 2006; Pfurtscheller, et al., 1996). Both EC and EO resting conditions, 

either alone or in combination, have commonly served as a standard baseline estimate 

in cognitive tasks as well as resting (or “spontaneous”) conditions.  

Recently however, the study of RSNs has shifted its focus from the localization 

of specialized brain activations to the interpretation of interrelationships in brain 

dynamics. In parallel, a host of EEG rhythms has been documented in the network 
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operations of corticothalamic systems (Steriade, 2006), where several rhythms have 

been found to coexist in the same area or interact among different structures (Steriade, 

2001). These discoveries have led to the suggestion that the EEG could be combined 

with fMRI to study baseline functions and oscillations within a more dynamic 

architecture of the human brain (Gusnard, et al., 2001; Laufs, 2008; Mantini, et al., 

2007), with the goal of spatio-temporally decomposing the complex dynamics 

associated with multiple EEG frequencies simultaneously (Laufs, et al., 2003; Mantini, 

et al., 2007).  

A main advantage of EC and EO resting-state protocols is that they may be 

carried out without requiring subjects to perform a specific task, and therefore be 

easily deployed in clinical settings. Barry et al. examined the possible arousal or 

processing differences and topographies between EC/EO resting conditions in adults 

(Barry, et al., 2007) and children (Barry, et al., 2009). They demonstrated that 

significant reductions in mean activity in the delta, theta and alpha bands were 

accompanied by increased beta activity in frontal hemispheric regions, analyzed by 

spectral energy and topographic changes in the traditional frequency domain from the 

EC to the EO state. Others such as Chen et al. (2008) have introduced scalp EEG 

spectral regional field power to study the distribution of RSN activity at rest. However, 

the possibility exists that the apparent disparities (for example, to construct functional 

networks shown by fMRI studies) between the above EEG and fMRI studies may be 

due to the well-known inadequacy of conventional scalp recordings to resolve EEG 

source locations, for scalp voltage is a mixture of underlying source activity and 

volume conduction (Congedo, et al., 2009; Nunez, 1987; Nunez et al., 1997; Winter, 

et al., 2007).  
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The utility of MEG, a neuroimaging modality bypassing the hemodynamic 

response and measuring the magnetic fields associated with electrophysiological brain 

activity, as a means to investigate RSNs has been shown in recent papers. de Pasquale 

et al (2010) showed correlation between resting state temporal MEG signals 

originating in nodes of the DMN and the "task positive" or DAN. Brookes et al. (2005) 

used seed-based envelope correlation in conjunction with beamformer spatial filtering 

methods to show interhemispheric motor cortex connectivity in source space. These 

reports showed that RSNs measured using fMRI are mirrored in MEG data. Brookes 

et al. (2011) used a unique combination of beamformer spatial filtering and ICA and 

required no prior assumptions about the spatial locations or patterns of the networks. 

They reported their results in RSNs with significant similarity in their spatial structure 

compared with RSNs derived independently using fMRI. They also concluded that the 

DMN was identified using alpha-band data whereas all other networks were identified 

in beta-band data (Brookes, et al., 2011).  

Hipp et al. (2012) also found that spontaneous oscillatory neuronal activity 

exhibited frequency-specific spatial correlation structure in the human brain in their 

MEG research. They concluded that correlation of power across cortical regions was 

strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns 

depended on the underlying oscillation frequency, for examples, in the medial 

temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the 

alpha to beta frequency range (8–23 Hz) and in sensorimotor areas for higher 

frequencies (32–45 Hz). The strongest correlation of alpha to beta activity may be a 

generic signature of intrinsic neuronal interactions (Hipp, et al., 2012). 
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As a solution, an approach termed Blind Source Separation (BSS) has been 

developed and which originated in the engineering field of signal processing (Bell and 

Sejnowski, 1995; Comon, 1994; Hyvarinen and Oja, 2000). Independent component 

analysis (ICA) is a special case of BSS methods that has been applied to EEG and 

fMRI data (Calhoun, et al., 2001; Calhoun, et al., 2004; Makeig, et al., 1996; Makeig, 

et al., 2002) as a tool to remove artefacts (e.g., Jung, et al., 2000) and to separate 

physiological sources (e.g., Makeig, et al., 2004). One of the advantages of ICA is 

that individual-subject EEG epochs (or fMRI voxels) can be concatenated across 

subjects along the time axis to apply the ICA algorithm to group data (e.g., Calhoun, 

et al., 2001; Calhoun, et al., 2004). 

Therefore, it is proposed here to utilise group ICA as a valid approach to 

decompose resting EEG signals into a number of independent components (ICs). 

Then, after spectral power analysis and estimating the cross-correlation of 

(alpha-band) EEG power between different ICs within subjects, a functional 

relationship between such source “nodes” can be established, analogous to approaches 

that have been adopted to calculate functional connectivity from BOLD signal 

strength in fMRI data (e.g., Buckner, et al., 2009). Finally, using an inverse 

localization tool such as sLORETA, the cortical location of these ICs may be resolved 

into spatially well-defined “sources” (Pascual-Marqui, et al., 2002). 

As will be shown results demonstrate the feasibility of studying neuronal 

resting-state networks according to the existence of functional relationships between 

ICA components in EEG data. The present study also replicates the previously 

reported spectral power changes in the EEG–alpha band from the EC to the EO state. 
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4.1.2 Aims for experiment two 

 Therefore the second experiment was conducted to explore EEG functional 

connectivity between eyes closed (EC) and eyes open (EO) states, which have been 

two traditionally used EEG baseline indices, in order to elucidate direct neuronal 

(electrophysiological) RSNs in healthy subjects. The source-derived EEG functional 

connectivity maps may be a valuable method to (a) identify EEG baseline states and 

accompanying networks termed “EEG resting state networks (RSNs)”, and (b) 

provide a means to compare the findings of ICs from fMRI studies with current EEG 

research, thereby elucidating synchronous spatiotemporal patterns during resting 

states. 

On the basis of prior fMRI research in both EC and EO states, the current EEG 

research employs a pipeline with which to analyse the EEG resting and default mode 

networks. A four-step analytic approach was undertaken in order to depict five 

statistically clustered groups having frontal, central, parietal occipitotemporal, and 

occipital cortical sources, and networks involving those sources. 

In addition, the salient electrophysiological clustered groups in the healthy EEG 

decomposed by the ICA method may disclose differences between EC and EO resting 

states. This approach could subsequently be applied to validate evidence of enhanced 

cognitive performance as shown in Exp I, for example, and the improved attention 

found after NF training with or without exogenous stimulation as will be outlined in 

Exp III. 
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Aim 1: The application of group ICA to extract independent components (ICs) 

from epoch-wise alpha-band power. 

 One of the advantages of ICA is that individual-subject EEG epochs (as with 

fMRI voxels) can be concatenated across subjects along the time axis to apply the 

ICA algorithm to group data (e.g., Calhoun, et al., 2001; Calhoun, et al., 2004). ICA 

may be utilized as a valid approach to decompose resting EEG signals into a number 

of ICs.  

Aim 2: The application of standardized low-resolution tomography analysis 

(sLORETA) for cortical source localization of the independent components. 

 Using an inverse localization tool such as sLORETA, the cortical location of 

these ICs may be resolved into spatially well-defined “sources” (Pascual-Marqui, et al. 

2002).  

Aim 3: The application of graph theory for functional connectivity estimation. 

 After spectral power analysis and estimating the cross-correlation of (alpha-band) 

EEG power between different ICs within subjects, a functional relationship between 

such source “nodes” can be established, analogous to approaches that have been 

adopted to calculate functional connectivity from BOLD signal strength in fMRI data 

(e.g., Buckner, et al. 2009). It was hypothesized that graph analysis may reveal EEG 

functional networks with fronto-parietal connectivity: a more medial network with 

nodes in the mPFC/precuneus which overlaps with the “default-mode network” 

(DMN), which has been found in several fMRI studies. Moreover, putatively a more 

lateralized network comprised of the middle frontal gyrus and the inferior parietal 

lobule may coincide with the “dorsal attention network” (DAN) during the EO 
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compared to the EC state, hypothesized to result from engagement of the visual 

attention system in the EO state. 

Aim 4: Circumscribing IC similarity measures via hierarchical cluster analysis. 

 Several statistically clustered groups by the cross-correlation of (alpha-band) 

EEG power may be found and considered as cortical grouped sources, indicating 

similarities between EC and EO resting states. 

Aim 5: Circumscribing IC similarity measures via multi-dimensional scaling 

(MDS). 

 MDS analysis calculates a distance matrix of ICs which supported the emergence 

of a pattern of increased proximity (mutual information) between frontal and parietal 

clusters specifically for the EO state.  

In summary, the aims of the second experiment will be to demonstrate the 

feasibility of studying neuronal resting-state networks according to the existence of 

functional relationships between ICA components in EEG data, and the previously 

reported spectral power changes in the EEG–alpha band from the EC to the EO state. 

Since resting-state connectivity has been shown to correlate with behavioural 

performance and cognitive measures in several published studies (for a review, see 

Greicius, 2008), EEG spectral-power based RSNs, resolved with ICA, may provide a 

useful measure with which to directly quantify neuronal functional connectivity 

during activated brain conditions, for example, NF training for improving attention. 
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4.2  Methods of Experiment Two 

4.2.1 Subjects  

 Participants were twenty-seven healthy volunteers from Goldsmiths, University 

of London (20 females and 7 males) with ages ranging from 18 to 30 years, mean = 

22.5. All subjects had normal hearing and normal or corrected-to-normal vision and 

were not receiving psychoactive medication. Subjects were excluded if they had any 

history of epilepsy, drug abuse or head injury. They were recruited by advertisement 

and signed an informed consent form before the start of the experiment in accordance 

with the Helsinki Declaration. The current investigation received ethical approval 

from the College Research Ethics Committee. 

 

4.2.2 Design 

 Each subject was asked to sit in an armchair in a quiet room with stable 

temperature and shaded daylight. The experiment began for all subjects with a 3 

minute eyes-closed (EC) condition, followed by 3 minutes with eyes open (EO). Each 

subject was not given any instruction but asked to stay fully relaxed without eye 

movements to avoid motion artefacts in the eyes-closed condition. During the 

eyes-open condition, participants were instructed to visually fixate on a small cross 

presented on a table below eye level in front of them to reduce eye blinking and 

lateral eye movement artefacts. 
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4.2.3 Procedure 

4.2.3.1 Independent component (ICA) and spectral power analysis  

The general scheme of this approach is illustrated in Figure 4-1. Artefact-free 

EEG epochs from EC and EO conditions (and from all subjects) were concatenated 

into one file, which was then  decomposed into independent brain sources by the 

group ICA procedure (Jung, 2001; Makeig, 1996) using WinEEG 2.83 software 

(Mitsar, Ltd. http://www.mitsar-medical.com), which utilises the Infomax ICA 

algorithm (Bell and Sejnowski 1995). Theoretically, ICA is able to separate N source 

components from N channels of EEG signals in each subject. This is represented by 

the rows of an inverse unmixing matrix, W in u=Wx, where u is the source matrix and 

x is the scalp-recorded EEG (details in the section 1.3). The time courses of the 

sources are assumed to be statistically independent. Then, for each subject, the 

alpha-band (8-12 Hz) power spectra of the back-reconstructed ICs were computed by 

short-time Fourier Transform (STFT) for each selected time interval (4-second epochs 

with a 50% overlapping Hanning time window). As may be seen in Figure 4-1(C), the 

predominant frequency of ICs is alpha (8-12 Hz) in almost 70% or 9 ICs/13 ICs. 

Finally, for both EC and EO conditions, the present study cross-correlated the 13 IC 

alpha-band powers across all epochs and within subjects. The individual 

within-subject connectivity matrix r
2
 values were then averaged across subjects to 

give a group-wise matrix for each condition. Through this time-frequency analysis the 

present study showed that several grouped components oscillate synchronously with 

alpha-frequency dynamics in the resting state.  
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Figure 4-1. Schematic representation of the different pipeline steps from (A) raw EEG to 

epoched-EEG recordings, from a single subject’s EEG, (B) EEG concatenation and 

decomposition using Infomax ICA and artefact rejection, which excludes large amplitudes 

from muscular activity and eye-blinking, C) the construction of mean power spectra of each 

valid independent component (IC) and its topography. (D) General schema of deriving the 

alpha power correlation matrices from back-reconstructed Fourier spectra of all ICs to 

estimate functional connectivity in both EC and EO states. Then, 3D cortical images are 

presented for visualizing related ICs within the cortical source-level map. 

 

 

4.2.3.2 EEG recordings and pre-processing of EEG 

Scalp voltages were recorded using a 19 Ag/AgCl electrode cap according to the 

10-20 international system: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, 

Pz, P4, T6, O1, O2. (Electro-cap International, Inc. http://www.electro-cap.com). The 

ground electrode was placed on the scalp, at a site equidistant between Fpz and Fz. 

Electrodes were referenced to linked earlobes, and then the common average 

reference was calculated off-line before further analysis. Electrode impedance was 

kept under 5 KΩ. Electro-oculogram (EOG) data were recorded from electrodes 

(Fp1/2) placed to monitor eye movements and eye blinking. Electrical signals were 
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amplified with the Mitsar 21-channel EEG system (Mitsar-201, CE0537, Mitsar, Ltd. 

http://www.mitsar- medical.com). The EEG was recorded continuously, digitized at a 

sampling rate of 250 Hz, and stored on hard disk for off-line analyses. EEG data were 

filtered with a 0.5-60 Hz bandpass filter off-line (e.g., Mantini, et al., 2007). Artefact 

rejection methods consisted of the exclusion of epochs with large amplitudes (over 

±80µV), eye-blinking, DC bias, physiologically unresolveable noise (Onton, et al., 

2006), muscular activity of frontal muscles defined by fast activity over 20 Hz 

(Shackman, et al., 2009), and with slow eye movements coincident with the EOG (c.f., 

Viola, et al., 2009). It has been shown that ICA is capable of reliably separating eye 

activities, such as eye blinking and lateral eye movement (e.g., Jung, et al., 2000). 

Moreover, each 3 minute period of EEG was analyzed in 4-second epochs (50% 

overlapping with Hanning time window), resulting in 89 epochs. On average around 

60-70 valid epochs without artefacts from the 27 subjects were analyzed. Then, 

spectral power analysis was applied to examine the dynamics of EEG-alpha power 

spectra change from EC to EO state. This evaluation allowed a more direct 

comparison of the present results with previous literature (for a review see Klimesch, 

1999). 

 

4.2.3.3 Source localization analysis 

sLORETA analysis was performed on scalp maps with selected ICA components 

to find the maximal densities of their cortical sources (Pascual-Marqui, et al., 2002) 

(details in the section 1.3). sLORETA imaging provided source computations for the 

ICs using software provided from the Key Institute for Brain-Mind Research in 

Zurich, Switzerland (http://www.uzh.ch/keyinst /loreta.htm). sLORETA is an inverse 
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solution technique that estimates the distribution of the electrical neuronal activity in 

three-dimensional space. Specifically, sLORETA computes 3D linear solutions for 

the EEG inverse problem within a head model co-registered with the Talairach 

probability brain atlas (Talairach, 1988) and viewed within MNI (Montreal 

Neurological Institute) 152 coordinates at 5mm resolution. Valid ICA components 

were defined by their single dipole fitting having satisfactory relative residual energy 

below 10% (e.g., Grin-Yatsenko, et al., 2010), indicating each was clearly generated 

by a strong locally circumscribed cortical source (Figure 4-2). 
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Figure 4-2. The topographies, power spectra, and source localization of 13 independent 

components (ICs) in the EO and EC states. For cortical localization of generators the 

sLORETA equivalent source current density (5mm resolution) for each extracted IC was 

estimated using component topographies as input data (Pascual-Marqui, 2002). For each IC, 

its spectral power (left panel, EC vs. EO state, same scale for all ICs), scalp topography 

(middle panel), and 3D spatial maps (right panel) are illustrated.  

 

4.2.3.4 Computation of Mean Regional Correlation Matrix and Graph 

Analysis 

According to graph theory, within any chosen frequency information exchange 

may be measured by the (non-random) cross-correlation coefficients in the 

band-power spectrum, reflecting functional connectivity. Graph theory defines a 

graph as a set of nodes (in this study, ICs) and edges (connections between nodes) 

(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). Independent components 

were cross-correlated region by region according to their alpha-power across epochs 

during the full length of two resting time series, thus creating two square correlation 

matrices in the EC and EO states. This present study then performed one-sample 

t-tests (two-tailed) on the Fisher’s r to Z-transformed (normally distributed) 

correlation coefficients to test whether they were significantly different from zero 

(Salvador, et al., 2005). To account for multiple comparisons, Bonferroni’s correction 

was applied to eliminate false positive errors (p=0.01/78 connections = 0.000128), 

and statistically significant results with p-values < 0.000128 were accepted as 

significant. All graph analysis calculations were performed in Matlab 7.04 

(Mathworks, MA). This study computed only weighted undirected graphs (Figure 

4-3). 
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(A) Functional connections,  

EC state      EO state     EC compared to EO state 

   

  50% connections         75% connections  (r > 0.25, P< 0.01, corrected)  

 

(B) EO- EC contrast map. (Fisher’s r to z transformation) 
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Figure 4-3. Resting-state functional connections revealed by EEG-alpha power spectra, 

compared between EC and EO states. (A) Significantly enhanced connections of DAN 

between frontal and parietal regions (anterior to posterior) are demonstrated during the EO 

state, compared to the EC state. The significantly enhanced connections in the EO state (75%) 

are depicted, more than those connections in the EC state (50%). (B) Statistically significant 

connections of DMN, DAN and visual networks are depicted by top 15%, 10%, 8% pairs of z 

scores, compared EO to EC state (two-tailed t-tests, Bonferroni corrected). Visual networks 

are enhanced in the parietal, occipital and occipitotemporal regions in the EO state. Increased 

connection strength between medial prefrontal cortex and precuneus regions, strong DMN in 

the EO state, is still noted in line with Yan, et al. (2009). The significantly decreased 

functional connectivity among left precentral, right precentral and cuneus from EC to EO 

state ensures that the improvement of intrinsic networks’ activity does not come from the 

general improved signal-to-noise ratio between states. 

 

 

 

4.2.3.5 Clustering of ICA components 

The goal of IC clustering is to group together highly similar activity from 

multiple subjects to express the relevant components and their characteristic activity. 

Alpha desynchronisation upon visual input from EC to EO is generally considered to 

reflect activation of the entire cortex (Schurmann and Basar, 1999). Therefore, in 

order to extend the ICA analysis from single- to multi-component dynamics, the 

estimated frequency-domain components were clustered according to their mutual 

similarities in EEG-alpha power correlation coefficients in the frequency domain. A 

similar framework has been generated to summarize relevant components at the group 

level in fMRI studies (Esposito, et al., 2005; Jann, et al., 2009; Mantini, et al., 2007). 
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Components with similar alpha power spectra were then grouped into alpha 

power-associated clusters to examine the consistency of brain networks involved in 

the dynamic change from the EC to the EO state. In order to circumscribe the alpha 

power-associated components, agglomerative hierarchical cluster analysis was 

performed on the components’ alpha power correlation coefficients with the statistical 

software package, SPSS (SPSS Inc, Chicago, USA). Each component measure was 

normalized by z-transformation prior to cluster analysis. Then, to assess mutual 

similarity, all pairs of components were compared by calculating the Pearson 

correlation of their alpha power, and classified into a hierarchical cluster tree 

according to their proximity (dendrogram). A dendrogram consists of mirrored 

C-shape lines, where the length of the mirrored C indicates the distance between 

objects (components). To calculate the distance between clusters, the Average 

Linkage method (Pearson correlation) was used. Then the “distance” matrix was 

calculated, namely the Euclidean distances in the original space of the components 

using multidimensional scaling (MDS) in order to fit an optimal configuration of 

groups of components in a 2-D space by minimizing the mismatch of the distances 

between the components in the MDS plot (Esposito, et al., 2005; Torgerson, 1952). 

From these components five groups (alpha power-associated clusters) were 

qualitatively selected by the similarity matrix, the dendrogram, the MDS plot, and 

visual inspection, as anatomically relevant areas across subjects, potentially depicting 

functionally related groups in the EC and EO resting states.  
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4.3  Results of Experiment Two 

4.3.1 Aim 1: The application of group ICA to extract independent 

components (ICs) from epoch-wise alpha-band power. 

 

4.3.1.1 Extract independent components 

 As illustrated in Figure 4-1, the results in each resting state were calculated using 

1581 epochs obtained from 27 subjects (about 60 epochs in each condition). Infomax 

ICA was applied to extract independent components (ICs) from the concatenated EEG 

data of the 27 participants in both EC and EO states. All EEG data were decomposed 

into 13 spatially fixed and maximally-independent components. Only 6 artifact ICs 

were excluded (horizontal and vertical eye-movements × 2, temporal muscle artifacts 

× 2, and ICs with unspecific muscle artifacts × 2). The findings of components from 

the concatenated EEG data in rest states were consistent with the first aim.  

 

4.3.1.2 Epoch-wise alpha-band power 

 The schema of the pipeline steps from raw EEG to epoched-EEG recordings, and 

then to the constructed mean power spectra of valid components is illustrated in 

Figure 4-1. The following procedure of depicting EEG RSNs is analogous to 

approaches that have been adopted to calculate functional connectivity from BOLD 

signal strength in fMRI data (e.g., Buckner, et al. 2009). After spectral power analysis 

and estimating the cross-correlation of (alpha-band) EEG power between different ICs 

within subjects, a functional relationship between such source “nodes” can be 
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established (see the next results). The finding of cross-correlation of alpha-band EEG 

power supported the major hypothesis (aim) with the EEG-alpha correlation-based 

results indicating the robust formation of functionally and consistently linked 

networks in the brain during resting conditions (see the next results). 

 

4.3.2 Aim 2: The application of sLORETA for cortical source localization of 

the ICs. 

 

4.3.2.1 sLORETA and cortical source localisation. 

 In line with supporting the aim that the cortical locations of these components 

would be resolved into spatially well-defined “sources” (Pascual-Marqui, et al., 2002) 

sLORETA analysis was performed on scalp maps with selected ICA components to 

find the maximal densities of their cortical sources.  

 The cortical location and Brodmann area number of source locations of each IC 

are illustrated in Figure 4-2. The Talairach coordinates are further listed in Table 4-1. 

Indeed, all components in EC/EO states (Figure 4-2) exhibited a high repeatability 

across subjects with strong cortical source locations. Moreover, it is suggested that the 

consistency in the cortical localization of components in healthy individuals in both 

EC and EO states is due to the absence of experimental stimuli (for a review see 

Onton, et al., 2006), although some unsuccessfully represented artefact components 

may always be caused by participant confounds such as drowsiness, muscle activity, 

or eye-movements.  
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Importantly, these findings are critical for the further aims to investigate the EEG 

power-associated correlation of spatially localized sources and their functional 

connectivity in resting states, and to demonstrate the feasibility and potential of using 

spectral analysis of ICA components to estimate EEG resting-state connectivity by 

representing the spatially-segregated, unmixed EEG sources as functional nodes in 

electro-cortical networks. 

 

4.3.3 Aim 3: The application of graph theory for functional connectivity 

estimation. 

 

4.3.3.1 Graph theory 

 To recapitulate, using the cross-correlation of EEG-alpha band power between 

different components within subjects, graph theory defines a graph as a set of nodes 

(components) and edges (connections between notes according to their 

cross-correlated alpha-power) (Bullmore and Sporns, 2009; Rubinov and Sporns, 

2009). In addition, two square correlation matrices in the EC and EO states were 

created. Here, it was hypothesized that graph analysis would reveal EEG functional 

networks with fronto-parietal connectivity: a more medial network with nodes in the 

mPFC/precuneus which overlaps with the “default-mode network” (DMN), which has 

been found in several fMRI studies.  
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 In accordance with the traditional graph theoretic approach, the square 

correlation matrix was used, to create a weighted undirected binary graph such that 

nodes (ICs) were either connected or not connected. The distribution of r-values 

suggested significantly enhanced connections in the EO state (75%) compared to 

those in the EC state (50%, in Figure 4-3A, and please refer to the section 4.2.3.4). 

For the EO to EC state contrast (two-tailed t-tests, Bonferroni corrected) the top 8% 

of all possible connections, were defined by Fisher’s z > 6.24, P < 0.01 (e.g., 

Dosenbach, et al., 2007).  

By lowering the graph definition threshold more potential connection patterns to 

other parts of the brain were revealed, indicating that the findings were sensitive to 

small changes in the graph-definition threshold. Hence for visualization purposes, the 

z-score threshold was made to vary from the top 8% to 15% of all interregional 

correlations (top 15% of all possible compared connections, z > 4.35, P < 0.01). 

Figures 4-3A and 4-3B illustrate the top 15% pairs of z-scores for the functional 

connections between cortical nodes. Furthermore, comparing functional connectivity 

value pairs revealed a significant between-condition difference within the midline 

connectivity of the DMN, specifically between medial prefrontal cortex (mPFC) and 

precuneus (medial frontal BA 8-precuneus BA7, z > 4.35, P < 0.01, Figure 4-3B). 

 

4.3.3.2 Functional connectivity 

 In line with supporting the hypothesis with the application of graph theory for 

functional connectivity estimation, a more lateralized network comprised of the 

middle frontal gyrus and the inferior parietal lobule coincided with the “dorsal 
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attention network” (DAN) during the EO compared to the EC state, which is 

hypothesized to result from engagement of the visual attention system in the EO state. 

Significant correlations occurred (a) intra-hemispherically in the EO state 

superior to the EC state (right BA40-BA8, z > 5.31, P < 0.01; right BA4-BA8, z > 

6.24, P < 0.01); (b) inter-hemispherically between homologous region pairs 

(precentral BA4, z <- 6.05, P < 0.01, in the EO state inferior to the EC state); and (c) 

inter-hemispherically between nonhomologous regions (Left frontal BA8- right 

parietal BA40, z > 4.35, P < 0.01; left precentral BA4-right parietal BA40, z > 5.31, P 

< 0.01) in the EO state superior to the EC state. In other words, within-DAN 

correlations were generally greater than other cross-network correlations in the EO 

condition. Thus, DAN was always at least partially engaged and intra-hemispheric 

connectivities become as strong as inter-hemispheric ones when the eyes are open.  

 Figure 4-4 depicts the representation of these nodes within RSNs related in 

recent fMRI studies, including the primary sensorimotor network, the primary visual 

and extra-striate visual network, left and right lateralized networks consisting of 

superior parietal and superior frontal regions (DAN, reported as one single network) 

as well as the so-called default mode network (DMN) consisting of precuneus, medial 

frontal, and inferior parietal cortical regions. 
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Resting-state network nodes  

Figure 4-4. Resting-state functional connections revealed by EEG-alpha power spectra, compared with 

other fMRI-RSN reports. The illustrated cortical node locations and their membership(s) within 

previously identified resting-state networks with fMRI are presented together with the results of the 

current study (Beckmann, et al., 2005; Biswal, et al., 1995; Damoiseaux, et al., 2006; De Luca, et al., 

2006; Salvador, et al., 2005; Van Den Heuvel and Hulshoff Pol, 2010). 

 

4.3.4 Aim 4: circumscribing IC similarity measures via hierarchical cluster 

analysis. 

4.3.4.1 Hierarchical cluster analysis 

Hierarchical cluster analysis of cross-correlations between alpha power ICs 

identified a consistent set of five spatiotemporally distinct groups from 1581 epochs 

of 27 subjects in each resting condition, in line with resting state networks disclosed 

by fMRI studies (Toro, et al., 2008; Van Den Heuvel and Hulshoff Pol, 2010). Five 



177 

 

groups were then classified on the basis of coordinates in Talairach space and by 

regional anatomy (see also Figure 4-5 and Table 4-1):  

1. Group F:  a network involving predominantly lateral and middle prefrontal 

cortices, as well as an anterior pole of the prefrontal lobe.  

2. Group C:  a lateral network involving the precentral gyri. 

3. Group P:  a posterior-lateral and midline network involving primarily the 

parietal regions. 

4. Group OT:  a lateral network dominated by the bilateral middle temporal 

cortices in the occipitotemporal regions.  

5. Group O:  a posterior network characterized by involvement predominantly 

of the occipital cortex. 

All of the spatial maps of groups mentioned above were found in both EC and EO 

states. As illustrated in Figure 4-4, the results are consistent with fMRI resting-state 

network (RSN) reports of regions showing functional connectivity patterns of the 

DMN across resting states (Fox, et al., 2005; Fransson, 2006; Yan, et al., 2009) and 

those with strong anatomical connectivities (Honey, et al., 2009; Honey, et al., 2007). 

In addition the DAN consisting of the frontal and parietal groups in the EO state, but 

not showing a strong connection between two groups in the EC state, is depicted by 

the dendrogram (Figure 4-5).  
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(A) EO resting state 

 

(B) EC resting state 
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Figure 4-5. The Dendrogram was performed to illustrate the grouping of the 13 ICs, 

suggested by Pearson correlations (r values) of alpha power spectra (from 1581 epoches) 

among all ICs; (A) in the EO condition. (B) in the EC condition. (EC, eyes-closed; EO, 

eyes-open; BA, brain regions are identified by putative Brodmann area; vertical blue-dot lines, 

instruction lines to help illustrate 5 groups according to the dendrogram and similarity; 

horizontal blue-dot lines, lines to help differentiate the dorsal attention network from the 

visual system in both states; red lines, indicating the distance (relationship) between the 

frontal and parietal groups). 

 

4.3.4.2 Circumscribing IC similarity. 

 It was hypothesised that several statistically clustered groups by the 

cross-correlation of (alpha-band) EEG power would be found and considered as a 

good signature of the resting EEG in both EC and EO states, indicating similarities 

between EC and EO resting states.  

Importantly, the five grouped-ICs were explained by the correlation coefficient 

in each clustered group (p< 0.01, corrected) via the application of the hierarchical 

cluster analysis and the dendrogram plots, represented in Figure 4-5. This revealed 

distinct grouping patterns for components in both EC and EO states. Meanwhile, from 

the artefact-free resting EEG ICs pairwise alpha-power correlations (functional 

connection weights) were extracted to form a square correlation matrix in accordance 

with the traditional graph theoretical approach. Functional connectivity correlation 

matrix represents the cross-correlation of the groups, significant threshold (correlation 

coefficient r-value) and arranged by the similarity among components (Figure 4-6). 

The enhanced correlation of the Group F, C and P in the DAN is showed in the EO 

condition, but absent in the EC condition. 
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The EC state        The EO state 

 

Figure 4-6. Illustrative functional connectivity correlation matrices from the EC to EO state. 

Functional connectivity correlation matrix (unweighted undirected network) represents the 

cross-correlation of the independent component (IC) pairs for alpha-band spectral power, 

significant threshold and arranged by the similarity among components. Green boxes depict 

circumscribed IC groups according to their significant functional connectivity (r > 0.50, P < 

0.01 corrected), please refer to the dendrogram and MDS plots (Figures 5 and 7). The yellow 

box indicates enhanced correlation of the Group F, C and P in the dorsal attention network 

(DAN) during the EO condition. (F: frontal, C: central, P: parietal, OT: occipitotemporal, O: 

occipital; r: Pearson’s correlation coefficient) 
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4.3.5 Aim 5: circumscribing IC similarity measures via multi-dimensional 

scaling (MDS). 

 

4.3.5.1 Multi-dimensional scaling (MDS) 

 Again, the aim of applying the MDS analysis to demonstrate the feasibility of 

studying the emergence of increased proximity (mutual information) was supported, 

specifically the relationship between frontal and parietal clusters from EC to EO state.  

The functional distances between IC groups within the two conditions were 

approximated by graphical distances in two-dimensional space, as depicted in Figure 

4-7. MDS provides an interpretable map of the relations among all ICs whose 

similarity has been determined by Pearson correlations (r values) and whose IC group 

membership was revealed by dendrogram cluster analysis (Figure 4-5). Hence, 

co-representation of the clustered ICs group membership may aid in highlighting 

differences in functional association from EC to EO states on a network level. Here, 

functionally similar IC components, represented by topographical icons, were plotted 

in closer proximity within the MDS plot (Figure 4-7). This analysis confirms many of 

the organizational features already highlighted in Figure 4-5 with symmetrically 

paired regions in cortical space, reflecting anatomical relations and correlational 

similarity among the five principal IC groups (Table 4-1).  

In accordance with some prior studies reporting stronger alpha-band similarities 

posteriorly rather than anteriorly in the EC condition (Barry, et al., 2007; Chorlian, et 

al., 2009), the components within Group F were more segregated than those in Group 

P and Group OT (Figure 4-7). Moreover, comparing the relationship between Groups 



182 

 

F and P in the EC vs. EO conditions, the closer distance between the two groups in 

the MDS plot in the EO state, also represents the tight coupling of the two groups 

within the DAN (e.g., Mantini, et al. 2007). 

 

 

Euclidean distance model 

Figure 4-7. The Euclidean distances matrix of the 13 ICs in the resting state was visualized in 

a two-dimensional space using multidimensional scaling (MDS). Five groups (frontal, central, 

parietal, occipital and occipitotemporal groups) were presented by five different color 

according to the dendrogram and Pearson correlations of 13 ICs (please see also Figure 4-5). 

The distance between groups shows their relationship, and the connectivity of frontal and 

parietal groups is increased from EC to EO state, and the same as the visual system (occipital 

and occipitotemporal groups). 
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4.4 Discussion of Experiment Two 

This is the first study to combine EEG-ICA and graph theory to investigate the 

EEG power-associated correlation of spatially localized sources and their functional 

connectivity from the eyes-closed to the eyes-open state. Although blind source 

separation (BSS) methods have been exploited to analyze resting-state EEG activity 

in healthy subjects (Chen, et al., 2008; Congedo, et al., 2009; Gomez-Herrero, et al., 

2008; Scheeringa, et al., 2008) or those with clinical disorders (Chen, et al., 2009; De 

Vico Fallani, et al., 2007; Grin-Yatsenko, et al., 2010), the present study demonstrates 

the feasibility and potential of using spectral analysis of ICA components to estimate 

EEG resting-state connectivity by representing the spatially-segregated, unmixed 

EEG sources as functional nodes in electrocortical networks, in accordance with 

graph theory (Salvador, et al., 2005; Bullmore and Sporns, 2009; for a review, Stam 

and Reijneveld, 2007). EEG and MEG directly measure the electrophysiological 

activity of interest. Furthermore, with their high temporal resolution, these 

electrophysiological measures sample the rich temporal dynamics of neuronal 

population activity. These temporal dynamics entail neuronal oscillations that, with 

their specific frequencies, reflect the biophysical properties of different local and 

large-scale network interactions (Hipp, et al., 2012, and please refer to the section 

4.1.1). 

The first graph theoretical analysis of MEG data was reported by Stam (2004), 

who applied 126 MEG sensors on five healthy individuals and studied in a resting 

state with eyes closed. The resulting functional connectivity matrices were 

thresholded to create a set of undirected graphs depicting brain functional networks 

specific to each of the frequency bands, and they reported that graphs from the alpha 
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band (8–13 Hz) and beta band (13–30 Hz) had regular, lattice-like topology whereas 

graphs showed small-world properties (Stam, 2004; Bassett and Bullmore, 2006). An 

undirected graph simply summarizes symmetric relations (such as correlations) 

between nodes, whereas a directed graph additionally models the causal relationships 

between nodes (Bassett and Bullmore, 2006). Edges can also be categorized as 

weighted or unweighted, and in an unweighted graph, all the edges are assumed to 

indicate relations of equivalent strength between nodes, whereas a weighted graph can 

be used to differentiate stronger and weaker connections (Bassett and Bullmore, 2006). 

Most graph measures have only been defined for the simplest case of unweighted 

graphs. However in many cases weighted graphs may represent more accurate models 

of real networks (Stam and Reijneveld, 2007). 

Stam and de Bruin (2004) also analyzed EEGs of 15 healthy subjects during 

eyes-closed and eyes-open no-task conditions. They applied detrended fluctuation 

analysis (DFA) of global synchronization time series showed that the scaling 

exponent as determined with DFA differed significantly for different frequency bands 

and conditions. Eye opening decreased the exponent, in particular in alpha and beta 

bands. In adddition, the existence of scaling suggests that the underlying dynamics 

may display self-organized criticality, possibly representing a near-optimal state for 

information processing (Stam and de Bruin, 2004). 

Compared with previous source-space attempts to provide a global pattern of 

electrocortical connectivity, the current experiment II with the multi-step approach 

effectively integrates information about functional interactions and provides a 

parsimonious procedure to describe the dynamic state-changes in EEG resting-state 

networks.  
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The principal findings indicate that there is an increase in functional connectivity 

from EC to EO states particularly between posterior and anterior regions, and that the 

electrophysiological network of the resting brain (without stimulation or task) is 

composed of 5 well-defined clusters of EEG activity: frontal, central, parietal, 

occipito-temporal, and occipital. Moreover, the alpha-band topographical maps and 

connectivity patterns are consistent with the estimated resting patterns from previous 

fMRI –RSN studies, such as the default-mode network (DMN) and dorsal attention 

network (DAN) (for a review see Van Den Heuvel and Hulshoff Pol, 2010; Toro, et 

al., 2008). In addition, the occipital group (O) and the occipitotemporal group (OT) 

are similar to the reported visual and extra-striate visual networks. Cortical 

localization of ICA components and connectivity maps showed that prefrontal and 

parietal areas are also functionally connected within and between hemispheres during 

the resting state (Van De Ven, et al., 2004). These connectivity maps showed an 

extremely high degree of consistency in spatial, temporal, and frequency parameters 

within and between subjects during rest. It may be beneficial to implement this 

EEG-ICA functional connectivity approach to clinical populations during resting-state 

baseline recordings. 

 

Functional connectivity changes from EC to EO – compatible with hypotheses 

(aims) 1-3: the application of group ICA, sLORETA (for cortical source 

localisation), and graph theory (for functional connectivity) to investigate the 

difference between EC and EO resting states. 
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 The salient electrophysiological clustered groups in the healthy EEG 

decomposed by the ICA method may disclose differences between EC and EO resting 

states. Inter-hemispheric connectivity varied both as a function of the resting state 

(from EC to EO) and cerebral areas. During the EC state, it is observed that alpha 

power-associated correlations of spatially localized sources conveyed a preferred 

inter-hemispheric direction (Figure 4-3A, the EC state). Alpha power-related 

association showed a more distinct posterior than anterior focus (e.g., Chorlian, et al., 

2009). As the results of prior published fMRI-RSN studies revealed significant 

patterns of correlated spontaneous activity between homologous regions in opposite 

hemispheres (e.g., Fair, et al., 2008; Salvador, et al., 2005), the corpus callosum may 

be the major conduit for information transfer between the cerebral hemispheres 

(Innocenti, 1994; Rosas, et al., 2010). In addition, connectivity strength occurred 

more significantly between posterior regions of the left hemisphere (left 

temporo-parietal junction (TPJ), BAs 39/40) than between regions in the right 

hemisphere (Figure 4-3A). In line with traditional findings, increased communication 

within the left TPJ may be reflective of a lateralised language processing network 

(Hutsler and Galuske, 2003). The only other report of an intrinsically lateralized 

system is the left-lateralized language system, which includes Broca's and Wernike's 

areas (Hampson, et al., 2002). The presence of lateralization in resting activity is 

important because it suggests that hemispheric lateralization in function is not induced 

by task processing but is sculpted more fundamentally in the pattern of spontaneous 

activity (Fox, et al., 2006). 

This feature of MEG power correlation occurs more frequently between regions 

of the same hemisphere than between regions in opposite hemispheres (de Pasquale et 
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al., 2010), indicating that spontaneous (not task-evoked) oscillations occur 

predominantly within one hemisphere and are only loosely coupled between 

hemispheres (MacDonald, et al., 1996).  

While most cortical sources manifested inter-hemispheric connections in the EC 

state between bilateral homologous regions, in the EO state significant correlations 

occurred most frequently intra-hemispherically, demonstrated by the increased 

dynamic linkage between ipsilateral frontal and parietal regions (Figure 4-3A, the EO 

state). Here, the frontal sources (F) were localized to Brodmann areas (BA) 8 and 10 

(medial, right and left middle frontal gyri), while the parietal sources (P) consisted of 

BA 7 and BA 40 (precuneus, right and left inferior parietal lobules).  

Importantly, the dorsal attention network (DAN) and default-mode network 

(DMN) appeared to become more prominent in the EO state (Figure 4-3B, EO > EC). 

This observation is directly in line with reports of increased fMRI coupling between 

medial prefrontal cortex and precuneus (BA7) in the EO vs EC condition (Yan, et al., 

2009), and multimodal associations between alpha-power fluctuations and DMN 

activity (Ben-Simon, et al., 2008; Jann, et al., 2009; Mantini, et al., 2007). Amongst 

others, these RSNs have been reported in the work by Biswal et al. (1995), Beckmann 

et al. (2005), De Luca et al. (2006), Damoiseaux et al. (2006), and Salvador et al. 

(2005) (Figure 4-4). Although these studies made use of different groups of subjects, 

methods (e.g., seed, ICA or clustering) and types of MR acquisition protocols, they 

coincide with the EEG-based results of the present study, indicating the robust 

formation of functionally and consistently linked networks in the brain during resting 

conditions. 
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Neurophysiological implications of the five functionally-clustered groups – 

compatible with hypothesis (aim) 4: the circumscribing IC similarity measures via 

hierarchical cluster analysis, from EC to EO state. 

 

Although the RSN and DMN concepts have come from important fMRI BOLD 

evidence demonstrating consistent activation patterns across distinct brain regions 

(Greicius, et al., 2003; Raichle, et al., 2001), it is as yet unclear how these relate to the 

concurrent coupling and degree of neuronal activity (Debener, et al., 2006). In 

contrast, EEG has excellent temporal resolution and is a direct electrophysiological 

correlate of spontaneous and task-related neuronal activity. ICA has been extensively 

used for the analysis of electromagnetic brain signals (James and Hesse, 2005; 

Vigario and Oja, 2000), and provides a statistical approximation of maximally 

independent cortical sources. Several previous studies have also demonstrated the 

application of ICA to multi-channel EEG data for distinguishing artefacts and 

functional brain sources (e.g., Jung, et al., et al., 2000; Makeig, et al., 2004; 

Marco-Pallares, et al., 2005). Interestingly, about 20% of all grey matter neurons, 

non-pyramidal type, express metabolic activity well reflected in the BOLD signal, but 

not in the EEG (Broyd, et al., 2009). To solve the problem originating from a degree 

of incongruence between hemodynamic and electrophysiological signals, more recent 

research has tried combining different modalities, such as EEG-fMRI, to better 

understand which portions of BOLD activity are reflected in the EEG (Jann, et al., 

2009; Mantini. et al., 2007). In addition regarding EEG-correlated fMRI and human 

alpha activity during eyes-closed rest, Lauf et al., (2003) concluded that the plausible 

functional interpretation of their result with demonstrating alpha power with maxima 
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over parietal and frontal cortices was that spontaneous fluctuations in attention, 

expressed in terms of both alpha power and frontoparietal activity. 

Here the present study examined directly the spatial characteristics of the 5 

hierarchically clustered groups based on the EEG alpha-band spectral power of each 

IC, with the aim of validating this approach in comparison with previous reports of 

EEG dynamics and fMRI default patterns. 

An important question is whether these groups directly reflect anatomical 

connectivity. The alpha rhythm was selected, which is the most prominent EEG 

rhythm during the conscious resting state, as the basis of the ICA-based EEG RSNs 

cluster groups. In previous reports (Barry, et al., 2007; Barry, et al., 2005; Chen, et al., 

2008) the distribution of scalp EEG power in relation to anatomical connectivity in 

the RSN was unresolved due to the masking of underlying source activity through 

volume conduction (Nunez and Srinivasan, 2006). Compared to blood-oxygenation 

level fMRI recordings, the combined ICA-based and components localised by 

sLORETA figures suggest an electrophysiological, and therefore neuronal, functional 

connectivity amongst cortical regions.  

 

Visual versus parietal system.  

The best example in this study is the separation of the dorsal parietal cluster 

(Group P, parietal clustered group in both EC and EO) from the rest of the visual 

system (Group O and Group OT, in Table 4-1 and Figure 4-5) (De Luca et al., 2006; 

Gusnard, et al., 2001; Mantini, et al., 2007). The visual system is organized into two 

parallel anatomical pathways—the dorsal (occipito-parietal) pathway related to spatial 



190 

 

vision and visually guided actions, and the ventral (occipito-temporal) pathway 

associated with identification of visual objects (Corbetta and Shulman, 2002; Sereno, 

et al., 2001). Interestingly here these three groups are shown to be separated by alpha 

power-associated clustered ICs, compared to similar results of correlations between 

EEG rhythms and fMRI RSNs reported by Mantini et al. in 2007, and a weak 

interaction between two EEG-alpha generators (precuneus and cuneus) found by 

Gomez-Herrero et al. (2008). 

 

Frontal and parietal subdivisions.  

Previous work had shown that the DMN can be divided into at least two 

sub-networks, with anterior and posterior (frontal and parietal) subdivisions 

(Damoiseaux, et al., 2006; Kiviniemi, et al., 2009). Compatible with this finding and 

based on cluster analyses of alpha power-associated ICs, the present study also 

demonstrated the divided parietal sub-network (Group P in Table 4-1 and Figure 4-5) 

and the frontal sub-network (Group F in Table 4-1 and Figure 4-5). Moreover, during 

EEG-fMRI coregistration, Mantini et al. (2007) observed that both the DMN and the 

dorsal attention network (DAN) were coupled in terms of EEG power. These two 

networks, DMN and DAN, are two of the most robust and well-studied RSNs that 

have been associated with task-negative and task-positive functions, respectively 

(Shulman, et al., 1997). Previous reports have suggested that default and attention 

networks show a very similar correlation with EEG-alpha band power (Laufs, et al. 

2003a; Laufs, et al. 2003b). In particular, a study of the temporal dynamics of 

spontaneous MEG activity has also demonstrated strong correlations in the 

alpha-band in both the DAN and the DMN (de Pasquale, et al. 2010). The results of 
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the present study underline the prominence of the DMN and DAN particularly in the 

eyes open state, and the findings of relevant circumscribed regions are consistent with 

the idea that the DAN as well as the DMN appears to exhibit more functional 

coupling during the EO vs EC condition; the latter being characterised by increased 

connection strength between medial prefrontal cortex (MPFC) and precuneus (PCu) 

regions (Figure 4-3B and Figure 4-4), in line with Yan, et al. (2009). 

 

Group interactions visualized with MDS – compatible with hypothesis (aim) 5: the 

circumscribing IC similarity measures via MDS, from EC to EO state. 

 

The MDS method with a simple two-dimensional plot facilitates visualizing the 

similarity matrices of the alpha power-associated correlation coefficients and the 

proximity of the EEG components. During the shift from EC to EO, the frontal and 

parietal clusters appear to become closer in the EO state, suggesting more tightly 

coupled activities among the regions of both the DAN and DMN, potentially to 

increase contextual integration and evaluation of visual information (Hamzei, et al., 

2002; Mason, et al., 2007; Yan, et al., 2009). Interestingly, the present study also 

discovered a number of symmetrical functional inter-hemispheric connections that 

were stronger than would be predicted by the anatomical distance between bilaterally 

homologous regions in both EC and EO states (Salvador, et al. 2005); for example the 

coupling between left and right occipito-temporal areas (BA 39; Figure 4-3A and 

Figure 4-5). Another example is the visual system in the MDS plot (Figure 4-7). The 

distance from the occipital group (Group O) to the parietal group (Group P) was 
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approximately similar to the distance from the occipital group to the occipitotemporal 

group (Group OT) in the EC state, suggesting a similar strength of coupling of the two 

parallel visual pathways in keeping with the relatively more inactivated visual cortex. 

In contrast, in EO with fixation (Figure 4-7), the components of occipital and 

occipitotemporal groups move together more closely, showing increased functional 

connectivity (Figure 4-3B), but not including the parietal group, suggesting a more 

pronounced coupling of the prevalent ventral pathway, activated during visual object 

detection (a cross presented in the EO fixation condition), rather than the dorsal 

pathway which is used during visually guided actions (e.g., Virji-Babul, et al., 2007). 

Together, this is consistent with reports that the oculomotor and attentional systems 

appear to be activated upon eyes opening, showing an “exteroceptive mental state”, as 

indicated by Marx et al (2003) in an fMRI study. On the other hand, it is evident that 

the sensorimotor group (Group C) remained closer to the occipital group in the EC 

state (Figure 4-5B and Figure 4-7), possibly reflecting stronger co-activation of the 

visual and somatosensory systems in the “interoceptive mental state” with eyes closed, 

and characterized by imagination and sensory activity (Marx, et al., 2003).  

 

Methodological limitations  

The principal drawback of the present study was the use of a limited number of 

electrodes. Although the results found with the ICA-sLORETA method seem 

encouraging, they could be refined with the use of a greater number of electrodes 

(given that the number of resolved ICs is numerically equal to the number of 

recording electrodes used). Notwithstanding, there is a limit to this reservation, since 

owing to volume conduction, high-density EEG channels close to each other tend to 
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be increasingly influenced by activity from similar brain regions. Nevertheless, 

volume conduction is a widely recognized problem that pervades almost all functional 

connectivity analyses of the EEG. In this case EEG signal changes occurring at one 

location may “spread” and be detected at another, and thus be (erroneously) 

interpreted as evidence of altered synchrony between locations (sensors). One 

proposed workaround has been to utilize strictly phase-lagged signals in connectivity 

analyses (given that volume conduction is instantaneous) (Stam, et al., 2007). 

However this may run the risk of “throwing the baby out with the bathwater”, as there 

is evidence that considerable cortico-cortical coupling occurs with zero phase-lag in 

the brain, independent of volume conduction (Gollo, et al., 2011; Roelfsema, et al., 

1997). The present study has proposed an alternative approach in the 

frequency-domain which, although phase-insensitive, explicitly identifies the activity 

of independent “sources” (ICs) of EEG activity. Here, the time-course of each 

independent component is defined individually from the source-space matrix, thereby 

minimising the source “spread” which manifests itself in sensor-space. Moreover, 

since the ICA was performed before frequency-domain transformation, it would be 

comparatively easy to apply this processing pipeline to phase-sensitive measures 

(such as phase synchrony) by likewise taking advantage of maximal signal 

independence in ICA source-space. Importantly, ICA source-space is qualitatively 

different from the “source-space” of inverse-source localisation methods 

(minimum-norm or dipole-fitting methods). The latter may be envisaged as 

computing “virtually implanted electrodes”, which can detect distinct but potentially 

spatiotemporally overlapping activities within the same cortical location. ICA, in 

contrast, employs higher-order statistical methods to linearly unmixed the sources in 

the signal a priori, which may be followed by a subsequent step of cortical source 
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localisation (e.g., sLORETA). This may be additionally useful in view of the fact that 

volume conduction is expressed through linear summation of the signal. 

Notwithstanding, the most obvious limitation may be in the EEG signal itself, 

which reflects widespread synchrony of pyramidal neurons in cortical grey matter, 

and is more problematic for resolving activity from deeper brain structures, as can be 

done with fMRI. Therefore more EEG-fMRI studies should be encouraged, with 

efforts also directed toward standardizing methods for ICA-based EEG networks and 

their differentiation between different behavioural states. For example, future studies 

could be carried out to determine the functional connectivity of theta or beta-power 

clustered ICs, compared with networks demonstrated by previous fMRI studies (e.g. 

Hipp, et al., 2012). Likewise, studies could be designed to reveal if connectivities 

within/between RSNs vary with pharmacological intake or relate to various 

brain-related pathologies, and to clarify whether observed clustered IC patterns are 

equivalent during altered brain states (e.g., for sleep, Tinguely, et al., 2006; for motion 

sickness, Chen, et al., 2009).  

 

4.5 Summary 

 In conclusion, this work demonstrates the feasibility and addresses the potential 

of using a multi-step, data-driven approach for source-based EEG functional 

connectivity analysis, based on the combined advantages of ICA, source localization, 

graph theory, and multidimensional scaling in order to reveal the spatiotemporal 

dynamics of EEG changes from EC to EO states. These procedures suggest that 

cerebral processing underlying eyes-closed and eyes-open baseline consists of 
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statistically clustered groups within spatially and functionally-related cortical regions 

(frontal, central, parietal, occipitotemporal and occipital), clearly identified in 2D and 

3D space. From EC to EO, and in line with previous fMRI studies, graph analyses and 

MDS plots indicated enhanced functional connectivity of frontal and parietal groups 

putatively subserved by the default-mode network (DMN) and dorsal attentional 

network (DAN), as well as the close correlation of occipitotemporal groups associated 

with processing in more ventral areas, in keeping with the dichotomy of the 

dorsal/ventral stream hypothesis of the visual information system (Hilgetag, et al., 

2000; Salvador, et al., 2005). These results imply that two physiological mechanisms 

(ventral and dorsal attention networks) functionally co-exist during simple resting 

states such as eyes-open fixation.  

Since resting-state connectivity has been shown to correlate with behavioural 

performance and cognitive measures in several published studies (for a review, see 

Greicius, 2008), EEG spectral-power based RSNs, resolved with ICA, may provide a 

useful measure with which to directly quantify neuronal functional connectivity 

during activational challenges and dysfunctional brain conditions. This approach 

could subsequently be applied to validate evidence of enhanced cognitive 

performance as shown in Exp I, for example, and the improved attention found after 

NF training with or without exogenous stimulation as will be outlined in Exp III.  
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CHAPTER 5  EXPERIMENT THREE  

The benefits of neurofeedback self-regulation combined with 

electroacupuncture stimulation in increasing perceptual sensitivity in 

attention performance and in enhancing the beta power of the 

attention network in the resting state. 

 

5.1  Introduction 

The third experiment investigates the behavioural and neurophysiological 

processes and the EEG dynamics that are commonly associated with the concept of 

‘neuromodulation’, herein indicating the ability to appropriately adjust the nervous 

system for optimal function, within a given environmental context. The third 

experiment aims to provide a framework of converging evidence which logically 

supports the use of a variety of modern neuromodulation techniques – culminating in 

neurofeedback assisted by electroacustimulation – to promote or “optimize” the 

neurocognitive mechanisms responsible for the acquisition of improved levels of 

attention and enhanced perceptual sensitivity. 

 

5.1.1 Neurofeedback  

 A special case of feedback modality, which differs from traditional peripheral 

measures, is used to tap directly into the self-regulation of brain activity, through 

biofeedback from the electroencephalogram (EEG); this is also called 

“neurofeedback”. Neurofeedback is a closed-loop design for a brain-computer 
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interface (BCI) that records, processes, and translates real-time information about a 

person’s brain activity using a computer. A sensory description of the brain activity 

itself is fed-back to the user to enable learning and volitional control of the neural 

substrate(s) being represented (Fetz, 2007). Simply speaking, during neurofeedback, 

the signals from brain EEG recordings mirror neuronal activity that occurs within the 

brain, so a person can have effective control over this activity. Indeed, this process of 

self-regulation has been historically attributed to learning through “operant 

conditioning” (Barry, 2000; Fetz, 1969; Reynolds, 1975), while an alternative 

framework can be found in control theory (Marken, 2009). Interestingly, one report 

implicates the frontal lobe in the initial learning of neurofeedback control. According 

to the results, patients who have extended prefrontal lobe lesions but who intact 

intellectual function are unable to learn neurofeedback control (Lutzenberger, et al., 

1980). Although the precise mechanisms of these learned control processes are still 

unclear, neurofeedback may be considered to operate within a fully closed loop, 

without the presence of external agents or forces, which indicates “endogenous” work, 

in and of itself, to produce changes in neuronal activity. Hence neurofeedback may 

differ functionally from pharmacological, electrical, or electromagnetic interventions, 

because the nervous system does not receive any extrinsic input or support. This 

provides evidence of an important feature of a biological brain – that of dynamic 

equilibrium and adaptation (Poulos and Cappell, 1991). 

 Crucially, current EEG, fMRI and even functional near-infrared spectroscopy 

(fNIRS) studies have investigated real-time information for the regulation of brain 

activity (e.g., deCharms, 2007; Delorme and Makeig, 2003; Holper, et al., 2010). 

These investigations have provided evidence of the successful regulation of select 
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cortical activities and oscillations, via neurofeedback and fMRI (Caria, et al., 2007; 

deCharms, 2007; Lee, et al., 2012; Ros, et al., 2012) and via neurofeedback and EEG 

(Birbaumer, et al., 2006; Delorme and Makeig, 2003), neurofeedback and fNIRS 

(Holper, et al., 2010) and there is even evidence of volitional control in neural signals, 

with particular emphasis on the activity of cortical neurons (Fetz, 2007). 

 The resultant neurofeedback results have helped to provide crucial evidence for 

the validation of the revised field of EEG-biofeedback and have provided a stimulus 

for a range of validation studies in the clinical domain, for performance enhancement 

and even educational fields. For example, neurofeedback training has been shown to 

enhance attention levels, memory, micro-surgical skills, intelligence and well-being in 

healthy participants (Egner and Gruzelier, 2001, 2004; Egner, et al., 2004; Hanslmayr, 

et al., 2005; Keizer, et al., 2010; Raymond, et al., 2005; Ros, et al., 2009; Vernon, et 

al., 2003). Some clinical controlled studies have even demonstrated efficacy for 

epilepsy (Kotchoubey, et al., 2001; Rockstroh, et al., 1993), attention deficit 

hyperactivity disorder (ADHD) (Arns, et al., 2009; Fuchs, et al., 2003) and autism 

(Kouijzer, et al., 2009). Studies of the underlying neural mechanisms have recently 

begun (Fetz, 2007; Ros, et al., 2010).  

 The close relationship between the basic modulation of the nervous system, the 

DA system and an associated improvement in attention, reward and learning has been 

extensively covered in the previous sections. In addition, the probable mechanism that 

describes the effect of NFT on the cerebral DA system is based on the premise that 

neurofeedback sessions which direct change in the EEG characteristics may cause 

up-regulation of dopaminergic tone, because of the observed augmentation of the 

spike activity of DA neurons (Kulichenko, et al. 2009). It is therefore pertinent to 
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review the literature pertaining to EEG oscillations, which is relevant to particular 

enhancement and inhibition of EEG rhythms due to neurofeedback that produces an 

improvement in attention levels (in the next sections). Most neurofeedback research to 

date has concentrated on the improvement of cognitive functions, such as attentional 

skills, and mood. 

 

5.1.2  EEG-based neurofeedback  

 The idea of employing EEG frequency band activity as a feedback criterion in 

biofeedback training stems from the close association that has been observed between 

the speed of EEG frequencies and the arousal-state of the organism. For example, 

very slow brainwaves in the so-called “delta” range (0 – 4 Hz) are primarily found in 

the human EEG during deep sleep. Slightly faster “theta” waves (4 – 8 Hz), on the 

other hand, are often associated with drowsiness and early sleep stages, while the 

adjacent “alpha” frequency (8 – 12 Hz) is characteristic of a relaxed waking state. 

Faster frequencies in the “beta” (~ 12 – 30 Hz) and “gamma” ranges (> 30 Hz) are 

associated with the more aroused, active cortical processing that occurs during 

cognitive operations in the alert brain (Evans and Abarbanel, 1999). It is important to 

stress that this association between EEG rhythms and the arousal/activation state of 

the organism is but one of many functional correlates of EEG activity and, as such, 

constitutes only a convenient simplification. For instance, in different 

cognitive-behavioural contexts, any one particular rhythm may reflect many diverse 

functional states of neural communication and may be generated through different 

processes by various anatomical structures. One example is the use of EEG to study 

the dynamics of the decreased performance in an auditory vigilance task that is 
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associated with sleep deprivation, where there is a pattern of increased theta and 

decreased gamma for missed targets and an opposite pattern for accurate target 

detections (Makeig and Jung, 1996). Furthermore, many aspects of EEG generation 

and functional significance are very much the subject of active research and are not 

entirely understood, as yet. In some cases, learning to enhance particular EEG 

rhythms through neurofeedback may lead to unpredictable effects on the distributed 

cortical EEG spectrum. For example, training to raise theta (4-8 Hz) over alpha (8-12 

Hz) amplitudes at parietal sites is associated with a post-training reduction of beta 

(14-18 Hz) activity in the prefrontal cortex, after repeated sessions (Egner, et al., 

2004). It should therefore be borne in mind that EEG dynamics are complex and that 

the modulation of a self-organising system such as the brain cannot preclude the 

possibility of some unforeseen downstream effects. However, this phenomenon 

inevitably supports the theory that neurofeedback can shape the brain and its related 

networks. 

 Similarly to general learning processes, such as language acquisition, 

neurofeedback usually requires repeated individual ‘training’ sessions of about 30-60 

minutes each, called neurofeedback training (NFT). NFT sessions can occur on 

separate days and over weeks or months, depending on the person’s response. There 

is a definite long-term effect after several NFT sessions. However the mechanism 

whereby a long-term effect on brain activity is induced by the apparent entrainment of 

the EEG is still unclear. Evidence derived from maintaining the cortex in a persistent 

oscillatory pattern shows that neurofeedback effectively “conditions” the neuronal 

circuits to produce this same pattern with a higher probability, sooner or later (Cho, et 

al., 2008; Gevensleben, et al., 2010; Gevensleben, et al., 2009a; Kouijzer, et al., 2009; 
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Sterman, et al., 1970). This may be theoretically explained by evidence from the 

enhanced magnitude of an EEG oscillation due to the increased number of 

neurons/synapses (Niedermeyer and Lopes da Silva, 1999). Furthermore, in Hebbian 

learning, ‘units that fire together, wire together’. Such long-term effects on brain 

activity may occur at the neural level, because of long-term potentiation (LTP) and 

long-term depression (LTD). Many features of Hebbian learning are relevant to a 

self-organizing nature, so Hebbian learning may be a biologically valid learning 

mechanism (Munakata and Pfaffly, 2004). Accordingly, during NFT with 

‘synchronised’ oscillations, the population(s) of neurons which are coherently 

involved in generating an oscillatory pattern repeatedly strengthen these connections, 

making it easier for this population pattern to emerge once again in the future. By 

contrast, a prolonged desynchronised state weakens the correlated firing of their 

synapses and attenuates the connections for synchronisation, as verified, in vivo, by 

the desynchronising electrostimulation of hippocampal circuits (Tass, et al., 2009). 

From the point of view of metabolic activity within the brain, the EEG neuronal 

patterns can be dynamically linked to the brain’s cortical metabolic activity, which 

have been measured using the association between EEG power and cerebral glucose 

metabolism, using 18-fluoro-deoxyglucose positron emission tomography (PET) (e.g., 

Oakes, et al., 2004). However, a limitation of the 18-fluoro-deoxyglucose tracer is 

that it requires a period of 20-30 min, so it is difficult to ensure that the subject 

remains in the same functional state. Therefore, the measurement of regional cerebral 

blood flow (rCBF) using H2
15

O PET with shorter time frame (10–30 s) is widespread. 

The results of H2
15

O PET examinations depend directly on the acuity of the cerebral 

state of activation during tracer injection (Schreckenberger, et al., 2004). The 
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quantitative evaluation of the correlation between rCBF changes and changes in EEG 

power induced by several motor tasks clarifies which brain regions are involved in the 

generation and suppression of the regional EEG rhythms (Oakes, et al., 2004). An 

EEG may therefore be considered to be a unique non-invasive indicator of 

coordinated synaptic activity across cortical networks (Niedermeyer and Da Silva, 

2005). 

The feasibility of modifying aspects of the EEG, by means of instrumental 

conditioning, has been demonstrated in animals by supplying a food reward for the 

production of a particular frequency component of the EEG. For example, it has been 

shown that cats (Sterman, et al., 1969; Wyrwicka, et al., 1962), as well as rhesus 

monkeys (Sterman, et al., 1978), can easily learn to enhance specific frequency 

components in their EEG. Sterman and colleagues also demonstrated for the first time 

that the natural entrainment of EEG rhythms via operant conditioning could alter the 

long-term susceptibility to drug-induced motor seizures (Sterman, et al., 1969). 

Around the same time, another important discovery was made: more than 40 years 

ago, Kamiya first demonstrated that control of human EEG rhythms can be 

successfully learned with the aid of a neurofeedback loop (Kamiya, 1968; Nowlis and 

Kamiya, 1970). In this case real-time information about alpha rhythm activity was 

provided to users via auditory feedback, to allow the enhancement of spontaneous 

alpha, reflecting relaxation and “letting go”.  

 Although research on neurfeedback has been protracted and mostly greeted with 

scepticism, these two historic discoveries still demonstrate the feasibility of human 

control of EEG rhythms, using neurofeedback and the long-term induction of brain 

plasticity by direct EEG entrainment, which indicates a new method of modulating 
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the brain function of both healthy and dysfunctional subjects. Moreover, the recent 

advent of larger controlled studies and meta-analyses promises to verify previous 

NFB research, especially in the treatment of epilepsy (Tan, et al., 2009), ADHD (Arns, 

et al., 2009) and autism (Coben, et al., 2010). 

5.1.3 Neurofeedback and Attention 

Most neurofeedback research to date has concentrated on improving cognitive 

functions, such as attentional and self-management capabilities (e.g., Arns, et al., 

2009). A pioneering line of neurofeedback research was set in motion by Sterman’s 

operant conditioning experiments on cats (for a review, see Sterman, 1996), 

mentioned in the previous section. In summary, in a series of studies by Sterman and 

other associates (Roth, et al., 1967; Sterman and Wyrwicka, 1967; Sterman, et al., 

1969; Wyrwicka and Sterman, 1968), it was noted that during learned suppression of 

a previously conditioned response (via bar pressing for a food reward), a particular 

EEG rhythm emerged over the cats’ sensorimotor cortex. This rhythm was 

characterized by a frequency of 12 – 20 Hz, with a spectral peak in the 12 – 14 Hz bin, 

and has been subsequently termed the “sensorimotor rhythm” (SMR) (Roth, et al., 

1967). The researchers decided to study this distinct rhythm directly, attempting to 

instrumentally condition the cats to produce SMR by making the food reward 

contingent on increments in the SMR amplitude (Sterman, et al., 1969; Wyrwicka and 

Sterman, 1968). Cats learned EEG self-regulation with apparent ease; the behaviour 

associated with SMR production was again one of corporal immobility, with SMR 

bursts being regularly preceded by a drop in muscle tone. 

Interestingly, this type of research was also successfully applied to cats and 

humans with epileptic motor seizure, wherein the incidence of seizures was lowered 
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significantly by SMR feedback training (for cat, see Sterman and Friar, 1972); for the 

review, see (Sterman and Egner, 2006). A protocol for SMR-enhancement for the 

treatment of ADHD, based on the apparent calming effect of SMR training on the 

excitability of the sensorimotor system, was developed and applied by Lubar and 

co-workers (Lubar and Shouse, 1976; Lubar, et al., 1995). These researchers reported 

that the enhancement of SMR and the concurrent suppression of slow wave theta (4 – 

8 Hz) activity resulted in improvements primarily facilitated by reduced motor 

hyperactivity (Lubar and Shouse, 1976; Shouse and Lubar, 1979). Subsequently, 

types of “beta” protocols that use the suppression of theta combined with increments 

in beta components have been conceptually developed to provide improvements in 

attentiveness (e.g., Lubar and Lubar, 1984). 

The application of beta/SMR protocols to attention disorders has since evolved 

into probably the most widely employed application within the field of frequency 

band neurofeedback. Moreover recently, properly designed studies have identified a 

scientific basis for the training’s efficacy. Both Rossiter and LaVaque (Rossiter and 

LaVaque, 1995) and Fuchs and colleagues (Fuchs, et al., 2003) reported that 

beta/SMR neurofeedback leads to significant improvements in attention, in laboratory 

tests, as well as the observational ratings for children with ADHD, to levels 

comparable to those seen with stimulant medication. Monastra et al (2002) showed 

that an extensive course of beta band training, in addition to standard pharmacological 

treatment, leads to lasting benefits, even after medication has been suspended 

(Monastra, et al., 2002). Furthermore, in the only fMRI study to date which explored 

the after-effects of EEG neurofeedback, 15 children with ADHD received NFB for a 

total of 40 sessions, in three training sessions per-week (Levesque, et al., 2006). 
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Neuroimaging during the conflict condition on a Stroop task revealed a significant 

post-intervention upregulation of metabolic activity in the anterior cingulate cortex 

and in the basal ganglia (caudate nucleus and substantia nigra) compared to a control 

group. This is consistent with the NFB modulation of the regions that are 

anatomically responsible for attentional and motor processing. 

These studies provide evidence for the potential of neurofeedback in enhancing 

attention function in clinical groups and offer the promise of possible applications for 

the improvement of attention abilities in healthy people. For example, Egner and 

Gruzelier investigated the potential long-term effect of NFT on the sustained attention 

of healthy subjects (Egner and Gruzelier, 2004), using an increased perceptual 

sensitivity index (which expresses a ratio of hit rate to false alarm rate, derived from 

signal detection theory), and reduced omission errors and variation in reaction times 

via a once-weekly NFB schedule with a total of 10 sessions of 15 min each. These 

findings validate a previous study which demonstrated EEG correlated improvements 

in attention variables and which constituted the first evidence of the enhancement of 

the cognitive performance of healthy volunteers through neurofeedback (Egner and 

Gruzelier, 2001). Of relevance to the current study, Egner and Gruzelier (2001) found 

that trained increments in SMR activity were related to a reduction in commission 

errors and improved perceptual sensitivity in the visual attention task, “Test Of 

Variables of Attention” (TOVA), which indicates that SMR training can enhance 

attentional processing and advance perceptual sensitivity in healthy participants 

(details in the following sections). In a subsequent study by Vernon et al. the same 

‘SMR-Theta’ protocol was used for a total of eight sessions and was demonstrated to 

lead to a significant improvement in cued recall performance on a computerised 
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working memory task. The accuracy of focused attention processing was improved, to 

some extent, using a 2-sequence continuous performance task (Vernon, et al., 2003). 

In addition, an increase in theta amplitude was found in the control group whose EEG 

feedback was contingent on an increase in theta amplitude. No enhancement in 

attention was noted.  

The direct link between SMR (or called low beta) rhythms and their impact on 

cognitive performance is still unclear. Invasive recordings of these rhythms in animals 

have identified a neurophysiological substrate that is responsible for their emergence; 

they seem to occur during the wakeful but immobile behaviour that is associated with 

the bursting of thalamic ventrobasal neurons, the hyper-polarization of relay cells and 

attenuation of the conduction of somatosensory information to the cortex (Sterman, 

1996). These findings support the notion that learned SMR enhancement is associated 

with increased excitability thresholds in sensorimotor cortical neurons. More recently, 

human studies have shown that low beta rhythms occur during the inhibition of a 

prepared movement in the Go-NoGo task, focused in the motor cortex around 300 ms 

after the presentation of the NoGo stimulus (Zhang, et al., 2008).  

The suppression of the theta component is also an undeniably important issue for 

attention. The first study of NFB regulation that showed a decreased theta rhythm and 

its impact on the execution of a simulated radar monitoring task was published in the 

journal, Science (Beatty, et al., 1974). Based on previous observations that drowsiness 

and decreased arousal commonly result in elevations in theta power, the main findings 

of this research demonstrated that the theta suppression group had the highest rate of 

detection, which was furthermore associated with a decrease in the NFB theta ratio, 

during performance of a task. In other words, decreased vigilance was associated with 
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increased theta band activity in the EEG, but a suppression of theta activity, via 

operant methods, enhances monitoring efficiency and task performance. These results 

demonstrate a valid relationship between operant-regulated cortical activity and 

behaviour, in man (Beatty, et al., 1974).  

 A further application of NFT involved musicians, for whom a great amount of 

control over the brain processes that underlie shifts of attentional, and activational 

processes is very important. A few years ago, Professor Gruzelier's team embarked 

upon a program of experiments that applied clinical neurofeedback paradigms to 

performing musicians (Egner and Gruzelier, 2003; Gruzelier, 2009, 2012; Gruzelier, 

et al., 2006). The research group intended to establish the impact of these training 

paradigms for laboratory behavioural and neurophysiological measures of attention on 

the spectral topography of the EEG and, more importantly, on the quality of musical 

performance. Aside from producing professionally significant and replicable 

improvements in music performance, especially creativity in performance, it was 

specifically noted that beta band neurofeedback training is associated with increments 

in the P300 event-related brain potential (Egner and Gruzelier, 2001), which is 

thought to be a response to activity in the neuronal sources that are responsible for 

up-dating relevant information from environmental stimuli in the working memory 

(Donchin and Coles, 1988). This demonstrates the general feasibility of using 

neurofeedback to improve cognitive performance in healthy subjects. The greatest 

performance-enhancing effect of NFT has been noted for artists. For example, using 

dancers, Raymond and colleagues discovered positive effects for NFT on the 

"Timing" subscale of a dance performance (Raymond, et al., 2005). In one more 

example that used actors as subjects, Gruzelier and his team demonstrated 
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improvements after SMR training, including higher overall ratings for acting 

performance, a more rounded performance and, especially, an improvement in the 

creativity subscales of imaginative expression, conviction and characterisation 

(Gruzelier, et al., 2010).   

 

 

5.1.4 The effect of neurofeedback and electrostimulation on attention and the 

EEG 

 The third experiment set out to replicate the results of the first experiment with 

the two acustimulation protocols for the effects found on attention with the addition of 

neurofeedback training. While alternating frequency stimulation was on average more 

successful than low frequency stimulation due to sustained effects post-stumulation, 

both protocols facilitated d-prime during stimulation. It was therefore of interest to 

replicate this differential effect and to determine whether it held when neurofeedback 

training was combined with stimulation or whether neurofeedback would assist in 

prolonging the effects of low frequency stimulation. Comparisons were made as 

before between alternating and low frequency stimulation, both with the addition of 

SMR/theta neurofeedback training. In addition there was a neurofeedback alone group 

and a mock neurofeedback group, four groups in all. While a fifth stimulation alone 

group would also have been of interest, for practical reasons of the testing load 

involved – over 340 lab sessions, and of recruitment, here 36 subjects with 9 in each 

group, the decision was made to prioritise the interest in replication, before excluding 

a low frequency group from further consideration. 
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5.1.5 Assessment of Neurofeedback Learning 

In order to study the effect of NFT learning the following procedures were 

adopted for the EEG measures and the SMR/theta ratio in both baseline and feedback 

periods (e.g., Hoedlmoser, et al., 2008). Improvements in the parameters for 

late-conditioning (vs. early) are assessed as follows:  

(a) an increase in SMR activity for the baseline (resting EEG recording period 

before NFT) and feedback periods (EEG recording period during NFT);  

(b) a decrease in theta activity for the baseline and feedback periods;  

(c) an increase in the SMR/theta ratio for the baseline and feedback periods due 

to (a) and (b), or due to either;  

(d) an increase in relative SMR activity (mean SMR amplitude values during the 

feedback period divided by mean SMR amplitude values during the baseline period in 

each session);  

(e) a decrease in the relative theta activity (mean theta amplitude values during 

the feedback period divided by the mean theta amplitude values during the baseline 

period in each session).  

The relative SMR and relative theta values are provided to reduce the very 

significant and nonspecific effects of inter-subject variation in values for absolute 

amplitude during NFT, in order to evaluate the efficacy of SMR conditioning in 

manipulating EEG oscillations (SMR and theta rhythms) during NFT sessions. In 

addition, in order to compare the EEG during early vs. late instrumental conditioning, 

EEG data for each subject were averaged across sessions 2 to 4 (early conditioning) 
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and sessions 8 to 10 (late conditioning). The first instrumental conditioning session 

served as a familiarisation session and was excluded from the analyses. 

As neurofeedback learning is progressive across sessions, then it will be 

manifested in each session’s baseline tonic EEG recording following session 1, as 

well as during the training period of each session. (Hoedlmoser et al, 2008). 

Accordingly both baseline and feedback periods will be examined for evidence of 

learning. This will be done by comparing the average of sessions 8-10 with sessions 

2-4.  

 Combining ICA with spectral power and cross-correlation analyses of the 

selected ICs, at the group-level, has shown the EEG to yield a rich source of 

information about the mechanisms of neural synchronization (Chen, et al., 2010; 

Grin-Yatsenko, et al., 2010). In an attempt at replication of Experiment II, the 

methods and results of Experiment III are used to explore ICA-derived EEG 

functional connectivity. It is anticipated that in all groups the same five statistically 

clustered regions will be shown with frontal, central, parietal occipitotemporal and 

occipital cortical loci and networks involving those loci.  

In addition, it is anticipated that following learning/stimulation there will be 

enhanced relevant spectral power, but no increase in the number of cortical sources, 

an increase in power which will not be seen in the control group. This new approach 

enriches and complements previous electrophysiological studies of the spectral 

topography of NFT in the resting state. In line with the results of Egner et al (2004) it 

is anticipated that the effect of SMR training on attention networks will result in 

increased attention-related beta power in the frontal regions of the dorsal attention 

network. However, here this will be coupled with decreased theta power in the central 
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regions (pre- vs. post-training), and provide a further demonstration of the long-term 

effect of NFT on attention and vigilance. 

 

5.1.6 Aims and hypotheses for Experiment Three 

This study develops a plausible method to efficiently combine endogenous 

feedback with exogenous stimulation, to produce better changes than with NF alone. 

To the best of the authors’ knowledge, the specific changes in EEG dynamics and 

enhanced attention performance that are produced by combining NFT with EA 

stimulation have not been studied.  

Exp I shows that there is a greater enhancement of attention with alternating 

frequency electro-stimulation (AE) with low frequency electro-stimulation (LE), but 

both yield an improvement in attention (e.g., Chen, et al., 2006; Chen, et al., 2011). 

As this was a single demonstration in Experiment I, one aim was to replicate the 

possible differential effects on attention of the two stimulation protocols. Thus Exp III 

tests the hypotheses that SMR training in conjunction by EA has superior benefits for 

attention (enhanced perceptual sensitivity), as well as on the EEG measurements, than 

SMR training alone, but that alternating frequency electro-stimulation (AESMR group) 

results in a greater improvement than low frequency electro-stimulation (LESMR 

group). In addition, the group receiving the mock control, non-contingent SMR 

feedback (control group) is expected to demonstrate no change in perceptual 

sensitivity and EEG measurements and ratios, in the later conditioning sessions after 

mock NFT. 
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In line with these aims and the six hypotheses outlined below, the attention 

performance of each subject was estimated by analyzing the parameters of the TOVA 

task (pre- vs. post-training), in particular by using the errors of commission and 

omission to represent each subject’s perceptual sensitivity (d'). Furthermore, the 

cognitive benefits from the change in the resting EEG dynamics after NFT are 

validated by the increased regional, attention-related spectral beta power of the frontal 

attention network.  

 

Hypothesis 1: That there will be an improvement in perceptual sensitivity 

(d-prime) post SMR training assisted by EA stimulation:  

a) Performance in replication of Experiment I this will be greater with alternating than 

lower frequency stimulation. 

b) This will be largely due to a reduction in errors of commission.  

c) Any improvement in attention assisted by EA will be greater with alternating than 

with lower frequency stimulation.  

d) The non-contingent SMR feedback (control group) will demonstrate less 

improvement in perceptual sensitivity after mock NFT.  

In other words, SMR training assisted by AE (AESMR group) will result in an 

improved attention performance, with enhanced perceptual sensitivity that is superior 

to SMR training assisted by LE (LESMR group) and superior to the attentional results 

for SMR training alone (SMR group), which will be superior to the mock NFT group. 
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Hypothesis 2: As a demonstration of the long-term effect of NFT on EEG 

dynamics, SMR training assisted by EA stimulation will result in improved SMR 

and/or decreased theta activity in the baseline period of late compared with early 

conditioning sessions.  

More specifically, compared to early-conditioning (2-4 sessions), there will be an 

improvement in EEG measurements for the baseline period of the late-conditioning 

(8-10 sessions), as follows: an increase in SMR amplitude, a decrease in theta 

amplitude and an increase in the SMR/theta ratio in the three experimental groups 

receiving actual NFT, relative to those for the mock control group that is not subject 

to NFT. 

 Regarding the magnitude of the effect, the groups will be ordered as for 

Hypothesis 1: AESMR> LESMR> SMR>controls. 

 

Hypothesis 3: As for Hypothesis 2 but regarding the feedback period.  

 

Hypothesis 4: As for hypotheses 2 and 3, but instead of examining absolute 

amplitudes of SMR and theta, relative amplitudes were examined. 

 

Hypothesis 5: In replication of Experiment II, group ICA is used to extract ICs 

from the resting state EEG (pre- vs. post-training) with the prediction that 

NFT/EA will result in  enhanced relevant spectral power but no increase in the 

number of cortical loci.  
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Hypothesis 6: the effect of SMR training on attention networks will result in  

increased attention-related beta power in the frontal regions of the dorsal 

attention network and decreased theta power in the central regions (pre- vs. 

post-training), demonstrating a long-term effect of NFT on attention and 

vigilance. 

 

 

5.2 Methods of Experiment Three 

5.2.1 Subjects 

 Subjects were excluded if they had any history of drug abuse, head injury, 

epilepsy, or psychopathology. Those participants who had any pain, cut, sore, or who 

were receiving psychoactive medication or who had skin problems on the hands, 

around the electroacustimulation sites, were omitted from the study. All participants 

had normal hearing and corrected-to-normal eyesight. Data were recorded for forty 

individuals, but four data sets were excluded from further analysis, because of 

excessive artefacts. Thirty-six healthy volunteers (20 women and 16 men aged from 

18-30 years, 21.5 ± 2.5 years, all right-handed) from Goldsmiths, University of 

London, participated in the study. All participants had no prior experience of the 

neurofeedback training and electroacupuncture stimulation used in this study. Written 

consent was obtained from each subject, prior to the start of the experiment, in 

accordance with the Helsinki Declaration, and the study received approval from the 

College Research Ethics Committee.  
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5.2.2 Design 

 Participants (total 36 cases) were randomly allocated to one of four experimental 

groups. The four groups were of equal size (N=9), in order to optimize the statistical 

comparison of power. The method of randomly permuted blocks was used to ensure 

randomization, whilst also ensuring equal cell sizes: http://www.randomization.com. 

Group-AESMR consisted of 9 subjects, who each received 15-mins 

electroacupuncture stimulation (EA) with alternating low (5 Hz) and high (100 Hz) 

frequencies, before each SMR training session; Group-LESMR consisted of 9 

subjects, who each received 15-mins EA with low frequency (5 Hz) stimulation 

before each SMR training session. The subjects in these two groups received EA on 

two acupoints on both hands (details in the chapter for Exp I, section 3.2.2). 

Group-SMR consisted of 9 subjects, who only received SMR training; 

Group-CONTROL consisted of 9 subjects, who received non-contingent SMR 

training and who acted as the control group for the study (details in the next 

paragraph).  

In general, all subjects were required to attend the laboratory 12 times, for pre- 

and post-treatment and 10 SMR training sessions. Each subject completed all 10 

sessions within 3-4 weeks (two or three times per week). Pre- and post-treatment 

sessions included measurement of resting EEG and the TOVA task (details in the next 

paragraph). The scheme for the experimental sessions is shown in Figure 5-1.  

 

http://www.randomization.com/
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Figure 5-1. Subjects were required to attend the laboratory 12 times. The first visit (prior to 

pre-treatment) was used to measure resting EEG for EEG networks and to complete an 

entrance examination that contained a TOVA task, to assess attention performance. There 

then followed 10 instrumental conditioning sessions, within 3-4 weeks (two or three times per 

week). Post-treatment (the same procedure like pre-treatment) was conducted in one day, 

after the last conditioning session, in order to complete the study protocol. 
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5.2.3 Procedure 

5.2.3.1  Instrumental Conditioning Procedure (SMR training) and associated 

apparatus 

EEG signals were recorded using the BrainMaster System Type Atlantic I 4 × 4 

Module with BrainMaster 3.0 software (BrainMaster Technologies, Oakwood Village, 

OH. http://www.brainmaster. com), which is capable of single channel EEG recording 

for SMR training. The EEG used for both recording and feedback was sampled at 256 

Hz (by the A/D converter), using an Ag/Cl scalp electrode placed at Cz (the 10-20 

international system) with a reference electrode on the right earlobe and the ground 

electrode placed on the left earlobe; impedance was maintained below 5kΩ with a 

common mode rejection of 120µV for eye or muscle artefacts. The ongoing EEG at 

site, Cz, was Fast Fourier Transformed (FFT), band-pass filtered (from 0.1 to 70 Hz) 

and notch filtered (50 Hz), in order to continuously measure the amplitude values for 

three bands (high beta (22–30 Hz), SMR (12–15 Hz) and theta (4–7 Hz) amplitudes, 

in microvolts, µV, peak-to- peak), in accordance with the recommendations made in 

reports pertaining to SMR training (Gruzelier, et al., 2006; Ros, et al., 2009).  

Each session used a standardized procedure and lasted for 26 minutes. After 

suitable adjustment of the electrodes, the subjects were instructed to relax, with their 

eyes open, for three minutes, while the EEG at rest was recorded, represented by a 

cross on the table. The baseline EEG measurement was conducted just before the start 

of feedback and after the end of training. The initial baseline was then used as the first 

criterion for the contingent feedback that followed. Subjects were subjected to ten 

2-min blocks of the instrumental conditioning. The Brainmaster software filtered the 

EEG data stream into its component bandwidths, using third order Butterworth filters, 
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and immediately displayed both raw and filtered waveforms on the screen. In addition, 

the value of the band amplitude was transformed online into audiovisual feedback, 

displayed on a 15" computer monitor. All subjects were seated in a comfortable chair, 

about 1.5 m from the monitor. Operant contingencies were such that rewards 

(“points” in a game) were gained whenever the subject increased the SMR band 

amplitude without causing increases in the theta and high beta band amplitudes. 

Feedback thresholds were automatically reset, from block to block, to maintain a 

constant level of reinforcement. The reward SMR band threshold for the successive 

block was set at 0.6 times the mean amplitude for the previous 2 minutes, while the 

theta and high beta thresholds were respectively automatically set at 0.2 times and 0.1 

times their average amplitude in the previous block.  

In the “thermometer” game, for example, subjects were instructed to simply let 

the feedback process guide them into learning how to maximize their score. The 

height of three, differently coloured parallel bar graphs (blue, green, and yellow) was 

proportional and fluctuated according to the instant amplitude of the relevant scalp 

EEG rhythm (theta, SMR and high beta, respectively) in Figure 5-2. Participants were 

told to try to learn how to maintain the level of the green bar graph above a set 

threshold (a white line), for as long as possible and also to maintain the level of the 

blue bar graph below a threshold. Instantaneous audio feedback was provided by a 

sound which indicated that all designated thresholds were being met. The motion of 

the bars in this game could, therefore, be driven by each subject, depending on the 

degree of volitional control of the EEG amplitude and whether the reward threshold 

condition was met, for the award of points.    
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Figure 5-2. Schematic representation of one (2-minute) period within an instrumental 

conditioning session. A 3-minute “Baseline” value, measured before the visual feedback 

training session, was used to calculate the mean amplitude, which became the reference for 

the “Feedback period.” The audiovisual feedback in a point-based game was triggered by the 

EEG signals, when the appropriate criteria for three bands were met: the amplitude of the 

reward band exceeds its threshold when the amplitudes are below their thresholds in the 

inhibit bands. The reward band (SMR) “autothreshold” was set at 60 percent of time (during 2 

minutes) over the threshold, while the theta and high beta inhibit autothresholds were set at 20 

percent and 10 percent of time over the threshold, respectively.   
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5.2.3.2  The setting of non-contingent SMR training in the control group 

The instrumental conditioning design for the control group (non-contingent SMR) 

consisted of a video film of pseudo-visual feedback. The three fluctuating bars 

simulated noise from the software and did not represent the subject’s scalp EEG 

rhythm. In each of the 10 sessions, the subjects in the control group had to try to focus 

on the bars that represented simulated frequencies on the monitor, as the guidance of 

how to maximize their score in the experimental groups. All subjects remained blind 

to their group assignment and were not informed until the end of the study. 

 

5.2.3.3  Visual Attention Task -- the Test of Variables of Attention (T.O.V.A) 

A continuous performance test, the Test of Variables of Attention (T.O.V.A., 

Version 7.3, Universal Attention disorders Inc.), was used as the visual attention task 

for the pre-treatment assessment and, again, for the post-treatment assessment of an 

individual's performance, after 10 SMR sessions. The TOVA task was selected, 

because it was used as one of the outcome measures in previous EEG-biofeedback 

studies (e.g., Lubar, et al., 1995; Rossiter and LaVaque, 1995; Thompson and 

Thompson, 1998) and attention deficit disorder (ADD) studies (Forbes, 1998; 

Monastra et al., 2001; Monastra, et al., 2002).  

The TOVA is a computerized, sustained visual attention performance test that 

requires the tracking of visual stimuli with a different response/non-response to 

target/non-target stimuli. The subject was instructed to press a button on a hand-held 

microswitch, as quickly as possible, each time they saw a simple visual stimulus (the 

target - a white square with a black square in its top half) presented on the computer 
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screen, but not to respond when they saw the non-target (the same white square with a 

black square in its bottom half), depicted in Figure 5-3. The stimuli were presented for 

100 ms, every 2-sec, during a 3-min practice test, and during the 22.5 minutes of the 

full test. Four scores were recorded for (a) omission errors (inattention, the number of 

failures to respond to target stimuli), (b) commission errors (impulsiveness, the 

number of responses to non-target stimuli), (c) reaction time (mean response latency, 

in milliseconds) and (d) variability of reaction time (the consistency of response rate). 

The signal detection theory and details of the parameter “d-prime” (d') have been 

introduced in the section 3.2.3.4. Greenburg (1987) demonstrated that there is no 

practice effect and that subjects generally do worse, when tested again after a short 

period of rest, perhaps due to boredom (Greenberg, 1987; Thompson and Thompson, 

1998). 

 

Figure 5-3. The scheme for the presentation of stimuli in the visual attention task, a TOVA 

task. The arrow and line represent the continuous time axis, during the task, in which two 

pictures are randomly shown on the screen. The first picture represents a “go” cue and the 

subject must press a button. The second picture represents a “nogo” cue and the subject must 

not respond.  
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5.2.4 Resting EEG recordings, pre-processing of EEG, Independent 

component (ICA) and spectral power analysis 

Scalp resting EEG recordings and pre-processing of EEG have been presented in 

details, and please refer to the section 4.2.3.2.   

The general scheme of this approach is illustrated in Figure 5-4. Artefact-free 

EEG epochs were concatenated into one file, which was then decomposed into 

independent brain sources using a group ICA procedure (details in the section 

4.2.3.1).  

 

Figure 5-4. General schema for the approach used for the group-averaged ICs, alpha 

power-related correlations, spatial 3D cortical images and spectral powers in all independent 

components (ICs). The spectral power of seven bands in each IC is prepared for further 

spectral power analysis and cross-correlation matrices of alpha power. Then, alpha 

power-related correlations are performed on all ICs, to cluster all ICs into subgroups in their 

resting-states. The 3D cortical images are to help the reader visualize the related ICs within 

subgroups. 
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The time courses of the sources are assumed to be statistically independent. The 

alpha-band (8-12 Hz) power spectra of the back-reconstructed ICs for each subject 

were computed by short-time Fourier Transform (STFT), for each selected time 

interval (4-second epochs with a 50% overlapping Hanning time window). The 

predominant frequency of ICs is alpha (8-12 Hz) in almost 70%, or 9 out of 13 ICs. 

Finally, for the EC condition, this study cross-correlates the 13 IC alpha-band powers 

across all epochs and within subjects. The individual within-subject connectivity 

matrix r
2
 values are then averaged across subjects to produce a group-wise matrix for 

each condition. Using this time-frequency analysis, this study demonstrates that 

several grouped components oscillate synchronously, with alpha-frequency dynamics, 

in the resting state (Figure 5-5).  
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Figure 5-5. The topographies, power spectra and source localization for 13 independent 

components (ICs) in the EC state. For the cortical localization of generators, the component 

trajectories were used as input data to estimate the sLORETA equivalent source current 

density (5mm resolution) for each extracted IC (Pascual-Marqui, 2002). The spectral power 

(left panel, same scale for all ICs), scalp topography (middle panel) and 3D spatial maps 

(right panel) are illustrated for each IC. 

 

 

5.2.5 Source localization analysis, Graph Analysis and Clustering of ICA 

components 

 sLORETA analysis was performed on the scalp maps with selected ICA 

components, to determine the maximal density of their cortical sources 

(Pascual-Marqui et al., 2002). sLORETA imaging provided source computations for 

the ICs, using software from the Key Institute for Brain-Mind Research, in Zurich, 

Switzerland (http://www.uzh.ch/keyinst /loreta.htm). sLORETA is an inverse solution 

technique that estimates the distribution of the electrical neuronal activity in 

three-dimensional space (Figure 5-5, more details in the chapter for Exp II, section 

4.2.3.3). Independent components were cross-correlated, region-by-region, according 

to their alpha-power across epochs during the full length of two resting time series, 

thus creating two square correlation matrices in the EC and EO states (details in the 

chapter for Exp II, section 4.2.3.4). In order to circumscribe the components with 

similar alpha power, the components’ alpha power correlation coefficients were 

subjected to agglomerative hierarchical cluster analysis, using the statistical software 

package, SPSS (SPSS Inc, Chicago, USA). Each component measure was normalized 

by z-transformation, prior to cluster analysis. To assess mutual similarity, all pairs of 
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components were compared by calculating the Pearson correlation of their alpha 

power. They were then classified into a hierarchical cluster tree, according to their 

proximity (details in the chapter for Exp II, section 4.2.3.5). 

 

5.2.6 Statistical analysis 

 In general, statistical analyses were performed using SPSS 16.0 software (SPSS 

INC., Chicago, Illinois). Kolmogorov-Smirnov tests revealed that all of the data was 

normally distributed. Protocol group differences were examined for EEG outcome 

and behavioural measures and between-group differences in change scores, using 

repeated-measured ANOVAs (One-way ANOVA with post hoc comparisons), in 

order to identify any significant changes between pre- and post- NFT behavioural 

measurements, or between EEG outcome measurements, for early and late 

conditioning. The adjusted alpha was calculated using a Bonferroni adjustment, based 

on the number of planned multiple comparisons (i.e. 0.05/3 = 0.0167).  

 

5.2.6.1 Behavioural measurements of attention performance in 4 groups 

(hypothesis 1) 

 Behavioural measurements for the visual sustained attention TOVA task were d', 

commission errors, omission errors, response time and variation in response time 

(more details in the chapter for Exp I, section 3.2.3.4), which were also examined pre- 

and post-treatment, using a 2-way repeated measures ANOVA of the between-subject 

factor, GROUP, and the within-subject factor, PREPOST (GROUP × PREPOST, 

4×2). A one-way ANOVA with post hoc comparisons was performed on the 
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between-group significant differences in change scores (pre- vs. post- NFT), 

compared to the control group. In addition, group differences in the initial scores of 

all TOVA measurements for the four groups in Exp III were subjected to a one-way 

ANOVA with post-hoc Tukey tests (for multiple comparisons), in order to identify 

significant differences in pre- NFT measurements. 

 

5.2.6.2 EEG outcome measurements of SMR training in 4 groups (hypotheses 

2-4) 

 The first SMR session was considered to be a practice session. IN order to 

compare the EEG outcome measurements for early and late SMR training, the 

recorded EEG-biofeedback data were averaged across sessions 2 to 4 to represent 

early conditioning and sessions 8 to 10 to represent late conditioning, for each subject. 

The four basic parameters included the mean SMR and theta amplitudes for the 

baseline period and the mean SMR and theta amplitudes for the feedback period. In 

addition, in order to reduce the effect of nonspecific effects on the absolute amplitude 

values for subjects during training sessions, the relative SMR and theta activity 

(feedback during each session divided by baseline before each session, SMR Relative 

and theta Relative) were calculated. Two additional indices for SMR learning were then 

calculated for the baseline and feedback SMR/theta ratios (SMR divided by theta 

amplitude during the SMR baseline and the feedback intervals in each session). Eight 

dependent outcome measurements were designed to identify the significant changes 

after SMR training. In order to verify the hypothesis relating to an improvement in 

EEG measurements in the baseline period (hypothesis 2), the mean SMR and theta 

amplitudes in the baseline period and the baseline SMR/theta ratio were evaluated. In 
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order to verify the hypothesis relating to an improvement in EEG measurements in the 

feedback period (hypothesis 3), the mean SMR and theta amplitudes in the feedback 

period and the feedback SMR/theta ratio were evaluated. In order to verify the 

hypothesis relating to an improvement in the relative SMR and theta activity 

(hypothesis 4), the mean SMR Relative and theta Relative values were calculated. 

In order to estimate the changes in these measurements for SMR training, from 

early to late conditioning, a 2-way repeated measures ANOVA was applied to the 

between-subject factor, GROUP, and the within-subject factor, CONDITION (early 

conditioning (sessions 2-4) vs. late conditioning (sessions 8-10), (GROUP 

×CONDITION, 4×2). A one-way ANOVA with post hoc comparisons was then 

performed on the significant differences in change scores between groups (early vs. 

late conditioning), compared to the control group. In addition, group differences in the 

initial scores of all of the EEG measurements for the four groups in Exp III were 

examined using a one-way ANOVA with post-hoc Tukey tests (for multiple 

comparisons), in order to identify significant differences in EEG measurements for 

early conditioning sessions. 
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5.3 Results of Experiment Three 

5.3.1 Hypothesis 1: That there will be an improvement in perceptual 

sensitivity (d-prime) post SMR training assisted by EA stimulation. 

5.3.1.1 Perceptual sensitivity 

It was hypothesised that young adults would experience an improvement in 

perceptual sensitivity in the sustained attention task, due to SMR training alone, or 

SMR training assisted by EA stimulation, as indicated by an increase in d-prime. 

Correspondingly, with a significant reduction in commission and omission errors, the 

improvement in attention would be greater with SMR training assisted by EA 

stimulation (the AESMR and LESMR groups) than with SMR training alone (the 

SMR group) and there would be a greater improvement following SMR training alone 

than with non-contingent SMR feedback (control group), after stimulation. 

The descriptive statistics for all pre- and post-treatment TOVA measurements for 

the four groups are presented in Table 5-1. The group differences in the initial scores 

for all TOVA variables (d', commission errors, omission errors, RT and RTV scores) 

were examined by one-way ANOVA with post-hoc Tukey tests (for multiple 

comparisons). This indicated no differences between groups, prior to treatment (Table 

5-2). An ANOVA with repeated measures was used to determine the differential 

effects of the designed protocols on the variables (see Table 5-3). A one-way 

ANOVA with post hoc comparisons was used to assess differences in change scores 

between groups. This indicated significant changes in the variables, from pre- to post- 

treatment. 
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Table 5-1 

Scores (mean ± standard deviations) for the TOVA attention task measurements, pre- and 

post-treatment, of the four groups (AESMR, LESMR, SMR and control groups) 

Groups   TOVA   Pre-treatment      Post-treatment   

Measurements             

AESMR Omission errors  0.44 ± 0.73 0.11 ± 0.33 

 Commission errors  8.33 ± 2.69 6.11 ± 3.22 

 d'  5.70 ± 0.87 6.41 ± 0.29 

 RT (ms) 302.33 ± 31.68 299.33 ± 36.67 

 RTV (ms)  70.11 ± 16.51 67.78 ± 21.18 

LESMR Omission errors  0.44 ± 0.88 0.00 ± 0.00 

 Commission errors  6.11 ± 5.35 5.56 ± 3.88 

 d'  6.04 ± 0.88 6.65 ± 0.77 

 RT (ms) 316.44 ± 41.80 324.78 ± 52.91 

 RTV (ms)  69.44 ± 12.88 73.11 ± 23.70 

SMR Omission errors  0.78 ± 0.83 0.33±0.50 

 Commission errors  7.44 ± 4.07 4.78 ± 3.38 

 d'  5.43 ± 0.77 6.35 ± 0.52 

 RT (ms) 324.78 ± 47.19 307.89 ± 48.98 

 RTV (ms)  76.11 ± 17.53 76.11 ± 22.49 

Control  Omission errors  0.78 ± 1.30 0.56 ± 0.53 

 Commission errors  8.56 ± 5.03 9.89 ± 6.17 

 d'  5.52 ± 0.78 5.38 ± 0.78 

 RT (ms) 341.78 ± 60.12 333.00 ± 45.33 

 RTV (ms)  86.33 ± 29.39 84.89 ± 23.14 

AESMR - SMR training assisted by alternating frequency electro-stimulation; LESMR - SMR 

training assisted by low frequency electro-stimulation; SMR - sensorimotor rhythm training 

alone; control - the non-contingent SMR feedback; RT - response time; RTV - response time 

variability. 
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Table 5-2  

Group differences in the initial scores of all TOVA variables, prior to treatment, examined by 

one-way ANOVA. 

Mean ± SD 

Measurements   AESMR  LESMR  SMR  Control      F    p 

Omission errors 0.44 ± 0.73 0.44 ± 0.88 0.78 ± 0.83 0.78 ± 1.30 0.36 0.78 

Commission errors 8.33 ± 2.69 6.11 ± 5.35 7.44 ± 4.07 8.56 ± 5.03 0.57 0.64 

d'  5.70 ± 0.87 6.04 ± 0.88 5.43 ± 0.77 5.52 ± 0.78 0.97 0.42 

RT (ms)  302.33 ± 31.68 316.44 ± 41.80 324.78 ± 47.19 341.78 ± 60.12 1.14 0.35 

RTV (ms)  70.11 ± 16.51 69.44 ± 12.88 76.11 ± 17.53 86.33 ± 29.39 1.37 0.27 
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Table 5-3 

The effects of the factors, Group (AESMR, LESMR, SMR, and NON) and PrePost (pre- vs. 

post-) on the TOVA attention test measurements, examined using a two-way repeated 

measures ANOVA. 

Measurements  Source    df    F     P 

Omission errors  Group    3  1.33   0.28 

     PrePost    1  7.80   0.01** 

     Group × PrePost  3  0.16   0.92 

Commission errors Group    3  2.01   0.13 

     PrePost    1  1.45   0.24 

     Group × PrePost  3  3.08   0.041* 

d' (d-prime)  Group    3  3.75   0.020* 

     PrePost    1  14.59    0.0001** 

     Group × PrePost  3  3.53   0.026* 

RT (ms)   Group    3  1.10   0.36 

     PrePost    1  0.77   0.39 

     Group × PrePost  3  0.83   0.49 

RTV (ms)   Group    3  1.19   0.33 

     PrePost    1  0.00   0.99 

     Group × PrePost  3  0.34   0.80 

Group × PrePost indicates the interaction between group and PrePost (pre- and post- 

treatment); * indicates a significance level, P < 0.05 and ** indicates a significance 

level, P < 0.01, in accordance with the Bonferroni correction (0.05/5=0.01).  
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The results for post-treatment changes in the mean d' scores are shown in Figure 

5-6. There was a significant effect for PrePost (F(1,32) = 14.59, P = 0.0001) and a 

Group × PrePost interaction in d' (F(3,32) = 3.53, P = 0.026, see Table 5-3). As can be 

seen in Figure 5-6, there was a higher d' score, post treatment, in the experimental 

groups, compared to the control group. Post-hoc analysis with Bonferroni correction 

shows only a significant change in the d' score in the SMR (p = 0.005) group, 

compared to the control group (approaching significance in the AESMR group, p = 

0.019; non-significance in the LESMR group, p = 0.036). Evidently, the control group 

with non-contingent SMR feedback experienced almost no improvement in perceptual 

sensitivity, after mock NFT. However, EA did not add significantly to the benefits of 

SMR training, based on the post-hoc analysis of the change in d' scores, post 

treatment (Figure 5-6), in fact there was a larger and more reliable improvement 

without it.  
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Figure 5-6. Post-treatment changes in the mean d' scores (±SE) of the TOVA task, for 

the AESMR, LESMR, SMR and control groups. * indicates a significance level, P < 

0.0167 (Bonferroni corrected). 

 

 

For the omission errors, shown in Table 5-1, there was only a significant PrePost 

effect (F(1,32) = 7.84, P = 0.009) and no significant Group ×  PrePost interaction, 

which indicates a significant decrease in the level of omission errors, post treatment, 

for all groups (Tables 5-3). Post-hoc analysis showed no significant differences in the 

change in score for omission errors for the AESMR (p = 0.58), LESMR (p = 0.58) 

and SMR (p = 0.58) groups, compared to the control group. 
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However, for commission errors there was a significant Group × PrePost 

interaction (F(3,32) = 3.08, P = 0.041, see Table 5-3). Post-hoc comparisons with 

Bonferroni correction revealed a significant change in the number of commission 

errors for the SMR (p = 0.010) group only, compared to the control group 

(approaching significance in the AESMR, p = 0.018; in the LESMR, p = 0.12, Figure 

5-7). Thus, the significant effect of SMR training and the approaching significance of 

SMR training assisted by alternating frequency electro-stimulation on d' were found 

to be largely attributable to the reduction in the number of commission errors. The 

increased perceptual sensitivity, which was largely due to a reduction in the number 

of commission errors for both SMR and AESMR groups, is partially consistent with 

the hypothesis, but there was no advantage following EA. EA did not add to the 

benefits of SMR training significantly as based on examining post-hoc analysis with 

Bonferroni correction of d' change scores post treatment. 
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Figure 5-7. Post-treatment changes in the mean number of commission errors (±SE) 

for the TOVA task, for the AESMR, LESMR, SMR and control groups. * indicates a 

approaching significance level; ** indicates a significance level, P < 0.0167 

(Bonferroni corrected). 

 

Interestingly, the absence of a significant reduction in commission and omission 

errors for the LESMR group, post treatment, was unexpected. In contrast to the 

hypothesis, there was no significant reduction in the number of commission errors, 

but there was a significant improvement in the d' score for the LESMR group, 

compared to the mock group (Post-hoc comparisons in Figure 5-6). This indicates that 

a decrease in both the number of commission and omission errors contributes to an 

improvement in perceptual sensitivity (d'). Whether this special effect may be caused 

by the sustained stimulation effect found in Experiment I will be considered in the 

discussion section (see also section 3.3.1.2). 
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In regard to the response time (RT) measurements, there was no significant 

effect for Group (Table 5-3. F(3,32) = 1.102, p = 0.363) and PrePost (F(1,32) = 0.766, 

p = 0.388), nor was there a Group × PrePost interaction (F(3,32) = 0.833, p = 0.486). 

In regard to the variation in response time, (RTV), there was no significant effect for 

Group (F(3,32) = 1.192, p = 0.328) and PrePost (F(1,32) = 0.001, p = 0.990), nor was 

there a Group × PrePost interaction (F(3,32) = 0.339, p = 0.797).  

In summary, the improvement in the changes in d' scores for the three 

non-control groups, post-treatment, are a consequence of the effect of SMR training 

and the increase in the number of commission errors, post-treatment, for the SMR 

group, support a plausible improvement in perceptual sensitivity in the sustained 

attention task, due to the significant increase in the change in d' scores and the number 

of commission errors (pre- vs. post- treatment), compared to the control group.  

 

5.3.2 Hypothesis 2: As a demonstration of the long-term effect of NFT on 

EEG dynamics SMR training assisted by EA stimulation will result in improved 

SMR and/or decreased theta activity in the baseline period of late compared with 

early conditioning sessions. 

 

5.3.2.1 EEG measurements in the baseline period 

It was hypothesised that there would be improvement in the EEG measurements 

for the baseline period in late-conditioning (sessions 8-10), for the three experimental 

groups receiving actual SMR training, compared to the mock control group. With the 

increase in the SMR amplitude, the decrease in theta amplitude and the consequent 
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increase in the SMR/theta ratio, subjects in the AESMR and LESMR groups would 

experience the greatest improvement in these EEG measurements for the baseline 

period in late-conditioning sessions and the SMR group would demonstrate a greater 

improvement than the control group.  

 

 Hypothesis 2 mainly evaluates improved SMR and/or decreased theta activity in 

the baseline period for late-conditioning sessions, compared to that for 

early-conditioning sessions. Therefore, to ensure a clear presentation of EEG data, 

only the descriptive statistics for EEG measurements in the baseline period for early 

and late conditioning sessions are presented in Table 5-4, showing the means and 

standard deviations of average SMR amplitudes, theta amplitude and SMR/theta ratio 

for the four groups (S/T), in the baseline period for early SMR training sessions (2-4) 

and late SMR training sessions (8-10). Group differences in the initial scores for all 

EEG measurements for the four groups for SMR training early conditioning were 

examined using a one-way ANOVA with post-hoc Tukey tests (for multiple 

comparisons). No significant differences between groups in the early conditioning 

sessions (session 2-4) are indicated (Table 5-5).  

However, marginally significant differences between groups in the initial 

baseline SMR and theta amplitudes must be explained (Baseline SMR, F = 2.82, p = 

0.06; baseline theta, F = 2.58, p = 0.07, see Table 5-5). Post-hoc analysis with 

Bonferroni correction of the initial baseline SMR amplitudes showed 

non-significantly reduced SMR amplitudes in the AESMR group (p = 0.041), 

compared to the control group (in the LESMR group, p = 0. 37; in the SMR group, p 

= 0.82). One possible reason for the decreased SMR amplitude in the AESMR group 
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is the effect of EA stimulation (before each NFT session) on the EEG, as elaborated in 

the Discussion. 

Post-hoc analysis of the initial baseline theta amplitudes showed no significant 

reduction in theta amplitudes for the AESMR (p = 0.29), LESMR (p = 0.45) and SMR 

(p = 0.95) groups, compared to the control group (Table 5-5). Neither was there any 

significant difference in the theta amplitudes of the AESMR and SMR groups 

(post-hoc analysis, p = 0.11). The initial decrease in baseline theta amplitudes for the 

AESMR group may be caused by the effect of stimulation on the EEG. The decrease 

in theta power noted for the Fz and Cz areas, due to EA stimulation, was also noted 

by Andrew Chen et al. (Chen, et al., 2006). Further discussion will be presented in the 

discussion section. 
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Table 5-4 

Averaged EEG measurements (mean amplitudes ± standard deviations) of SMR 

training in the baseline period of early (training sessions 2-4) and late (training 

sessions 8-10) conditioning, in the four groups (AESMR, LESMR, SMR and control) 

Groups          Early       Late 

EEG Measurements  Conditioning    Conditioning 

AESMR Baseline SMR  3.04 ± 0.37 3.05 ± 0.32 

 Baseline theta  7.13 ± 1.92 6.26 ± 1.01 

 Baseline S/T  0.45 ± 0.11 0.50 ± 0.09 

LESMR Baseline SMR  3.50 ± 0.76 3.55 ± 0.63 

 Baseline theta  7.38 ± 1.49 7.10 ± 1.55 

 Baseline S/T  0.48 ± 0.05 0.51 ± 0.06 

SMR Baseline SMR  3.80 ± 0.99 3.66 ± 0.92 

 Baseline theta  9.00 ± 1.57 8.08 ± 1.42 

 Baseline S/T  0.43 ± 0.13 0.46 ± 0.13 

Control Baseline SMR  4.54 ± 1.02 4.14 ± 1.08 

 Baseline theta  8.58 ± 1.76 8.65 ± 1.68 

 Baseline S/T  0.48 ± 0.07 0.48 ± 0.07 

S/T is the ratio of SMR and theta amplitudes 
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Table 5-5  

Group differences in the initial scores of all EEG measurements during SMR training 

for early conditioning in the four groups, examined by one-way ANOVA. 

Mean ± SD 

Measurements   AESMR  LESMR  SMR Control    F    p 

Baseline SMR 3.04 ± 0.37 3.50 ± 0.76 3.80 ± 0.99 4.14 ± 1.02 2.82 0.06 

Baseline theta 7.13 ± 1.92 7.38 ± 1.49 9.00 ± 1.57 8.58 ± 1.76 2.58 0.07 

Baseline S/T  0.45 ± 0.11 0.48 ± 0.05 0.43 ± 0.13 0.48 ± 0.07 0.59 0.63 

Feedback SMR 3.16 ± 0.39 3.55 ± 0.85 3.63 ± 0.92 4.09 ± 1.02 1.93 0.15 

Feedback theta 7.50 ± 1.30 8.27 ± 1.85 8.96 ± 1.41 9.51 ± 2.32 2.17 0.11 

Feedback S/T 0.43 ± 0.08 0.43 ± 0.05 0.41 ± 0.09 0.44 ± 0.07 0.31 0.82 

SMR Relative  1.04 ± 0.10 1.01 ± 0.06 0.96 ± 0.06 0.99 ± 0.08 1.83 0.16 

Theta Relative 1.08 ± 0.14 1.12 ± 0.06 1.00 ± 0.12 1.10 ± 0.08 2.01 0.13 
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There was a significant effect for Condition (F(1,32) = 7.36, P = 0.011), but no 

Group × Condition interaction (F(3,32) = 1.49, P = 0.24), on the baseline S/T ratio 

(Table 5-6). Mean results indicate an increase in S/T ratios for all groups. While no 

omnibus Group × Condition effects were detected, the predicted increase in the ratio 

of the baseline S/T measurement in the AESMR group was only exploratory, due to 

marginal increase in the baseline S/T ratio for the AESMR group only (uncorrected), 

compared to the control group (post-hoc and contrast analysis for the AESMR, t32 = 

2.04, p = 0.05; LESMR, t32 = 1.45, p = 0.16; SMR, t32 = 1.37, p = 0.18), as shown in 

Figure 5-8.  

There was no evidence of a tonic increase in session baselines in the S/T ratio 

when comparing early with late conditioning sessions, in line with a possible 

successive carryover of learning manifested in the resting session-baseline EEG. 
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Table 5-6 

The effects of Group (AESMR, LESMR, SMR and control) and Conditioning (early 

vs. late) on EEG measurements related to SMR training in the baseline period, 

ANOVA with repeated measures. 

Period  Rhythms  Source    df   F   P 

Baseline  S/T ratio  Group    3  0.43  0.73 

      Condition   1  7.36  0.011* 

      Group × Condition  3  1.49  0.24 

SMR  Group    3  2.83  0.06 

Condition   1  0.17  0.68 

      Group × Condition  3  0.97  0.42 

   Theta  Group    3  3.74  0.021* 

      Condition   1  8.52  0.006** 

      Group × Condition  3  1.99  0.14 

Group × Condition indicates the interaction between group and conditioning (early 

and late); * indicates a significance level, P < 0.05 and ** indicates a significance 

level, P < 0.01, in accordance with the Bonferroni correction. 
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Figure 5-8 Changes in the mean baseline S/T ratios (±SE) of EEG measurements 

during SMR training for the AESMR, LESMR, SMR groups, between early and late 

conditioning, compared to the control group. 
+
 indicates an exploratory and 

uncorrected significance level, P ≤ 0.05. 

 

 

For SMR amplitude per se, in the baseline period for early and late conditioning 

sessions, only the effect of Group approached statistical significance (F(3,32) = 2.83, 

P = 0.06). Post-hoc comparisons of baseline SMR amplitudes for the four groups, 

between early and late conditioning, showed significantly different means for the 

SMR amplitudes of the AESMR group (p = 0.033; the LESMR group, p = 0.37; the 

SMR group, p = 0.70), compared to the control group. There was no significant 
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difference in the initial baseline SMR amplitude, between groups, in the early sessions 

(in Table 5-4, F = 2.82, P = 0.06), however post-hoc analysis of the initial baseline 

SMR amplitudes showed significantly reduced SMR amplitudes for the AESMR 

group (p = 0.041), compared to the control group. In addition, in the absence of a 

significant Group × Condition interaction (F(3,32) = 0.97, P = 0.42, Tables 5-5 and 

5-6), the results indicate a minor difference between the initial and final levels of the 

SMR amplitudes for the four groups, in the baseline period (Table 5-5). 

 A reduction in baseline theta activity, from early to late conditioning sessions, 

may play an important role in increasing the baseline S/T ratio for the experimental 

groups. The results for the theta amplitudes in the baseline period (early vs. late 

sessions) are shown in Table 5-5. There were significant effects for Group (F(3,32) = 

3.74, P = 0.021) and Condition (F(1,32) = 8.52, P = 0.006), but no Group × Condition 

interaction (F(3,32) = 1.99, P = 0.14), which demonstrates a trend for a decrease in 

theta, from early to late sessions, for the three experimental groups (Tables 5-5 and 

5-6). In addition, there was no significant difference in the initial baseline theta 

amplitude between groups, for the early sessions (in Table 5-4, F = 2.58, P = 0.07). 

Again, post-hoc analysis of the initial baseline theta amplitudes showed no significant 

decrease in the theta amplitudes for the AESMR (p = 0.29), LESMR (p = 0.45) and 

SMR (p = 0.95) groups, compared to the control group (Table 5-5).  

Importantly, post-hoc and contrast analysis with Bonferroni correction showed 

no significant changes in the baseline theta amplitude for the AESMR (t32 = -2.03, p = 

0.05) and SMR (t32 = -2.06, p = 0.047) groups, compared to the control group (in the 

LESMR, t32 = -0.74, p = 0.46, Figure 5-9). The absence of a significant difference in 
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the baseline theta amplitude for the AESMR and SMR groups, who experienced 

actual SMR training, does not support the hypothesis.  

 

Figure 5-9. Changes in mean baseline theta amplitude (±SE) of EEG measurements, during 

SMR training, for the AESMR, LESMR and SMR groups, between early and late 

conditioning, compared to the control group. 
+
 indicates an exploratory and uncorrected 

significance level, P ≤ 0.05. 

 

In summary, the changes of baseline S/T ratio and baseline theta activity, from 

early to late SMR conditioning, even for the AESMR and SMR groups, do not 

significantly support hypothesis 2, because of the exploratory and uncorrected 

significant increase in the baseline S/T ratio and decrease in the baseline theta 

amplitude, from early to late conditioning, compared to the control group. These 
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results do not support the hypothesis, possibly due to the error from randomized 

samples because of an insufficient number of cases in each group. Further discussion 

is presented in the following discussion section. 

 

5.3.3 Hypothesis 3: As for Hypothesis 2 but regarding the feedback period. 

5.3.3.1 EEG measurements in the feedback period 

It is hypothesised that there would be an improvement in EEG measurements in 

the feedback period, during late-conditioning (sessions 8-10), for the three 

experimental groups who receive actual SMR training, compared to the mock control 

group. Because of an increase in the SMR amplitude, a decrease in theta amplitude 

and the consequent increase in the SMR/theta ratio, subjects would demonstrate a 

greater improvement in EEG measurements, in the order; AE > LE > SMR alone, 

than the control group, for the feedback period in late-conditioning sessions, 

compared with the mock control group, who did not receive actual NFT. 

  

Hypothesis 3 mainly evaluates enhanced SMR and/or decreased theta activity, 

for the feedback period of the late-conditioning sessions, compared to the 

early-conditioning sessions. To ensure clear presentation of the EEG data, the 

descriptive statistics of the EEG measurements for the feedback period of the early 

and late conditioning sessions are presented in Table 5-7. This figure shows the means 

and standard deviations of the averaged SMR amplitudes, theta amplitude and 

SMR/theta ratio (S/T) for the feedback period of early SMR training sessions (2-4) 

and late SMR training sessions (8-10), for the four groups. Group differences, 
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analysed by a one-way ANOVA with post-hoc Tukey tests (for multiple comparisons) 

showed no significant differences between groups for the feedback periods of the 

early second, third and fourth sessions (feedback SMR, F = 1.93, p = 0.15; feedback 

theta, F = 2.17, p = 0.11; feedback S/T ratio, F = 0.31, p = 0.82, see Table 5-5). 
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Table 5-7 

Averaged EEG measurements (mean amplitudes ± standard deviations) of SMR 

training in the feedback period of early (training sessions 2-4) and late (training 

sessions 8-10) conditioning, in the four groups (AESMR, LESMR, SMR and control 

groups). 

Groups   SMR    Early       Late 

EEG Measurements  Conditioning    Conditioning 

AESMR Feedback SMR  3.16 ± 0.39 3.37 ± 0.52 

 Feedback theta  7.50 ± 1.30 6.94 ± 1.16 

 Feedback S/T  0.43 ± 0.08 0.51 ± 0.11 

LESMR Feedback SMR  3.55 ± 0.85 3.75 ± 0.78 

 Feedback theta  8.27 ± 1.85 8.19 ± 1.74 

 Feedback S/T  0.43 ± 0.05 0.46 ± 0.05 

SMR Feedback SMR  3.63 ± 0.92 3.67 ± 0.91 

 Feedback theta  8.96 ± 1.41 8.52 ± 1.57 

 Feedback S/T  0.41 ± 0.09 0.44 ± 0.11 

Control Feedback SMR  4.09 ± 1.02 4.18 ± 1.40 

 Feedback theta  9.51 ± 2.32 9.09 ± 1.93 

 Feedback S/T  0.44 ± 0.07 0.44 ± 0.07 
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There was a significant effect for Condition (F(1,32) = 20.82, P < 0.001) and a 

Group × Condition interaction (F(3,32) = 4.63, P = 0.008) on the feedback S/T ratio 

(Table 5-8). Mean results indicate increased S/T ratios for the three non-control 

groups. The predicted increase in the feedback S/T ratio for the AESMR group was 

confirmed, only in comparison with the control group (post-hoc and contrast analysis 

in the AESMR, t32 = 3.69, p = 0.001; LESMR, t32 = 1.48, p = 0.15; SMR, t32 = 1.46, p 

= 0.15), as is depicted in Figure 5-10. In summary, compared to the control group, 

only one significant increase in the feedback S/T ratio (from early to late conditioning 

sessions) in the AESMR group supports the hypothesis. However, the increase in the 

feedback S/T ratio for the other two non-control groups, the LESMR and SMR groups, 

showed a trend for an increase in the feedback S/T ratio, compared to the control 

group, that was not statistically significant. These results for the LESMR and SMR 

groups do not, therefore, support the hypothesis, possibly due to the error from 

randomized samples that have an insufficient number of cases in each group. Further 

discussion is presented in the discussion section. 
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Table 5-8 

The effects of Group (AESMR, LESMR, SMR and control) and Conditioning (early 

vs. late) on EEG measurements related to SMR training in the feedback period, 

analysed using ANOVA with repeated measures. 

Period  Rhythms  Source    df   F   P 

Feedback  S/T ratio  Group    3  0.60  0.62 

      Condition   1  20.82 0.00007** 

      Group × Condition  3  4.63  0.008** 

   SMR  Group    3  1.48  0.24 

Condition   1  6.32  0.017* 

      Group × Condition  3  0.63  0.60 

   Theta  Group    3  2.51  0.08 

      Condition   1  17.62 0.0002** 

      Group × Condition  3  1.29  0.29 

Group × Condition indicates the interaction between group and conditioning (early 

and late); * indicates a significance level, P < 0.05 and ** indicates a significance 

level, P < 0.01, in accordance with the Bonferroni correction. 
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Figure 5-10. Changes in mean S/T ratios (±SE) from early to late conditioning, for the EEG 

measurements during the feedback period for SMR training, for the AESMR, LESMR and 

SMR groups, compared to the control group. ** indicates a significance level, P < 0.0167 

(Bonferroni corrected). 

 

 

Evidently, in agreement with hypothesis 3, subjects in the AESMR group show a 

significant improvement in S/T ratios during the feedback period, between early and 

late conditioning sessions, compared to subjects in the control group.  

There was no main Group effect (F(3,32) = 1.48, P = 0.24) or a Group × 

Condition interaction (F(3,32) = 0.63, P = 0.60) for the change in SMR amplitude in 

the feedback period, from early to late conditioning sessions, but there was a 

significant effect for Condition (F(1,32) = 6.32, P = 0.017, Table 5-8), which 
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indicated a minor increase in SMR amplitudes in the feedback period for late SMR 

training sessions, compared to early sessions, for all four groups, (Table 5-7). In 

addition, the predicted increased change in SMR amplitudes for the three non-control 

groups for the feedback period was not significant, compared to the control group 

(post-hoc and contrast analysis in the AESMR, t32 = 0.83, p = 0.42; LESMR, t32 = 

0.79, p = 0.45; SMR, t32 = -0.28, p = 0.78). The small increase in SMR amplitudes for 

the feedback period, for the experimental groups that received actual SMR training, 

does not support the hypothesis. 

 It is seen that a reduction in feedback theta activity, from early to late 

conditioning sessions, may also play an important role in increasing the feedback S/T 

ratios for the experimental groups. The results for theta amplitudes in the feedback 

period (early vs. late sessions) are shown in Table 5-7. There was a significant effect 

for Condition (F(1,32) = 17.62, P = 0.0002) and an effect for Group that approaches 

significance (F(3,32) = 2.51, P = 0.08), but no Group × Condition interaction (F(3,32) 

= 1.29, P = 0.29, Table 5-8), which is indicative of a decrease in the theta amplitude, 

from early to late sessions, for all four groups (Table 5-7). The post-hoc comparisons 

of the theta amplitudes in the feedback period, for the four groups, between early and 

late conditioning, show an effect that approaches significance only for the AESMR 

group (p = 0.059; the LESMR group, p = 0.54; the SMR group, p = 0.89), compared 

to the control group. This may have contributed to the marginal main Group effect (P 

= 0.08). However, there were no significant group differences between groups in the 

initial theta amplitudes for feedback periods in the early sessions (in Table 5-4, F = 

2.17, P = 0.11).  
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Post-hoc and contrast analysis shows no significant change in the feedback theta 

amplitudes, for the AESMR (t32 = -0.56, p = 0.58), LESMR (t32 = 1.31, p = 0.20) and 

SMR (t32 = -0.08, p = 0.94) groups, compared to the control group. The theta 

amplitudes in the feedback period for the experimental groups that experience actual 

SMR training do not support the hypothesis.  

The SMR training assisted by alternating frequency electro-stimulation had a 

significant increasing effect on the feedback S/T ratio and reflected contributions 

from both increased SMR and a decrease in theta, because neither was individually 

significant. The main aim of SMR/theta training is to simultaneously enhance SMR 

and decrease theta activity. This ratio training of NFT may imply that real-time NFT 

conditioning to increase learning ability or neuroplasticity is specific to the actual 

NFT protocol to which the subjects are subjected, for example ratio training for brain 

cortical activity that results in an increased or decreased ratio of EEG measurements, 

based on the NFT protocol, in the late training sessions. 

In summary, the increase in the feedback S/T ratio in the AESMR group, as a 

result of SMR training and electro-stimulation, may partially support hypothesis 3. 

The idea of plausible real-time EEG operant conditioning and the subjects’ ability to 

learn how to manipulate their brain cortical activity, because of the significant 

increase in the change in the feedback S/T ratio, from early to late conditioning, 

compared to the control group. However, these results for the other two experimental 

groups do not totally support the hypothesis 3, possibly due to the error from 

randomized samples that have an insufficient number of cases in each group. Further 

discussion is presented in the discussion section 
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5.3.4 Hypothesis 4: As for hypotheses 2 and 3, but instead of examining 

absolute amplitudes of SMR and theta, relative amplitudes were examined. 

5.3.4.1 Relative SMR and theta activity 

It was hypothesised that there would be an improvement in baseline-to-feedback 

SMR (SMR Relative) and a decrease in the baseline-to-feedback theta (theta Relative) 

values, between early and late SMR conditioning, for the three experimental groups 

that were subject to actual SMR training, compared to the control group. Thus, 

subjects in the AESMR and LESMR groups would register the greatest values for 

these baseline-to-feedback measurements, in late-conditioning sessions (vs. early), 

and the SMR group would register greater robust values than the control group. The 

increased relative SMR and the decrease in relative theta values imply the efficacy of 

SMR conditioning, in order to manipulate SMR and theta rhythms (from baseline to 

feedback period) and improve brain cortical activity, after at least ten SMR sessions, 

which would be only noted for the three experimental groups that were subject to 

actual NFT, but not for the control group, which was not subject to actual NFT. 

 

The descriptive statistics for the EEG measurements of averaged relative SMR 

Relative and theta Relative activity from early to late conditioning sessions are presented in 

Table 5-9, which shows the mean and standard deviation of averaged SMR Relative and 

theta Relative values for the four groups, for early training sessions (2-4) and late 

training sessions (8-10). Group differences in the initial scores for SMR Relative and 

theta Relative values for early conditioning for the four groups were analysed using a 

one-way ANOVA with post-hoc Tukey tests (for multiple comparisons). There were 
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no significant differences between groups in the early second, third and fourth 

conditioning sessions (SMR Relative, F = 1.83, p = 0.16; theta Relative, F = 2.01, p = 0.13, 

see Table 5-5). 

There were significant main effects for Group (F(3,32) = 2.97, P = 0.047) and 

Condition (F(1,32) = 8.65, P = 0.006) in SMR Relative values, from the baseline to the 

feedback state, but no Group × Condition interaction (F(3,32) = 0.97, P = 0.42, Table 

5-10). The Mean results indicate an increase in SMR Relative for the three non-control 

groups (Table 5-9). However, the predicted increase in the change in SMR Relative for 

the AESMR group was not confirmed by a significant increase (by Bonferroni 

correction) in SMR Relative for the AESMR group, compared to the control group 

(post-hoc and contrast analysis of SMR Relative change score in the AESMR, t32 = 2.04, 

p = 0.05; LESMR, t32 = 1.53, p = 0.14; SMR, t32 = 1.61, p = 0.12), as shown in Figure 

5-11. 
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Table 5-9 

Averaged baseline-to-feedback SMR Relative and theta Relative activity (mean ± standard 

deviation) of early (training sessions 2-4) and late (training sessions 8-10) 

conditioning, in the four groups (AESMR, LESMR, SMR and control). 

Groups   SMR    Early       Late 

EEG Measurements  Conditioning    Conditioning 

AESMR SMR Relative  1.04 ± 0.10 1.10 ± 0.11 

 theta Relative  1.08 ± 0.14 1.11 ± 0.07  

LESMR SMR Relative  1.01 ± 0.06 1.06 ± 0.09 

 theta Relative  1.12 ± 0.06 1.16± 0.12 

SMR SMR Relative  0.96 ± 0.06 1.01 ± 0.05 

 theta Relative  1.00 ± 0.12 1.05 ± 0.09 

Control SMR Relative  0.99 ± 0.08 0.99± 0.09 

 theta Relative  1.10 ± 0.08 1.05± 0.14 

baseline-to-feedback means from the baseline to the feedback state; SMR Relative is the 

mean SMR amplitude value during the feedback period divided by mean SMR 

amplitude value during the baseline period for each session; theta Relative is the mean 

theta amplitude value during the feedback period divided by mean theta amplitude 

value during the baseline period, for each session. 

 

 

 

 



258 

 

 

Table 5-10 

The effects of Group (AESMR, LESMR, SMR and control) and Conditioning (early 

vs. late) on EEG measurements (SMR Relative and theta Relative), in relation to SMR 

training from the baseline to the feedback state, analysed using ANOVA with 

repeated measurements. 

Period  Value  Source    df   F   P 

Baseline-to-  SMR Relative Group    3  2.97  0.047* 

Feedback     Condition   1  8.65  0.006** 

      Group × Condition  3  0.97  0.42 

   Theta Relative Group    3  2.16  0.11 

      Condition   1  1.08  0.31 

      Group × Condition  3  1.45  0.25 

Group × Condition indicates the interaction between group and conditioning (early 

and late); * indicates a significance level, P < 0.05, and ** indicates a significance 

level, P < 0.01, in accordance with the Bonferroni correction. 
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Figure 5-11. Changes in mean SMR Relative (±SE) of EEG measurements in the 

AESMR, LESMR and SMR groups, from early to late conditioning, compared to the 

control group. 
+
 indicates an exploratory and uncorrected significance level, P ≤ 0.05. 

 

 

In addition, the theta Relative from early to late conditioning sessions showed 

neither a main Group effect (F(3,32) = 2.16, P = 0.11), nor a main effect for Condition 

(F(1,32) = 1.08, P = 0.31, Table 5-10), nor a Group × Condition interaction (F(3,32) = 

1.45, P = 0.25, Table 5-10). There were no between-group differences between the 

three non-control groups and the control for theta Relative (post-hoc comparisons to the 

control group, in the AESMR, p = 0.45; LESMR, p = 0.34; SMR, p = 0.28) 
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In summary, the results of the change in SMR Relative and theta Relative for the three 

experimental groups, from early to late conditioning sessions, only showed a trend for 

an increase in the change in SMR Relative that was not statistically significant after 

Bonferroni correction, compared to the control group. These results do not support the 

hypothesis 4, the idea of the subjects’ ability to learn how to significantly manipulate 

their brain cortical activity, possibly due to the error from randomized samples that 

have an insufficient number of cases in each group. Further discussion is presented in 

the discussion section that follows.  

 

 

5.3.5 Hypothesis 5: In replication of Experiment II, group ICA is used to 

extract ICs from the resting state EEG (pre- vs. post-training) with the 

prediction that NFT/EA will result in enhanced relevant spectral power but no 

increase in the number of cortical loci. 

 

5.3.5.1 Conventional EEG comparisons for 19 channels, pre- vs. post- SMR 

training 

The results of this study are shown in Figure 5-12, which presents the changes in 

relative EEG band activity for the four groups. The lines with non-significant t-values, 

for pre- vs. post- SMR training, are shown at each electrode site. With regard to 

relative EEG values, the initially hypothesized changes in associated EEG oscillations 
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and cortical activity in the 19 channels for the four groups were not detected, as they 

were in Egner et al’s 2004 study of spectral topography after SMR training (Egner, et 

al., 2004). Accordingly, in connection with the hypothesis, there was no significant 

improvement in the relevant EEG spectral power in related cortical regions, after 

SMR training, perhaps due to a mixture of underlying source activity and volume 

conduction (Congedo, et al., 2009). Thus, based on the methods and outcome of Exp 

II, which examined ICA-derived EEG functional connectivity, group ICA was used to 

extract ICs from the resting state EEG (pre- vs. post-training). This revealed five 

statistically clustered regions, so it was hypothesised that resting EEG networks 

enhances relevant spectral power, but there are no additional cortical sources, after 

NFT and EA stimulation.    
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(A) AESMR 
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(C) SMR 

 

 

 

 

 

 

 

(D) Control 

 

 

 

 

 

 

 

Figure 5-12. Traditional EEG spectral analyses present the changes in relative EEG band 

activity for the four groups. The lines with non-significant t-values, for pre- vs. post- SMR 

training, are shown at each electrode site. ((A) the AESMR group; (B) the LESMR group; (C) 

the SMR group and (D) the control group, in the resting eyes-closed state). 
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5.3.5.2 Group ICA as a valid method for extracting ICs in the resting state 

EEG 

The schema for the progression from raw EEG to epoched-EEG recordings and 

then to the construction of the mean power spectra of valid components is illustrated 

in Figure 5-4. There were no extra cortical sources after NFT and EA stimulation, 

according to the inverse localization tool, sLORETA (also see the next paragraph, 

Table 5-11 and Figure 5-13). This result supports the hypothesis that functional and 

consistent sources are present in the brain, during the resting states for pre- and post- 

SMR training.  

As illustrated in Fig. 5-13, the results were calculated using the 3-minute resting 

state EEG, in each case. Sixty averaged valid epochs (without artefacts) from the 36 

subjects were analyzed (a total of 2160 epochs). Infomax ICA was used to extract ICs 

from the concatenated EEG data of the 36 participants, for both the pre- and post-NFT 

eyes-closed EEG resting states. All EEG data were decomposed into 13 spatially 

fixed and maximally independent components. Only 6 artefact ICs were excluded 

(horizontal and vertical eye-movements × 2, temporal muscle artefacts × 2 and ICs 

with unspecific muscle artefacts × 2, Fig. 5-14). The components from the 

concatenated EEG data in the resting EEG support hypothesis 5. Spectral power 

analysis was then used to examine the dynamics of the EEG-alpha power spectra in 

the EC resting state (details in the next paragraph). 
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Table 5-11.  

Coordinates of the 13 ICs in the five circumscribed regions, in the EC resting state, as 

shown in Figure 5-14, pre- vs post-SMR training, presented with the same stereotactic 

space as that of Talairach and Tournoux (1988).  

 

Brain regions are identified by the putative Brodmann area (BA) and similar 

localization imaging (pre- vs. post-) of the spontaneous EEG activity. 
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Figure 5-13 (A) The 2D topographies of the selected 13 ICs and their sLORETA images for 

source localization of cortical generators, pre- SMR conditioning, in the EC state. (B) The 

selected 13 ICs post- SMR conditioning in the EC state. Both of the localization images (pre- 

vs. post-) show stable and consistent features in the spontaneous EEG activity (see also Table 

5-11). 
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Upon completion of the spectral power analysis and the estimation of the 

cross-correlation of (alpha-band) EEG power between different ICs within subjects, a 

functional relationship between such source “nodes” can be established (see the next 

results). As illustrated in Figure 5-13, the results were calculated using the 3-minute 

resting state EEG, in each case. Sixty averaged valid epochs (without artefacts) from 

the 36 subjects were analyzed (a total of 2160 epochs). Infomax ICA was used to 

extract ICs from the concatenated EEG data of the 36 participants, for both the pre- 

and post-NFT eyes-closed EEG resting states. All EEG data were decomposed into 13 

spatially fixed and maximally independent components. Only 6 artefact ICs were 

excluded (horizontal and vertical eye-movements × 2, temporal muscle artefacts × 2 

and ICs with unspecific muscle artefacts × 2, Figure 5-14). The components from the 

concatenated EEG data in the resting EEG support hypothesis 5. Spectral power 

analysis was then used to examine the dynamics of the EEG-alpha power spectra in 

the EC resting state. 
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Figure 5-14 (A) All of the 19 ICs from 19 channels of scalp EEG recordings. The 

maps are individually scaled to their maximum absolute value (green is zero in the 

scale bar). For example, red boxed ICs represent an occipital alpha rhythm, (a) and (b); 

and blue circled ICs represent eye movement, (c), or any possible physiologically 

unresolveable noise with more than a single dipole, (d), or a bilateral, temporal 

muscle artefact, (e). The artefact and noise ICs (c, d and e) were excluded, to acquire 

13 artefact-free ICs. (B) This component is located in the frontal area, but is without 

predominant muscular artefact. (C) These two ICs predominantly result from bilateral, 

temporal muscle activity (Arrows). 



269 

 

 

 All components for both pre- and post-NFT in the resting EEG recordings 

exhibited a high repeatability across subjects with strong cortical source locations 

(Figure 5-13). Importantly, these findings are critical to further study of the EEG 

power-associated spectral analysis of ICA components, which is based on the 

estimated EEG resting-state connectivity and represents the spatially-segregated, 

unmixed EEG sources as functional nodes in electro-cortical networks. 

 

5.3.6 Hypothesis 6: the effect of SMR training on attention networks will 

result in  increased attention-related beta power in the frontal regions of the 

dorsal attention network and decreased theta power in the central regions (pre- 

vs. post-training), demonstrating a long-term effect of NFT on attention and 

vigilance. 

 

5.3.6.1 The five circumscribed functional regions, across subjects 

Hierarchical cluster analysis of cross-correlations between alpha power ICs of 

the 36 subjects identified a consistent set of five spatiotemporally distinct groups from 

2160 epochs in each resting condition, which is in line with the idea of resting state 

networks that arises from fMRI studies (Toro, et al., 2008; Van Den Heuvel and 

Hulshoff Pol, 2010), and the results of Exp II in this thesis (Chen et al., 2012). The 

five groups were classified on the basis of their coordinates in Talairach space and by 

regional anatomy (Table 5-11):  
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1. Group F: a network of predominantly lateral and middle prefrontal cortices, 

as well as an anterior pole of the prefrontal lobe.  

2. Group C: a lateral network involving the precentral gyri. 

3. Group P: a posterior-lateral and midline network primarily involving the 

parietal regions. 

4. Group OT: a lateral network dominated by the bilateral middle temporal 

cortices in the occipitotemporal regions.  

5. Group O: a posterior network characterized by the predominant involvement 

of the occipital cortex. 

 

All of the spatial maps of these groups were found in both pre- and post-NFT EC 

states. As illustrated in Figure 5-13, the results are consistent with fMRI resting-state 

network (RSN) reports for regions showing functional connectivity patterns in the 

DMN across resting states (Fox, et al., 2005; Fransson, 2006; Yan, et al., 2009) and 

those with strong anatomical connectivity (Honey, et al., 2009; Honey, et al., 2007) 

(see also section 4.3.4.1).  

Importantly, as the successful application of the hierarchical cluster analysis for 

the five grouped-ICs explained in Exp II, the correlation coefficient in each clustered 

group (p< 0.01, corrected) was also used in Exp III, in order to reveal distinct 

grouping patterns for components in both the pre- and post-NFT eyes-closed resting 

states. Functional connectivity, based on a significant threshold (correlation 

coefficient r-value), was evaluated according to the similarity between components 

(see the details in the chapter 4, sections 4.3.3 and 4.3.4).  
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5.3.6.2 A comparison of the changes in spectral power in the relevant regions 

of the resting EEG state, pre- and post- SMR training 

It was hypothesised that there would be an increase in attention-related beta 

power in the frontal region of the dorsal attention network (DAN), because of the 

effect of SMR training on attention, in the three experimental groups that received 

actual NFT. However, no such beta power enhancement should occur in the same 

frontal region, in the control group that was not subject to actual NFT. 

Correspondingly, subjects in the AESMR and LESMR groups should also 

demonstrate the greatest increase in beta power in the frontal region and the greatest 

decrease in theta power in the central region. The SMR group should also have 

greater values than the control group. In addition, the change in beta and theta power 

in the resting EEG dynamics may also imply a long-term effect for SMR training on 

attention and vigilance (with at least 10 sessions of SMR training).  

 

5.3.6.3 Beta power in the frontal region 

Table 5-12 shows the mean and standard deviation for the averaged regional 

SMR, Theta, beta1 and beta2 power of the clustered components, for the four groups 

(pre- vs. post-). Table 5-13 shows the results of a three way ANOVA with repeated 

measurements. The mean results for the group give evidence of the increase in beta 

power, related to increased attention, and the decrease in theta power, related to 

improved vigilance, that is caused by SMR learning and EA stimulation. Evidently, 

based on the statistical results, the hypothesized increase in frontal beta activity (beta 

1 and beta 2) in the three experimental groups was confirmed. The 3-way Group × 
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PrePost × Region ANOVA was significant for beta 1 band activity (F(12,128)=1.87, 

P=0.044, uncorrected). This interaction was due to the fact that there was a significant 

PrePost × Region interaction (F(4,128)=33.09, P < 0.0001), and the effect of the 

interaction in the three non-control groups may be attributable to a significant increase 

in beta 1 activity in the frontal region (paired t-tests for AESMR, t8=3.26, p=0.011; 

LESMR, t8=3.63, p=0.007; SMR, t8=2.63, p=0.030; Control, t8=0.30, p=0.77, details 

in Tables 5-12 and 5-13 and in Figure 5-15). There was a marginally significant 

Group × PrePost × Region interaction in the beta 2 band activity (F(12,128)=1.79, 

P=0.056, uncorrected). There was also a significant PrePost × Region interaction in 

beta 2 activity (F(4,128)=29.74, P < 0.0001), caused by a significant increase in beta 2 

activity in the frontal region (paired t-tests in AESMR, t8=2.56, p=0.034; LESMR, 

t8=2.61, p=0.031; SMR, t8=2.32, p=0.049; Control, t8=0.83, p=0.43, details in Tables 

5-12 and 5-13 and in Figure 5-15). 

 

 

 

 

 

 

 



273 

 

Table 5-12 

Regional spectra power (mean ± standard deviation; arbitrary unit, a. u.) of clustered 

components, pre- and post-SMR training, in the eyes-closed resting state, for the four 

groups (AESMR, LESMR, SMR and control) 

 

* indicates a significance level, P < 0.05, and ** indicates a significance level, P < 

0.01, in accordance with the Bonferroni correction. 
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Figure 5-15. Beta 1 and Beta 2 power in the frontal region, pre- to post- training, 

showing significant improvement only in the three SMR experimental groups (see 

also Tables 5-12). 
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Table 5-13 

The effects of Group (AESMR, LESMR, SMR and control) and PrePost (pre- vs. 

post-) on the ICA-derived beta power of the EEG components, using a 3-way (Group 

×PrePost × Region) repeated measurements ANOVA. 

EEG   Source     df   F       P 

spectral Power 

Beta 1  Group      3   1.57   0.22 

   PrePost      1      15.44  P = 0.0004** 

   Region      4      12.17    P = 0.0002** 

   Group × PrePost    3   0.39   0.76 

   Group × Region      12   1.80   0.054 

   PrePost × Region     4      33.09    P < 0.0001** 

   Group ×PrePost × Region 12   1.87     0.044* 

Beta 2  Group      3   0.63   0.60 

   PrePost      1       8.62     P = 0.006** 

   Region      4      10.99    P < 0.0001** 

   Group × PrePost    3   2.87   0.052 

   Group × Region   12   3.01  P = 0.001** 

   PrePost × Region    4      29.74    P < 0.0001** 

   Group ×PrePost × Region  12   1.79    0.056 

Group × PrePost indicates the interaction between group and PrePost (pre- and 

post-treatment); Group × Region indicates the interaction between group and Region 

(5 regions; frontal, central, parietal, occipital and occipitotemporal); PrePost × Region 

indicates the interaction between PrePost and region; Group × PrePost × Region 

indicates the interaction between group, PrePost and region; * indicates a significance 

level, P < 0.05, and ** indicates a significance level, P < 0.01, in accordance with the 

Bonferroni correction. 
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The increased frontal beta power noted in the experimental groups with actual 

SMR training supports the hypothesis. In addition, the improvement that is evident in 

the attention-related beta power in the frontal region, which is shown to belong to the 

dorsal attention network (DAN) in the EEG resting state, is interpreted as being due to 

the effect of NFT on attention, in the three experimental groups that received actual 

NFT, because it was not noted for the control group, who were not subject to actual 

NFT. These results are also in agreement with those in the report of Mantini et al. 

(2007), which showed that DAN has a stronger relationship with alpha and beta 

rhythms (Mantini, et al., 2007), and those of another NFT study that used LORETA, 

which also reported increased beta power in the frontal area (ACC), after training 

(Cannon, et al., 2009; Cannon, et al., 2007; Congedo, et al., 2004).  

It is seen that the control group, with non-contingent SMR feedback, shows 

almost no improvement in beta power after mock NFT. The aforementioned 

ICA-derived regional EEG components and the increase in power spectra in the 

AESMR and LESMR groups, which is caused by the SMR training and stimulation, 

supports the use of EA with alternating and low frequencies in conjunction with SMR 

training, in order to improve attention.  

 

5.3.6.4 Theta and SMR power in the central region 

As described in the previous paragraph, Table 5-12 shows the mean and standard 

deviation for the averaged regional SMR and Theta power of the clustered 

components, for the four groups (pre- vs. post-). Table 5-14 shows the results of a 
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three-way ANOVA with repeated measurements. Based on the statistical results, it is 

seen that the hypothesized decrease in central theta activity in the three non-control 

groups is confirmed. Although the 3-way Group × PrePost × Region ANOVA showed 

no significance for theta band activity (F(12,128)=0.53, P=0.9), a significant PrePost 

× Region interaction (F(4,128)=6.70, P < 0.0001), due to a significant Region effect 

(F(4,128)=11.40, P < 0.0001), implies a strong regional effect for theta activity, in all 

groups. Theta activity showed a strong inclination to decrease activity in the central 

region in the three non-control groups (paired t-tests in AESMR, t8= -3.11, p = 0.015; 

in LESMR, t8= -2.61, p = 0.031; in SMR, t8= -2.34, p = 0.048; Control, t8= -1.51, 

p=0.17, Table 5-12). 
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Table 5-14 

The effects of Group (AESMR, LESMR, SMR and control) and PrePost (pre- vs. 

post-) on the theta and SMR power of the ICA-derived EEG components, using a 

3-way (Group ×PrePost × Region) repeated measurements ANOVA. 

EEG   Source     df   F       P 

Spectral Power 

Theta  Group        3  1.37   0.27 

   PrePost       1  2.94   0.10 

   Region       4  11.40  P< 0.0001** 

   Group × PrePost     3  0.57   0.64 

Group × Region   12  1.30   0.23 

   PrePost × Region     4  6.70      P < 0.0001** 

   Group ×PrePost × Region 12  0.53   0.90 

SMR  Group       3  1.76   0.18 

   PrePost       1  0.86   0.36 

   Region       4  32.79     P < 0.0001** 

   Group × PrePost     3  1.54   0.22 

   Group × Region   12  2.21      0.015* 

   PrePost × Region     4     28.48     P < 0.0001** 

Group ×PrePost × Region 12  1.41   0.17 

Group × PrePost indicates the interaction between group and PrePost (pre- and 

post-treatment); Group × Region indicates the interaction between group and Region 

(5 regions; frontal, central, parietal, occipital and occipitotemporal); PrePost × Region 

indicates the interaction between PrePost and region; Group × PrePost × Region 

indicates the interaction between group, PrePost and region; * indicates a significance 

level, P < 0.05, and ** indicates a significance level, P < 0.01, in accordance with the 

Bonferroni correction. 
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Again, the lack of a significant Group × PrePost × Region interaction for SMR 

band activity (F(12,128)=1.41, P=0.17), a significant PrePost × Region interaction 

(F(4,128)=28.48, P < 0.0001), and a significant Group × Region interaction 

(F(12,128)=2.21, P = 0.015) with a significant Region effect (F(4,128)=32.79, P < 

0.0001) also implies a strong regional effect for SMR activity, in all groups the frontal 

and parietal regions. SMR activity also showed a strong inclination to decrease 

activity in the central region, in the three non-control groups for (paired t-tests in 

AESMR, t8= -2.71, p = 0.027; in LESMR, t8= -2.39, p = 0.044; in SMR, t8= -2.47, p 

= 0.039; Control, t8= -1.95, p= 0.11, Table 5-12).  

 The decreased central theta power that is noted in the three non-control groups 

that were subject to actual SMR training supports the hypothesis. In addition, the 

decrease in theta power that is seen in the central region, which may belong to the 

disclosed somato-motor network (SMN; including pre- and post-central gyrus) of 

EEG resting state, with no change being noted for the control group that was not 

subject to actual NFT. The control group with non-contingent SMR feedback also 

showed a small, but statistically insignificant decrease in theta power, after mock NFT. 

Further discussion is presented in the following discussion section. 

Furthermore, these results may be in line with the research of Ding et al (2011) 

in demonstrating a topological fractionation between perceptual and higher cognitive 

networks (Ding, et al., 2011), with the six RSNs partitioned into two groups: higher 

cognitive networks (the dorsal attention network and the default mode network, 

associated in the thesis with the frontal and parietal regions) and perceptual networks 

(the somato-motor network, the auditory network and the visual network, associated 

in the thesis with the central, occipitotemporal and occipital regions). The higher 
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cognitive networks of RSNs can be only enhanced by actual SMR training, as shown 

by the enhanced spectral power of the frontal and parietal regions. Figure 5-16 

summarises the outcome pictorially. In the topographical map the frontal and parietal 

regions may be contrasted with the other three of the five regions. Alongside the map 

and connected to each of the five regions with their EEG derivations are five spectral 

graphs, one for each region. These graphs depict the statistical differences within the 

EEG spectra, delta to gamma, comparing the spectra before and following SMR 

training with the differences colour coded as indicated in the figure caption. Further 

discussion is presented in the following discussion section. 

 

One channel SMR training with repetition of audiovisual feedback within 10 

sessions, may decrease the perceptual networks of RSNs due to habituation (in both 

actual SMR and mock control groups, in line with the results of Ding's research), but 

the higher cognitive networks of RSNs can be only enhanced by actual SMR training. 

Even one channel SMR training can have an effect on the entire brain, because the 

RSNs can be altered to improve attention or higher cognitive function, after actual 

SMR training. 
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Figure 5-16. The total averaged power spectra within the 5 regions, pre- vs. post- SMR 

training, in the SMR group. The increase in the power spectra is shown in the frontal and 

parietal regions, post- treatment, with a reduction in the power spectra in the central, 

occipitotemporal and occipital regions. Blue arrows indicate p < 0.05; red arrows indicate 

p<0.005 (Bonferroni corrected). 
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5.4 Discussion of Experiment Three 

The primary purpose of Exp III was to investigate the effect of 

electroacupuncture stimulation combined with NFT. With a satisfactory outcome the 

combined protocol could form a plausible method for efficiently combining 

endogenous feedback with the application of exogenous stimulation to produce better 

behavioural performance or EEG outcome measurements than with NF alone. To the 

best of the authors’ knowledge, the changes in specific EEG dynamics and enhanced 

attention performance resulting from combining NFT with EA stimulation have not 

yet been investigated. The relevant hypotheses are listed and discussed in the 

following subsections.  

 

Hypothesis 1: Improved perceptual sensitivity post SMR training in conjunction 

with EA stimulation (pre- vs. post-training)  

 The results of this study, which show a upward trend in the d' scores in the three 

non-control groups post- SMR training, attributable largely to a reduction in 

commission errors, are in agreement with those of previous research on SMR-Theta 

training as a feasible method for enhancing executive attention (Egner and Gruzelier, 

2001, 2004; Ros, et al., 2009). Learning to enhance SMR and reduce impulsiveness 

(commission errors) is in agreement with previous research on the treatment of 

hyperactivity (e.g., Arns et al., 2009; Vernon, 2005). However, the significant 

increase in the d' scores and the reduction in the number of commission errors, 

post-treatment, were only found in the SMR group after Bonferroni correction, 

compared to the control group.  
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In Exp III, EA stimulation was performed (15 minutes) before each SMR 

training session, followed by a three minute resting baseline period and then 20-mins 

of SMR/theta training, for the feedback period. The reduction in the number of 

commission errors made by the two groups with stimulation may be due to the 

short-term effect of EA stimulation in improving perceptual sensitivity and reducing 

the number of commission errors. The sustained stimulation effects from EA may not 

be reproducible in the Exp III without repetition of the visual attention task, as in Exp 

I, in each NFT session.  

Another reason may be the error from randomized samples with an insufficient 

number of cases in each group (N=9, the total case number is 36).  

 

Hypothesis 2: the use of SMR training in conjunction with EA stimulation to 

decrease theta activity in the baseline period in late-conditioning sessions vs. 

early sessions. 

The participants in the AESMR group merely showed a trend toward an 

improved change in the baseline SMR/theta ratio (early vs. late conditioning), 

compared to the control group (analysed with Bonferroni correction). The AESMR 

and SMR groups also showed a trend toward a reduction in baseline theta amplitudes 

(early vs. late conditioning), compared to the control group (analysed with Bonferroni 

correction). The increased baseline SMR/theta ratio seemed to be mainly due to the 

decrease in the baseline theta amplitude. For healthy subjects the baseline SMR/theta 

ratio in SMR training may be considered as an index of cortical arousal level based on 

the description of vigilance stages (Sander, et al., 2010). The significant decrease in 
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theta activity in the resting EEG is considered to be associated with wakefulness 

(Bertini, et al., 2007; Strijkstra, et al., 2003). The vigilance stages refer to distinct 

states of global brain activation (Olbrich, et al., 2009), observable on a continuum, 

ranging from full wakefulness to sleep onset (e.g., Sander, et al., 2010).  

Although a decrease in cortical theta power has been reported during activation 

of the attentional alerting network (Fan, et al., 2007), several studies of patients with 

ADHD have shown that less stable vigilance and an inferior continuous performance 

were associated with an elevation of theta activity and a decrease in fast (i.e. beta) 

frequency power (e.g., Arns, et al., 2009; Barry, et al., 2003; Sander, et al., 2010). 

Accordingly, this study supports the theory that SMR training reverses the theta/beta 

ratio and decreases low frequency activity. This concept is considered to be an 

elementary rule for the use of SMR training to treat subjects with ADHD. Based on 

the hypothesis of insufficient cortical arousal in ADHD patients, the use of NFT as a 

generic tool to stimulate cerebral arousal regulation for ADHD is considered to be 

"Efficacious and Specific" (Level 5), as noted in a meta-analysis (Arns, et al., 2009).  

Given that SMR/theta training can influence the attentional performance of both 

healthy individuals (e.g., Egner and Gruzelier, 2001; 2004) and clinical populations 

(for example, ADHD; Fuchs, et al., 2003; Kropotov, et al., 2005; Monastra, et al., 

2002), the exploratory and uncorrected results of this study’s baseline EEG 

measurements support the idea that ten SMR/theta sessions of operant SMR training 

are adequate to improve healthy individuals’ vigilance states of global brain activation 

following the significant reduction in the theta amplitude in the baseline period. This 

indicates that a plausible long-term effect is derived from SMR training using baseline 

EEG dynamics. 
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In contrast it may be relatively difficult to demonstrate a change in the baseline 

SMR amplitudes because SMR activity is easily induced during the feedback period, 

and this can result in a return to near baseline levels after the feedback period. For 

tiny changes in the baseline SMR amplitude (early vs. late conditioning in this study, 

table 5-4), the results for the change in the SMR amplitudes from the baseline to the 

feedback period imply that a notable change in the SMR amplitude was possible when 

SMR training was combined with AE stimulation (see also the discussion in the next 

section).  

There was evidence of operant conditioning through a) the increase in the 

SMR/theta amplitude ratio, and b) the increase in the SMR relative amplitude, from 

early (sessions 2-4) to late (sessions 8 – 10) neurofeedback sessions. Healthy 

participants in the AESMR group were able to produce a more significant increase in 

the SMR/theta ratio (Bonferroni corrected) in the feedback period, while the LESMR 

and SMR groups merely showed a trend toward an increase in the SMR/theta ratio in 

the feedback period (early vs. late conditioning) compared to the control group. The 

AESMR group also showed a trend toward an increase in SMR relative activity 

(uncorrected, early vs. late conditioning), compared to the control group.  

The change in the SMR/theta ratios in the feedback period in the late sessions 

showed a significant increase in the SMR/theta ratio in the feedback period, which 

appeared to be due only to the effect of SMR training in conjunction with AE 

stimulation. There was a significant increase in the feedback SMR/theta ratio, but no 

increase in SMR or decrease in theta amplitudes by themselves. Whereas the increase 

in the baseline-to-feedback SMR relative activity in the late sessions appeared to be 

mainly due to the ease of manipulation of the SMR amplitude.  
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The increased baseline-to-feedback SMR relative activity for the three non-control 

groups when compared with the control group means that it was relatively easy to 

induce SMR up-training during the actual feedback period.  However, it was also 

shown that the induced SMR returned to near baseline levels after SMR training, as 

evidenced by the small changes in the baseline SMR amplitude (early vs. late 

conditioning, Table 5-4). There was also a highly variable SMR amplitude over time 

in agreement with a report of the impossibility of maintaining a high amplitude in the 

SMR (mu) rhythm (Niedermeyer, et al., 2004). 

Interestingly, the small change in baseline-to-feedback theta relative activity means 

that both baseline and feedback theta amplitudes declined in the late sessions (vs. 

early, Tables 5-4 and 5-7). A plausible long-term mechanism for the effect of 

SMR/theta training effect may be explained via the successes of SMR/theta training in 

improving wakefulness and vigilance, due to a decrease in the theta amplitudes in the 

baseline resting EEG and in enabling further cognitive processing and attention (see 

also the discussion in the next section). 

 

The effect of protocol-specific EA stimulation on the EEG outcome measurements  

The results for the AESMR group are in line with the decrease in theta during 

high frequency EA stimulation that is mentioned in the 2006 study by Andrew Chen 

et al. and the improvement in sustained attention and longer lasting effect of 

stimulation, after AE stimulation, in the 2001 study by J-L Chen, et al. (Exp I in this 

thesis). In addition, a prolonged effect for activated CNS neurotransmitters, post 

acupuncture stimulation, has also been reported (e.g., Dhond, et al., 2008; Han, 2004, 
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which provides an impetus for the study of SMR training in conjunction with EA 

stimulation.  

However, Exp III shows that EA with alternating frequencies is not significantly 

beneficial to SMR training to achieve an impact on attention after ten training 

sessions. In addition, the use of EA with low frequency stimulation seems to have no 

effect on either behavioural results or SMR/theta EEG measurements. While low 

frequency EA may not be beneficial to SMR training, it may be a better choice for 

assisting alpha up-training, because it increases alpha activity (Chen et al., 2006). To 

validate this hypothesis that alpha NFT is assisted by low frequency EA stimulation in 

enhancing EEG alpha activity a further combined study would be required.  

In the protocol for this study, the control group with non-contingent SMR 

training was subjected to mimicked EEG signals derived from real SMR training. 

While this may induce an inattention state in subjects there was no evidence of any 

training effect for mock SMR feedback in changing brain activity, which is 

compatible with this study’s hypothesis in relation to mock training.  

The increase in beta power in the attention network in the frontal region and the 

decrease in theta power in the somato-motor network in the central region (pre- vs. 

post- SMR training) supported hypotheses 5 and 6, and a long-term effect on attention 

and vigilance, due to SMR training. 

 The conventional EEG (pre- vs. post-training) did not reveal any significant 

improvement in the relevant EEG spectral power in related cortical regions, for each 

group, possibly due to a combination of underlying source activity and volume 

conduction (Congedo, et al., 2009). Thus, based on the methods and outcome of Exp 
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II, which investigated ICA-derived EEG functional connectivity, group ICA revealed 

five statistically clustered regions.  

As in Exp II, Exp III demonstrated the previously reported cortical location of 

these ICs to be spatially well-defined “sources” (Pascual-Marqui, et al., 2002), in the 

eyes-closed resting EEG networks, pre- and post-NFT. 

All of the components of both pre- and post-NFT in the resting EEG recordings 

demonstrated high repeatability across subjects with strong cortical source locations 

(Figure 5-13), in support of hypothesis 5. The consistency in the cortical localization 

of components in healthy individuals, in the resting EEG may be due to the absence of 

experimental stimuli (for a review see Onton, et al., 2006). Importantly, these findings 

are critical to future investigations of the EEG power-associated spectral analysis of 

ICA components, based on the estimated EEG resting-state connectivity, because they 

represent the spatially segregated, unmixed EEG sources as functional nodes in 

electro-cortical networks. Extracting source-level information from EEG data by ICA 

decomposition allows the use of EEG imaging as a truly functional 3-D cortical 

imaging modality, with high temporal resolution and adequate spatial resolution for 

the study of distributed macroscopic cortical brain processes that support both normal 

and abnormal behaviour and experience (e.g., Chen, et al., 2012; Delorme, et al., 

2012). 

In line with the resting state networks disclosed by fMRI studies (Toro, et al., 

2008; Van Den Heuvel and Hulshoff Pol, 2010) and the results of Exp II (Chen, et al., 

2012), the results were consistent with fMRI resting-state network (RSN) reports of 

regions that show the functional connectivity patterns for the DMN across resting 

states (Fox, et al., 2005; Fransson, 2006; Yan, et al., 2009), and those with strong 
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anatomical connectivity (Honey, et al., 2009; Honey, et al., 2007). Importantly, the 

increase in frontal beta power noted in the groups who were subject to SMR training 

supports hypothesis 6. The attention-related beta power in the frontal region, which 

belongs to the revealed dorsal attention network (DAN), in the EEG resting state is 

related to the effect of NFT on attention, for the three non-control groups who were 

subject to actual NFT, but there was no change in the control group that was not 

subject to actual NFT. These results are also in agreement with the report of Mantini 

et al. (2007), which showed that DAN has a stronger relationship with alpha and beta 

rhythms (Mantini, et al., 2007). Another type of NFT that uses low-resolution brain 

electromagnetic tomography (LORETA) also produces an increase in beta power in 

the area of the anterior cingulate cortex (ACC), after training (Cannon, et al., 2009; 

Cannon, et al., 2007; Congedo, et al., 2004). Subjects were able to increase beta 

power in the ACC and adjacent areas, but no increase was detected in more distant 

locations (Cannon, et al., 2009). It is seen that the control group with non-contingent 

mock SMR feedback shows no improvement in beta power, post- mock NFT.  

Recent studies of the EEG spectrum support a re-assessment of ADHD and beta 

activity in the frontal region. For instance, an ADHD patient’s distinct EEG clusters 

are characterized by increased high amplitude theta and a decrease in beta activity 

(Chabot, et al., 2005; Clarke, et al., 2001). Therefore the hypothesis that an 

improvement in beta activity in the frontal region, caused by SMR training, is 

theoretically confirmed and is already being used to treat ADHD in clinics, without 

much controversy. 

With regard to the role of theta in the resting EEG, the decrease in central theta 

power that was noted in the three groups that were subject to actual SMR training 
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supports hypothesis 6. This was, in the central region which may belong to the 

disclosed somato-motor network (SMN, including pre- and post-central gyrus). These 

resting results are in agreement with the research on vigilance or wakefulness, which 

notes that high theta power may indicate a disposition for falling asleep (Bertini, et al., 

2007; Strijkstra, et al., 2003; Tanaka, et al., 1997).  

 Interestingly, some previously published reports have also illustrated a 

significant increase in SMR activity during the actual training period, but showed a 

decrease in SMR, post-training in the eyes-closed resting EEG state, in healthy 

humans (Doppelmayr, et al., 2009; Egner, et al., 2004), and even in patients (e.g., 

Gevensleben, et al., 2009b; Kropotov, et al., 2007; Pineda, et al., 2008). The 

surprising effect of SMR training on central SMR activity is also evident in the results 

for the three non-control groups (Table 5-12). However, an opposite tendency towards 

an increase in SMR was evident for the eyes open condition, after NF training, 

indicating high variability in SMR amplitude, over time, regardless of the protocol 

used for training (e.g., Cho, et al., 2008; Doppelmayr, et al., 2009). Furthermore, a 

reduction in SMR and theta power may imply networks specific to the central and 

occipital regions, different from the increases noted for other spectral power bands in 

the frontal and parietal regions in RSNs. These results may be in line with the 

research of Ding et al (2011) in demonstrating a topological fractionation between 

perceptual and higher cognitive networks (Ding, et al., 2011), with the six RSNs 

partitioned into two groups: higher cognitive networks and perceptual networks.  

According to Ding's research, single channel SMR training with repetition of 

audiovisual feedback, for ten SMR training sessions, as in this study, may decrease 

the perceptual networks of RSNs, due to habituation, which is demonstrated by a 
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decrease in the spectral power of the central, occipitotemporal and occipital regions of 

both actual SMR and control groups. However, the higher cognitive networks of 

RSNs can be only enhanced by actual SMR training, as shown by the enhanced 

spectral power of the frontal and parietal regions (Figure 5-16).  

Just single channel SMR training can enhance the higher cognitive networks of 

RSNs, via actual SMR training. In other words, even single channel SMR training can 

affect the entire brain, in view of the alteration to RSNs caused by enhanced frontal 

beta power and the resulting improvement in attention or higher cognitive functions, 

after actual SMR training. 

 

The effect of protocol-specific EA stimulation on the EEG resting networks  

Reduced theta activity has been reported during high frequency 

electrostimulation on the hands due to exogenous stimulation (Chen et al., 2006). In 

addition, besides the instant effect, a prolonged effect has also been reported (e.g., 

Dhond, et al., 2008; Han, 2004), and which demonstrated the effect of acupuncture on 

the RSN or DMN (e.g., Dhond, et al., 2008) and provided the stimulus for SMR 

training in conjunction with EA stimulation. The results for the combined groups 

(AESMR and LESMR) demonstrated that the different stimulation protocols 

produced changes in EEG RSNs similar to the protocol that used only SMR training. 

It is also important to emphasize that all of these three protocols produced probable 

long-term effects on the attention network and an increase in frontal beta power in the 

attention network in the resting EEG.  
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 In agreement with previously published reports of the changes in spectral EEG 

topography after SMR training (e.g., Egner, et al., 2004), this study’s initial traditional 

resting EEG analysis of all protocols still demonstrated a non-significant change in 

EEG, after NFT. However recently, there have been successes in using 

frequency-domain ICA or ICA power spectra to decompose the spontaneous EEG 

data, which have yielded appropriate methods for the decoding of the resting EEG, 

with good resolution of cortical activity and localization (e.g., Chen, et al., 2012; 

Hyvarinen, et al., 2010). Using the 13 components decomposed and their power 

spectra in the five circumscribed (alpha-synchronized) functional regions beta power 

(beta 1 and beta 2) was significantly increased in the parietal and frontal regions of 

the three SMR groups. These involved the frontal and parietal regions of the RSNs 

which are related to the dorsal attention networks, and evidence a change in the 

baseline EEG, compared to the non-contingent mock SMR training (control) group, 

which demonstrated no increase in frontal beta power.  

Interestingly, beta 1 and beta 2 activities were enhanced in both SMR alone and 

EA stimulation groups without extra benefit from EA. In addition, the significant 

improvement in attention only in the SMR group did not match the increased beta 1 

and beta 2 activities of frontal regions in the resting EEG for the latter occurred in all 

three experimental groups. An increase in beta activity subsequent to SMR training 

has been also reported in clinical studies. These studies involved subjects with 

abnormally low levels of beta band activity prior to training (Lubar and Lubar, 1984; 

Monastra, et al., 2002). Therefore, the mismatched behavioural and 

electrophysiological results in this thesis may be due to the insufficient number of 

participants for the separated groups, and for importantly due to the difference 
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between healthy subjects and patients. The previous study, which used only EEG 

spectral methods with resting EEG, may not have been sensitive enough to fully 

capture the effect of an increase beta activity caused by SMR in healthy subjects (e.g., 

Egner et al., 2004).  

 

 

5.4.1 Limitations and future studies 

This study has potential limitations, or at least issues that warrant further 

examination. Firstly, the optimal period for stimulation that putatively generates 

neuromodulation effects to assist NFT is still unknown. The predicted post 

stimulation period was around a minimum of 30 minutes, for this study, which was 

the duration of a training session. This duration is similar to that used for the study by 

Claydon et al. (2008), which used pressure pain threshold (Claydon, et al. 2008). 

However, the optimal period for the use of EA stimulation with NFT and its effect 

during EA stimulation was not evaluated. The design used in this study, with EA and 

then immediate SMR training for subjects, may be a feasible method according to the 

exploratory and uncorrected approach, but it still needs further studies with a 

sufficient number of cases to achieve the statistical significance via Bonferroni 

correction. Stimulation within the feedback period is not recommended, because 

stimulation directly interferes with EEG measurements. For example, the mu rhythm 

(8-15 Hz) can be inhibited by stimulation of the human hand (Cheyne, et al., 2003).  

The optimal sites for influencing cognition have not been systematically 

examined. HeGu (Li4) and NeiGuan (P6) on the hands are well studied acupoints but 
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other acupoints such as Zusanli (St36) and Taichong (Liv3) on the legs, might be 

helpful in improving cognitive function. Thirdly, several neurotransmitters are also 

believed to contribute to the attention and memory systems (Boulougouris and Tsaltas, 

2008; McNab, et al., 2009; Muller and Carew, 1998). It is not clear, however, to what 

extent these neurotransmitters are involved and how they are coordinated with each 

other during and after electrical stimulation and with NFT. Further research will be 

required to investigate the relationship between the behavioural and EEG measures 

and functional networks and neurotransmitters for the application of EA to assist NFT 

which might prove fruitful in healthy participants and patients. 

There was an absence of parallel effects of the training protocols on d-prime and 

the EEG which requires further investigation with larger groups of subjects. 

Although Ding’s model wherein six RSNs are partitioned into two groups, higher 

cognitive networks and perceptual networks, was suitable for interpreting the effect of 

actual SMR training versus the mock SMR training in healthy subjects, studies on 

patients would be worthwhile for treatment implications of NFT. Additionally, the 

claimed long-term effect of NFT requires further study to prove the assumption that 

post-NF EEG activity demonstrates a possible long-term effect in both healthy 

subjects and patients. 
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5.5 Summary 

In conclusion, this study provides some new evidence of a significant 

improvement in perceptual sensitivity, and changes in EEG measures and attention 

networks in the RSNs of healthy subjects through the use of SMR training in 

conjunction with electrostimulation, when compared with the effect of non-contingent 

mock SMR training. The attention performance benefits that were caused by actual 

SMR training are compatible with the results of previous published research, showing 

the efficacy of SMR in the reduction of both impulsive commission errors and 

perceptual sensitivity (d'). There was a significant increase in the SMR/theta ratio in 

the feedback period from early to late conditioning sessions, which implied the 

success of the SMR training in conjunction with alternating frequency 

electro-stimulation. Referring to the EEG measures and the behavioural results, the 

latter were stronger with SMR training alone compared with the combined protocols. 

However, the EEG results also demonstrated the possible advantages of SMR training 

in conjunction with electrostimulation. 

Finally, with repetition of audiovisual feedback within 10 sessions, SMR training 

using single channel Cz EEG data may decrease power in the perceptual networks of 

RSNs, due to habituation in both the actual SMR and control groups, whereas the 

higher cognitive networks of RSNs that disclosed increased frontal beta power were 

only enhanced by actual SMR training. Even single channel SMR training can affect 

the entire brain and the attention network of RSNs in enhancing attention or higher 

cognitive function. 
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CHAPTER 6 GENERAL DISCUSSION AND CONCLUSIONS 

 

6.1 Evaluation of Results in Relation to the Aims of the Thesis 

The ultimate aim of the experimental work for this thesis, as described in chapter 

2, was to investigate the feasibility of neurofeedback protocols assisted by EA 

stimulation, in healthy populations. SMR training and SMR combined with EA 

protocols may produce significant effects on attentional performance, along with 

electrophysiological mediation. The results pertaining to these issues were evaluated 

by considering the different EA modes of alternating and low frequency stimulation, 

which had been shown to produce clinical benefits by others, NFT effects and EA 

frequency-specific effects from the combined strategies (NF + EA). The proposed 

ICA-derived EEG dynamics for evaluating the effect of the resting states and attention 

networks of EEG and NFT on EEG dynamics are discussed and summarised within 

this chapter.  

 

6.1.1  Transcutaneous electrical acustimulation and frequency modulation 

One aim of this thesis was to examine whether electroacupuncture stimulation, 

using alternating frequencies on pairs of acupoints on both hands, resulted in 

significantly better sustained behavioural performance and sustained cortical 

activation in a repeated visual continuous attentional performance task than low 

frequency stimulation, which in turn was superior to placebo. The use of any EA 

protocol to improve attentional performance in healthy participants had not previously 



297 

 

been addressed in the research literature. Exp I, with the single-blind randomized 

placebo-controlled design, provided convincing evidence of sustained attentional 

performance and sustained cortical activation in a repetitive visual attentional 

performance task. The results of Exp I, which showed improved d' scores because of a 

decrease in the mean number of commission errors, was compatible with a significant 

decrease in the motor inhibition component both during stimulation and post 

stimulation in the AE group, the one that received electroacupuncture stimulation with 

alternating frequencies. Theoretically, this ERP component reflects motor 

impulsiveness (Bokura, et al., 2001b; Kropotov, 2009a; Smith, et al., 2008). However, 

low frequency stimulation at 5 Hz showed only short-lived benefits during 

stimulation.  

Therefore, EA with alternating frequencies may be an adjunct that helps healthy 

adults to successfully enhance their sustained attention and inhibit competing motor 

responses; this indicates a potential therapeutic benefit for psychiatric disorders that 

result in compromised attention and cognition. For other clinical practices, EA may 

also be an important adjuvant for treatments in the fields of pain control (Tong, et al., 

2007) and in neurotherapy (Hirshberg, et al., 2005). 

Furthermore, the real EA stimulation and control groups showed significant 

differences in the decomposed ERP processes relevant to a range of behavioural 

functions (visual comparison, P400 monitoring, working memory and passive 

auditory P300). Firstly, a decrease in activity attributed to habituation was observed in 

the control group with the placebo stimulation, when comparing the baseline with the 

pre-stimulation and post-stimulation periods. Interestingly, the absence of habituation 

in the experimental groups suggests a potentially successful activation that prevents 
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habituation after EA stimulation. Secondly, the different effects of stimulation for the 

real and placebo stimulation on the same sites (acupoints on the hands), without 

changing the topography of the regional loci disclosed y ICA, showed that the placebo 

stimulation was a useful control for the study of brain function and associated 

acupuncture effects, which is in agreement with prior research on EA that used 

placebo groups (Chao, et al., 2007; White, et al., 2004).  

Thus the results of Exp I demonstrate the success of the design with two real EA 

stimulation modes (AE vs. LE) and one control placebo stimulation (SE), because of 

both the sustained change in the motor inhibition component, and  decreased 

impulsivity (commission errors) contributing to increased perceptual sensitivity (d') in 

healthy subjects. All of these associations, shown details in the chapter for Exp I, 

section 3.4, are new findings and appear to be compatible with the nature of EA 

stimulation protocols (Han, 2004). These findings have been published (Chen et al, 

2009). 

While in Exp III the corresponding learning indices (TOVA measurements, 

omission errors, commission errors and d') and the measurements of SMR 

EEG-biofeedback (SMR/theta ratio in baseline and training period, relative and 

baseline power of SMR and theta waves) showed no disruption of the NFT effect 

from EA stimulation, the results in Exp III showed that there was no advantage 

following EA and no added value in adding EA to NF. These results for the groups 

with SMR assisted by EA do not support the hypotheses, possibly due to the error 

from randomized samples because of an insufficient number of cases in each group. 

The results of Exp I and III generally share the assumption that EA will only have a 

short-term effect. 
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In summary, this thesis demonstrates the general feasibility of combining EA 

stimulation with an NFT protocol, in order to capitalise on both endogenous 

neurophysiological responses and exogenous stimulation. However, some evidence 

suggests that, at least in healthy participants, following NFT resting EEG and 

attention ERP components may be modulated within and after sessions (Egner and 

Gruzelier, 2001; 2004;Doppelmayr, et al., 2009; Kropotov, 2009a; Kropotov, et al., 

2007). The refinement of such exogenous EA stimulation for learning indices requires 

future replication of these documented relationships with a higher number of cases 

than used here and maybe with high density EEG recording instrumentation than that 

supplied by the hardware and software used in this thesis.  

 

6.1.2 ICA-based EEG functional connectivity in the resting state 

Although recent independent component analysis (ICA) of EEG-fMRI studies 

has explained spatiotemporal synchronous patterns and neuronal sources at rest (Laufs, 

et al., 2008; Mantini, et al., 2007), little is known about the changes in EEG dynamics 

that occur within the attention network post NFT.  

Based on a significant change of occipital alpha activity in the EEG, from EC to 

EO, significant differences were noted in ICA-based EEG power spectral distributions, 

between EC and EO states. The methods used in Exp II effectively integrated 

information to construct functional networks and demonstrated changes in EEG 

dynamics, from EC to EO. Prior studies have shown patterns of functional 

connectivity across subjects (e.g., Congedo, et al., 2009; Dosenbach, et al., 2007), or 

used formulae that were too complicated to allow analysis or to apply in clinics (e.g., 
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Gomez-Herrero, et al., 2008). In addition, some previous reports illustrating the 

distribution of scalp EEG power in relation to anatomical or functional connectivity in 

the RSN (e.g., Chen, et al., 2008) did not address the bias from the volume conduction 

which masks the underlying source activity (Nunez and Srinivasan, 2006). Therefore, 

Exp II was designed to minimize the bias from volume conduction and to find sources 

that were correlated with rhythmic activity, in order to outline the ICA-based EEG 

power spectra and functional networks.   

Exp II provided a series of steps to describe five groups of functional networks, 

which were constructed from 12 independent components (ICs) of the ICA-based 

EEG activity in both EC and EO resting states. These network groups demonstrated 

not only anatomical connectivity, but also electrophysiological mechanisms. 

Unsurprisingly, the alpha rhythm was the most prominent EEG rhythm during the 

conscious resting state and it formed the basis for the analysis of the ICA-based EEG 

RSNs cluster groups. The merged sLORETA figures suggested both anatomical 

connectivity and electrophysiological associations between the clustered groups in 

Exp II. Among other implications of this research were that, firstly, the procedures 

may be easily applicable to patients without clear consciousness, for task-oriented 

ERP examination. Secondly, it is possible to compare the DMN, RSN, or functional 

networks in the EEG with fMRI. Thirdly, because of the high correlation between the 

task-negative network (DMN) and the task-positive network (dorsal attention network) 

found in fMRI (Uddin, et al., 2009), the effect of SMR training on the resting EEG 

(Egner, et al., 2004; Ros, et al., 2010) and its spectra in the different cortical regions 

related to the attention network demonstrates that it is an effective new method of 
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investigating electrophysiological outcome following SMR training (more details in 

the next section on neurofeedback training effects).  

In summary, although this study did not undertake an examination of EEG 

recordings in resting state, or with stimulation, along with corresponding fMRI 

analyses, the method proposed in Exp II provides an important practical method for 

the study of synchronised rhythmic activity in cortical regions. Theoretically, 

evidence of resting EEG dynamics, pre- vs. post- NFT can be interpreted using this 

ICA-based EEG power spectra analysis, more effectively than through the use of 

traditional EEG topography. These results have been published (Chen et al, 2012). 

 

6.1.3 The effect of Neurofeedback training and electrocortical findings 

refined by the ICA-based approach 

One of the major goals of this thesis was to establish measurable variables that 

are compatible with healthy subjects’ behavioural performance and electrocortical 

activation, compared to those for mock NFT (a pseudo-NFT). In order to identify the 

general effect of training, the electrocortical and behavioural dependent variables of 

the experimental groups were evaluated, pre- and post-training. The changes in the 

variables were then compared with the findings for the non-contingent NF group, 

using the methods of Exps II and III. Exp III demonstrated the significant effect of 

SMR training in healthy subjects, as noted in previously published articles (e.g., 

Egner, et al., 2004; Ros, et al., 2010).  

In establishing the ICA-based approach, Exps II and III showed the possibility of 

combining ICA, time-frequency analysis, sLORETA, MDS and graph theory to 
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investigate the resting state EEG. Thirteen ICs represented five groups of functionally 

connected cortical regions, based on the high correlation coefficients for alpha power, 

in the eyes-closed (EC) state. Therefore, the decomposition of the EEG into ICs 

produces valid ICs for cortical functional connectivity, in Exps II and III. Moreover, 

the consistency of these ICs demonstrated simple and concise procedures for 

analysing the cortical localization of components in healthy individuals not subject to 

experimental stimuli (for review see Onton and Makeig, 2006; Onton, et al., 2006). 

Therefore, any significant effect of SMR training on attention, which was predicted 

but not found in the resting EEG topography, might be shown in the ICA-based 

resting EEG networks, as was the case. These results disclosed enhanced beta power, 

from parietal to frontal regions, in support of an improvement in the dorsal attention 

network. 

The major reason why the effect of training was not present in previous EEG 

studies (e.g., Egner, et al., 2004) is possibly because of volume conduction and 

underlying source activity. Thus this new ICA method, using the blind source 

separation, may significantly reduce ambiguity in depicting an effect. 

Furthermore, Exp III also provided additional evidence for the significant effect 

of SMR training on electrocortical and behavioural outcome variables in healthy 

subjects. Firstly, Exp III showed that a course of SMR produced significantly 

improved dorsal attention networks in the EEG (electrocortical variables), which were 

compatible with positive perceptual sensitivity (behavioural variables of sustained 

attention) and the increased SMR/theta ratio during the training sessions carrying over 

to subsequent session baselines. Evidently, no such results were noted for the group 

with pseudo-NFT. Crucially, these training effects are not attributable to practice or 
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motivational factors for the control group with pseudo-NFT were subject to similar 

audiovisual feedback training. The results for the pseudo-NFT group showed no 

significant changes in any of the variables that were assessed in the attention task.  

From these results it is concluded that this thesis provides strong evidence of the 

significant effect of SMR training on electrocortical activation and attentional 

performance in healthy subjects compared to the use of pseudo NFT.  

 

6.1.4 Does EA stimulation have a measurable effect in assisting SMR 

training? 

This thesis also aimed to investigate whether EA stimulation had a significant 

effect on NFT and to identify any EA frequency-specificity in healthy subjects. In 

Exp I, by means of mixed-design ANOVA, used to examine the effects of Group (AE, 

LE, SE) and Time (before, during and after acustimulation) on behavioural measures, 

the findings overall had indicated that stimulation with alternating frequencies was 

superior to low frequency stimulation, in producing a sustained effect during the task, 

a benefit, which continued post-stimulation. In contrast, low frequency stimulation, 

while effective during stimulation, did not produce sustained benefits. 

In Exp III the method for analysing the resting EEG used in  Exp II was applied 

in order to properly validate any change in cortical activity after SMR training, 

compared to the prior reports of the traditional EEG after  SMR training  (Egner, et 

al., 2004). The use of ICA to decompose the ERP data in Exp I appeared a promising 

method to decode the resting EEG and to provide good resolution of the cortical 

activity and localization. The cortical changes resulting from three NFT protocols in 
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Exp III were also investigated with respect to electrophysiology, compared to the 

control group. 

However, the data from Exps I, II and III did not clearly show the 

frequency-dependent effect of EA on the two SMR training-assisted-by-EA protocols 

(AE+SMR and LE+SMR). Exp III did not provide further significant evidence for the 

different effects of the AE+SMR and LE+SMR protocols on measurements of 

attention, compared to SMR-alone training. Whereas the SMR-alone training resulted 

in an increase in d’ and a significant reduction in commission errors, SMR training 

followed by AE stimulation did not show additional benefits on the same attention 

task.  

On the other hand, in terms of the potentially reliable effect of SMR training on 

spectral EEG topography, the initial analysis of traditional spectral electrocortical 

measures, which compared the different effects of different NF protocols on resting 

EEG, provided no significant evidence for EA frequency-specific effects on EEG 

measures. In Exps II and III, in the three groups that were subject to actual SMR 

training, in the resting ICA-based EEG power spectra during the eyes-closed resting 

condition beta power (beta 1 and beta 2) showed significant increases, from parietal to 

frontal regions. The frontal and parietal regions of the RSNs involved in the EEG 

were found to be closely related to the dorsal attention networks, providing evidence 

of a relation between resting EEG activation and increased attentional performance. 

Whereas SMR training resulted in significantly enhanced frontal beta power (beta 1 

and 2), pseudo-SMR training was not related to a change in the power of frontal beta.  

Increments in beta activity, subsequent to SMR training, have been reported in 

clinical studies. These investigations involved subjects with demonstrably abnormally 
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low levels of beta band activity, prior to training (Lubar and Lubar, 1984; Monastra, 

et al., 2002). The probable reason for the ease with which a change in beta was 

detected in clinical cases with low levels of beta power after NFT is the relatively 

larger change in the amplitude of the beta band activity, in these patients, compared to 

healthy subjects. Therefore, previous studies, which used only EEG spectral methods 

in resting EEG, may not have been sensitive enough to fully identify the effect of 

SMR on increasing beta activity, in healthy subjects (Egner, et al., 2004). Using the 

same conjecture, the use of behavioural dependent variables in reports on NFT may 

be sufficient to determine the potential effect of NF on such measures, but insufficient 

for the situation of combining EA stimulation and NF in healthy subjects. This 

theoretical treatment of the important issue of the mediating effect of combining 

endogenous and exogenous factors on behavioural change has not been presented in 

previous research. 

In summary, this thesis significantly provides evidence for SMR training effects 

on electrophysiology and on behavioural change, compared to the control group with 

the pseudo-NFT. The electrophysiological effects on attentional networks with 

enhanced beta power mainly appear to be underpinned by NFT-specific 

electrophysiological effects mediating behaviour, and apparently attributable to 

factors inherent in SMR contingencies training, rather than practising and 

concentrating on a computer screen.  
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6.2 Implications of this Thesis 

Although the results of the studies that constitute this thesis are discussed and 

presented without strong supportive evidence for a significant, EA frequency-specific 

effect on SMR training in healthy subjects, the demonstration of SMR training 

satisfied, in part, the goal to explore the mechanism of SMR training. Further research 

on the EA effects on SMR are required to prove this assumption, in accordance with 

the underpinning mechanism and the theoretical framework in both healthy subjects 

and patients. 

The impact of the results on the theoretical conceptualisation of the EA 

stimulation and SMR neurofeedback paradigms, on the evolutional method of 

studying ICA-based resting EEG networks, and on the combination of NF assisted by 

EA, is discussed separately in the following subsections, followed by some comments 

on methodological limitations and future research possibilities. 

 

6.2.1 Transcutaneous Electrical Acustimulation and its application 

The results of Exp I encourage the future use of EA with different frequencies in 

order to study brain function and associated effects on attention. In clinical practice it 

is important to obey the guidelines for safety. The acupoints around hands and wrists 

and the distal acupoints located on upper limbs require proper settings to avoid 

adverse effects in clinical application, as recommended by the British Medical 

Acupuncture Society (BMAS). In addition, the safety of the design, using a pair of 

acupoints on each hand in Exps I and III, has been reported in a recent study which 

claimed that electrical fields generated by pairs of needles below the knee or elbow do 
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not create a detectable spread of current along the limb or into the chest (Thompson 

and Cummings, 2008). In particular, electroacupuncture should not be applied such 

that the current is likely to traverse the heart, for example, from one shoulder to the 

other shoulder. Therefore the paired HeGu and NeiGuan (LI-4 and P-6) acupoints 

used in the thesis were not only effective, but also a safe method of studying attention, 

compared with methods used in previous published research or clinical trials which 

used the proximal location of the limbs, paraspinal muscles and neck or head regions 

(e.g., Luijpen, et al., 2005; van Dijk, et al., 2002). 

Notwithstanding the beneficial outcome on sustained attention for safe peripheral 

stimulation that was demonstrated, this section must address some issues that will be 

relevant to future research, especially for the combined stimulation and feedback 

methods. Firstly, the prolonged period of the neurobiological effects on attention 

generated by stimulation remains unknown. Empirically the most effective post 

stimulation period was a minimum of 30 minutes in this study, which is similar to the 

report of Claydon et al. (2008) which used a pressure pain threshold. However, for 

post stimulation to assist NFT, the optimal period post stimulation is still worthy of 

study. Secondly, the optimal sites for influencing cognition have not been 

systematically examined. Although HeGu (Li4), NeiGuan (P6), Zusanli (St36) and 

Taichong (Liv3) have been reported to be possible sites for improving cognitive 

function (e.g., Hui, et al., 2005; Yan, et al., 2005), the optimal sites both for 

influencing cognitive function and for aiding NFT still require further research. 

Thirdly, the associated mechanism at the neuropeptides level is still not well 

understood, although several neurotransmitters, such as endorphins, serotonin, and 

dopamine are believed to influence attention and memory systems (e.g., Boulougouris 
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and Tsaltas, 2008; McNab, et al., 2009; Weizman, et al., 1987). Further research 

should be conducted to combine the behavioural, electrophysiological and 

neurochemical modulation measurements, in order to study these methods with 

combined NFT and EA stimulation. 

In summary, not only do the EA studies in this thesis provide sufficient evidence 

for an immediate effect on healthy subjects’ attention, as characterised by significant 

changes in behavioural attention performance in the repetitive visual attention tasks of 

Exp I, but also the results for behavioural attention performance are in agreement with 

the idea that EA aiding SMR training is a viable model of cognitive training or 

therapy for clinical populations with attention disorders. 

 

6.2.2 SMR training 

In the review section regarding NF protocols studied in clinics, SMR training has 

developed from the most elaborate empirical and theoretical studies (see the 

Introduction section, 5.1). The role of SMR operant conditioning in controlling 

seizures and in studying the physiological basis of the rhythm, in both animals and 

humans, has been the subject of extensive research (Sterman, 1996; Sterman and 

Egner, 2006). However, the impact of SMR training on healthy subjects remains 

equivocal. More specifically, the effect of SMR training on both impulsive and 

inattentive aspects of attention disorders seems to be possible, through a direct impact 

on sensorimotor excitability and an indirect impact on sensory-cognitive integration 

by means of reduced motor interference (Egner, 2002). Previous research on the SMR 

protocol with no adequately designed control group has been an impediment to its 
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further development in clinical usage and research (Shouse and Lubar, 1979; Tansey, 

1984, 1985, 1986).  

Therefore firstly, this thesis has tried to bridge the gaps between the empirical 

literature and theoretical ideals, by attempting to enhance the specific effects of SMR 

training on the outcome EEG measurements for SMR training and improved 

perceptual sensitivity, with decreased errors of attention. Secondly, compared with a 

pseudo-neurofeedback control group, a significant increase in cortical activation is 

illustrated (see the Method section, section 5.2). Thus, Exps II and III provide 

evidence for the effect of SMR on behaviour and electrophysiology. The NF-related 

changes are more easily seen in EEG reactions (ERPs, ERDs and during NFT periods), 

but not in the resting EEG spectrograms (Kropotov, et al., 2007). Spectrograms are 

more variable than ERPs/ERDs, especially because of individual variations in 

spectrograms, and therefore significant changes in spectrograms may not be evident 

due to large standard deviation. In addition, NF may indeed change only the reactivity 

of the brain to certain stimuli in certain conditions (situation-specific preparation 

during training and immediately after training).  

The implied links between attention and the increased resting beta activity in the 

dorsal attention (frontoparietal) networks and the decreased theta activity during 

training periods and the resting state are discussed in the following paragraphs.  

Importantly, an increase in beta activity subsequent to SMR training has been 

reported in clinical studies, as well as in studies of healthy individuals. Another type 

of NFT was developed by Congedo et al. (2004), which used low resolution brain 

electromagnetic tomography (LORETA) – NF, to increase beta power in the area of 

the anterior cingulate cortex (ACC) after training (Cannon, et al., 2009; Cannon, et al., 



310 

 

2007; Congedo, et al., 2004). The results indicated that the subjects were able to 

increase beta power in the ACC as well as in adjacent areas, but no increase was 

detected in more distant locations (Cannon, et al., 2009).  

In contrast to the control condition in Exp III, the NFT with actual SMR was 

accompanied by a significant reduction in theta activity in the central region of the 

resting EEG (e.g., theta/beta training with a tendency toward a decrease in the 

posterior-midline theta activity; Gevensleben, et al., 2009b). In addition, a recent 

study related to ADHD has reported that impaired functional connectivity within 

brain attention networks may contribute to this disorder (Mazaheri, et al., 2010). More 

results from EEG spectra also support a re-conceptualization of ADHD, based on the 

CNS abnormality that underlies the disorder, rather than the behavioural profile of the 

child (Clarke, et al., 2002). ADHD patients’ distinct EEG clusters are characterized by 

increased high amplitude theta, with a deficiency in beta activity (Chabot, et al., 2005; 

Clarke, et al., 2001). Evidently, in terms of beta and theta activity, the straightforward 

effect of SMR training on these relevant frequency bands may alter the EEG rhythmic 

bands, allowing the theoretical application of SMR training to treat ADHD in clinics.  

With regard to the role of theta in the resting EEG, a significantly decreased 

theta activity in the central region was also found in real SMR groups, but not in the 

pseudo-NF group. Some previous SMR studies have already reported that the same 

setting of the SMR/theta protocol is associated with significantly increased perceptual 

sensitivity in the attention task (e.g., Egner, 2002; Egner and Gruzelier, 2004; Egner, 

et al., 2004). In fact compared to SMR with theta activity in the training period, the 

decreased theta amplitude has a greater contribution to the SMR/Theta ratio than the 

increased SMR. Therefore, the significant decrease in theta activity in the resting EEG 
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and during the NFT period is considered to be a characteristic of wakefulness in 

healthy subjects (Bertini, et al., 2007; Strijkstra, et al., 2003). Several studies of 

patients with ADHD have shown that less stable vigilance and a worse continuous 

performance test associated with an elevation of theta activity and a decrease in the 

power of fast (i.e. beta) frequencies (e.g., Arns, et al., 2009; Barry, et al., 2003; 

Sander, et al., 2010). Therefore, in line with the theory that NFT reverses the ratio (to 

increase fast and decrease low frequency activity), the concept is an elementary rule 

for the treatment of subjects with ADHD. Based on the hypothesis of insufficient 

cortical arousal in those patients, NF as a generic tool to stimulate cerebral arousal 

regulation for ADHD is "Efficacious and Specific" (Level 5) in a meta-analysis (Arns, 

et al., 2009). 

The SMR/theta ratio in the SMR training should be considered as an index of 

cortical arousal level, based on the description of vigilance stages (Sander, et al., 

2010). The vigilance stages refer to distinct states of global brain activation (Olbrich, 

et al., 2009), observable on the continuum ranging from full wakefulness to sleep 

onset (e.g., Sander, et al., 2010). Importantly, during the transition from resting 

conditions, from eyes-closed to sleeping, a gradual reduction in alpha power and a 

gradual increase in theta power occurs (Strijkstra, et al., 2003). Therefore, even a 

simple awake eyes-closed EEG could demonstrate a positive relation between theta 

power and sleepiness. In fact, high theta power may indicate a high motivation for 

sleep, because it follows the increase in alpha power that occurs during sleep entry 

(Bertini, et al., 2007; Strijkstra, et al., 2003; Tanaka, et al., 1997).  

Surprisingly, it was found that SMR training is associated with a relative 

reduction in post-training SMR activity in the EC resting EEG, which implies a link 
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between this reduction in resting SMR activity and the reduction in the number of 

commission errors (Egner, 2002; Egner, et al., 2004). It has been suggested that rather 

than leading to permanently robust levels of SMR activity, this training may be 

correlated with an improvement in control or may facilitate more efficient circuitry to 

suppress motor and somatosensory interference in attentional processing. In addition, 

the total context of SMR activity before and during NFT also agrees with a report of 

the impossibility of maintaining a high amplitude mu (SMR) rhythm (Niedermeyer, et 

al., 2004). Therefore, any assumption concerning the long-term sustained effect of 

SMR training should consider its role in the attention network, motor preparation and 

execution, since the SMR rhythms reflect sensorimotor processing in frontoparietal 

networks (Pineda, 2005) and in SMR desynchronization (ERD) or synchronization 

(ERS) after SMR training. Further studies are required to prove this assumption, in 

accordance with the post-NF EEG activity with long-term effects in both healthy 

subjects and patients.  

There may be an explanation for the decreased SMR in the central area (around 

bilateral somatosensory cortices) in the eyes-closed resting EEG. The observed 

findings could be explained by a reduction in μ-rhythms, during the subconscious 

“planning”, just before performance (Krepki, et al., 2007; Manoilov and Borodzhieva, 

2008), representing preparation for movement accompanied by a power decrease in 

certain frequency bands, termed Event-Related Desynchronization (ERD) 

(Pfurtscheller, 2000; Pfurtscheller, et al., 1996). In fact, it is very difficult to 

discriminate between more than two mental states, when only imagery-induced ERD 

patterns are available (Klimesch, 1999). Therefore, those subjects (in the groups 

receiving actual SMR feedback protocols) may produce reduced SMR rhythms (with 
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profitably subconscious planning of the following NFT), during the period of the EC 

baseline state (the resting EEG recorded before the SMR training). Again, these novel 

findings in this thesis, with significant spectral changes in pre- vs. post-training 

assessment, are compatible with some previous research illustrating significant 

increases in SMR, during the actual training period, but depicting non-significant 

decreases in SMR, post-training in the EC resting EEG of healthy humans 

(Doppelmayr, et al., 2009; Egner, et al., 2004) and patients (e.g., Gevensleben, et al., 

2009b; Pineda, et al., 2008).  

In the view of exogenous stimulation, the outcome index of the AE group 

(receiving electrostimulation with high and low alternating frequencies) showed a 

greater decrease in theta amplitude than the index data for the SMR group, especially 

in the training period. A similar result was reported by Chen et al., in 2006, and they 

demonstrated decreased theta during high frequency EA stimulation of the hands 

(Chen, et al., 2006). Although this team reported only an instant effect from the EA 

stimulation, other acupuncture papers have mentioned a prolonged effect, due to 

stimulation of the CNS neurotransmitter, post acupuncture stimulation (e.g., Dhond, 

et al., 2008; Han, 2004). Other fMRI papers have documented the effect of 

acupuncture on the RSN or DMN (e.g., Dhond, et al., 2008) and provide a stimulus 

for the research of SMR training assisted with electroacustimulation.  

In summary, this thesis provides new evidence for significant attention 

improvement due to SMR training, in healthy subjects. Compared with the 

pseudo-NFT, the enhanced perceptual sensitivity from actual SMR training agrees 

with previous research into the efficacy of SMR in improving attention performance 

(d'). Evidence for resting EEG activity at post-training has been interpreted as 
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demonstrating more flexible control over the SMR rhythm and meaningfully 

persuasive links between attention and a reduction in resting SMR activity and the 

increase in resting beta activity in the dorsal attention (frontoparietal) networks and 

links between wakefulness and a decrease in theta activity during the training period 

and the resting state.  

Of course, in order to explain the precise relationship between the EEG changes 

during NFT process, it should be considered whether those subjects, after real SMR 

(several sessions), would have the same imaginary processing without real-time EEG 

feedback. Some fMRI studies have given positive reports for a similar design and 

results (e.g., Caria, et al., 2007; Rota, et al., 2009). Based on this hypothesis, a home 

program with a mimic feedback and a recorded on-line audiovisual clip from a real 

SMR training session could probably be considered for clinical use in the future. 

 

6.2.3 The combination of NF assisted by EA 

The SMR training produced a significant and reliable effect on both perceptual 

sensitivity and enhanced EEG beta power in the frontal cortex. Both of EA and NFT 

effects must be considered together because of to their similar neuromodulation, not 

just to demonstrate the ordinary effect of SMR training alone, but to further validate 

the assumption of the potential effect of exogenous stimulation on endogenous 

training. Although the results of Exp I provide a sensible rationale in terms of 

attention performance for the use of the EA stimulation, and as these data have 

already been appraised, the study of the integration of neurofeedback and EA 

stimulation is still largely unsatisfactory. 
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For the treatment of brain disorders, for instance, the US Food and Drug 

Administration (FDA) has approved devices such as a wrist electrical stimulator and a 

cranial electric stimulator (e.g., Hirshberg, et al., 2005). However, acupuncture and 

electroacustimulation may be the best form of treatment for altering the brain, 

providing peripheral stimulation of the brain via sensory inputs, not only because of 

its long history of application in humans, but also because of recent reports that 

provide persuasive reports of neuroimaging in brain function (e.g., Chen, et al., 2006; 

Dhond, et al., 2008). Thus, the advantages of this stimulation strategy to intervene and 

improve brain function are well presented in Exp I, but the study of the integration of 

neurofeedback and stimulation is still largely unsatisfactory due to the natural 

weakness of artefacts or bias in the EEG recording. Since fMRI is much more 

expensive and less widely available than EEG equipment, the refinement of EEG 

recording and analysis may support the use of EA as an adjuvant. 

Based on Exp II, there is evidence for an efficient pipeline that eliminates most 

of the vagueness from volume conduction, so the ICA-based resting EEG power 

spectra can be used to study cortical activation in healthy subjects. The thirteen ICs 

identified by using ICA-based resting EEG analysis were grouped to construct five 

regions, depending on their correlation coefficient for EEG-alpha power in the EC 

state. The functional networks (connectivity) constructed by those five regions and 

thirteen independent components have also been demonstrated to be very similar to 

the BOLD signals that constitute the resting-state networks (RSNs) or default mode 

network (DMN) of the brain in the fMRI.  

In Exp III the improved perceptual sensitivity (d') was increased by using SMR 

to significantly reduce the number of commission errors and to enhance a subject’s 
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wakefulness by inhibiting theta activity during the SMR training period. The analysis 

of spectral changes in resting EEG, post-NFT, meaningfully explained the associated 

beta rhythmic activity in the frontal area, post actual SMR training (details in the 

section 6.2.2), compared with the pseudo-NFT. These associated links between 

enhanced cognitive function and changed rhythmic activity in the frontal region of the 

attention network in the resting EEG seem to show the same inclination as actual 

SMR training, which is a striking contrast to the results for pseudo-NFT.  

In summary, this thesis demonstrates that protocols of SMR training and SMR 

training assisted by EA can facilitate operant enhancement of in-training SMR/theta 

ratios, a decrease in the number of commission errors, and an increase in perceptual 

sensitivity, post training, which endorses the use of the SMR EEG-biofeedback 

protocol. The results supplement present arguments for the use of an NFT protocol in 

healthy subjects and provide an electrophysiologically based rationale for empirical 

clinical applications for disorders characterised by lack of frontal beta band activity 

and excessive central theta band activity, such as ADHD. The findings of this thesis, 

showing replicable improvements and concurrent and relevant measures of 

electrophysiological activation, comply with the general clinical assumption that the 

combination of stimulation and feedback may be more effective than either alone (e.g., 

Hirshberg, et al., 2005). 
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6.3 Methodological Limitations and Future Directions 

The major methodological limitations of the three studies in this thesis are 

presented in the interpretation of the results and the recommended modifications and 

additions for possible future studies, detailed in previous sections (6.1 and 6.2). Thus 

this section indicates primarily the limitations of data collection, and how this could 

be rectified in future studies. 

In view of the data collected that showed the effects of SMR neurofeedback 

protocols and the likely explanation for its electrophysiological activity, it is apparent 

that there is still too little information pertaining to actual real-time training. Firstly, 

the in-training EEG data collected in this thesis consisted of single electrode records 

that only cover the ongoing activity in the frequency components involved in the 

feedback process, but not the entire head EEG recordings, which would show 

real-time possible connections. Furthermore, these data mainly consist of blocks of 

mean amplitude values for regular sampling intervals (i.e. 3-min or 2-min periods) in 

a recording channel (Cz). Taken together, the in-training data does not allow any 

possibility to explore the topographical and temporal spectral dynamics of the actual 

feedback learning process in the entire brain. However, this limitation of the 

in-training data collection in a Cz channel is partially solved by the double 

whole-scalp EEG recordings, prior and subsequent to the overall NFT courses. 

Nevertheless, this thesis does not provide real-time, whole-scalp EEG data to address 

the question of in-training EEG generation (and possible source localization analysis) 

or progressive changes in topographical EEG spectra. These limitations may prevent a 

more thorough understanding of how exactly various training protocols produce their 

effect during the period of feedback sessions. From the current data, the issue of 
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real-time determination of electrophysiological effective mediation has thus not been 

solved. Accordingly, in future investigations, the monitoring of whole-scalp EEG 

records during training sessions may be highly desirable, in order to provide evidence 

of effective NFT to brain interaction, regardless of the highly time consuming and 

intensive challenge in amassing whole-scalp EEG records. 

Alternatively, during an early or a late session in the NFT program, the 

monitoring of such training data could provide valuable data to show a real-time NFT 

effect. Indeed for comprehensive research, the assessment of cognitive-behavioural 

dependent measures at pre- and post-training should also be performed using 

whole-scalp EEG recordings, simultaneously. These improvements for the future 

study of neurofeedback would likely allow the detection of a direct electrocortical 

linkage, for instance the process of functional connectivity within the training sessions 

and its consequences. 

A further issue that has not been addressed fully in this thesis is the question of 

the long-term effect of NFT. The application of these techniques to normal subjects 

and to clinical cases is based on their potential to evoke long-term effects. The 

experimental work presented in this thesis implies inferences from the changed 

resting EEG power spectra. Accordingly, the setting of baseline resting EEG power 

spectra, analysed by ICA and using significant increases in beta power in the frontal 

region related to the DAN, could be used to investigate the long-term effects of NF on 

cortical activity. Therefore in the future, studies will need to involve regular follow-up 

assessments by EEG and behavioural measures over a long time interval, in order to 

evaluate the costs and efficacy of NFT (both in terms of time and money). As a 
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cognitive performance enhancement tool in clinics or for a particular purpose in 

education, NFT must be justified by long-term returns.  

One more issue that arises from establishing NFT as a scientifically 

evidence-based clinical technique is the establishment of a control group, to 

demonstrate the significant effects on relevant behavioural outcome measures and a 

demonstrable illustration of the neurophysiological outcomes of such NFT effects. 

The control with pseudo-NFT, in Exp III, engages in similar audiovisual feedback 

technique training but there is no presentation of the subject’s own real-time brain 

waves. Therefore, these actual NFT effects should not be attributed to practice or 

motivational factors, because there are no significant changes in any of the variables 

assessed in the attention task, for the control group. Evidently, future NFT research 

with an adequately designed control group will support further development in 

clinical usage and research 

Finally, from the statistical point of view, increasing the statistical power of 

comparable investigations is highly recommended, especially in a study such as Exp 

III, with four groups. Sample sizes should be large enough to distinguish four groups 

with all related behavioural data, outcome dependent measures and resting EEG ICA 

power spectra.  
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6.4 Final Conclusions 

The experimental work in this thesis provides evidence that SMR neurofeedback 

training enhanced perceptual sensitivity and attention, in healthy subjects, due to 

measurable differences in cognitive, electrocortical and outcome measures. These 

effects of NFT and EA stimulation, which were specific to the ICA-based EEG power 

spectra, clarify the theoretical conceptualization of SMR and the strategy for a 

combination of endogenous with exogenous methods, for training protocols in 

practice. The potential consequence of their combined applications may be better than 

SMR or EA stimulation alone in subjects with cognitive disorder. The results also 

ascribe the assumed effects to the intrinsic factors in the SMR training process with a 

possible assumption of a particular assistant role of EA stimulation. The underlying 

changes in resting EEG spectra, after NFT, in regard to actual operant training 

contingencies, is illustrated by the congruent evidence of enhanced beta power in the 

frontal cortex with the observed corresponding attentional performance, indicating an 

improvement in behaviour that is mediated by electrophysiological enhancement.  
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SUMMARY

Introduction: Chinese acupuncture therapy has been practiced for more than 3000 years.

According to neuroimaging studies, electroacupuncture has been demonstrated to be effec-

tive via control of the frequency parameter of stimulation, based on the theory of frequency

modulation of brain function. Aims: To investigate the following: (1) possible sustained

effects of acustimulation in improving perceptual sensitivity in attention by comparing be-

fore, during, and 5 min following stimulation; (2) relations between commission errors

and the motor inhibition event-related potential (ERP) component measured with inde-

pendent component analysis (ICA); (3) whether habituation would be demonstrated in the

sham control group and would be militated by acustimulation in the experimental groups.

Results: Twenty-seven subjects were divided into three groups (n = 9). d-Prime (d′) de-

rived from signal detection theory was used as an index of perceptual sensitivity in the visual

continuous performance attention test. Increased d′ was found during both alternating fre-

quency (AE) and low frequency (LE) stimulation, but with no change in the sham control

group (SE). However, only following AE was there a sustained poststimulation effect. Spa-

tial filtration-based independent components (ICs) in the AE group revealed significantly

decreased amplitudes of the motor inhibition ICs both during and poststimulation. There

was a significant habituation effect from task repetition in the sham group with decreased

amplitudes of ICs as follows: the visual comparison component difference between go (cor-

rect response) and nogo cues (correct withheld response), the P400 action monitoring and

the working memory component in the nogo condition, and the passive auditory compo-

nent on control trials. Conclusion: The results showed associations between acustimulation

and improved perceptual sensitivity with sustained improvements following AE, but not LE

stimulation. Improvements in commission errors in the AE group were related to the motor

inhibition IC. The activational effects of acustimulation apparently attenuated the across-

task habituation that characterized the control group.

Introduction

Acupuncture therapy has been practiced in Chinese medicine

for more than 3000 years with applications including treating

headache, recovering from stroke, and controlling pain [1–4].

Acupuncture can be considered an important complementary

medicine practice, with increasing interest from the public, and

both the National Institute of Health (USA) and the World Health

Organization have summarized guidelines on acupuncture ther-

apy [5,6]. Recent years have seen increased interest in acupunc-

ture therapy in neuroscience including (1) mechanisms of action

[7], (2) respondent brain areas [8,9,10], and (3) temporal dynam-

ics such as immediate and/or delayed effects [11,12]. With the

increasing development of acustimulation methods for cognition,

reliability requirements have become more critical.

Peripheral electrical stimulation may be elicited via electrodes

located on the skin (transcutaneous electrical nerve stimula-

tion, [TENS]), and the process is usually named electroacupunc-

ture stimulation or acustimulation [13]. Wang et al. have

demonstrated that TENS operates through very similar mecha-

nisms to traditional acupuncture [14], with the mechanism of

therapeutic action thought to involve neurotransmitter and opi-

oid peptide systems [1,13–16]. To facilitate the release of neu-

ropeptides in the central nervous system (CNS), the stimulus

CNS Neuroscience & Therapeutics 00 (2010) 1–16 c© 2010 Blackwell Publishing Ltd 1
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parameters of electroacupuncture (intensity, mode, frequency,

etc.) can be controlled more precisely than by manual acupunc-

ture. Furthermore, the uncomfortable pain sensation induced by

needle manipulation is undesirable and an invasive procedure

may also carry the risks of hematoma formation and infection.

Electroacupuncture has been the procedure of choice for its com-

fort, convenience and high repeatability during an individual stim-

ulus program.

Different types of endorphins for analgesia have been selectively

released by low- and high-frequency acustimulation [13,17]. Low-

frequency stimulation has induced the release of enkephalins,

whereas high-frequency stimulation has increased the release

of dynorphins in both animal and human experiments [13,18].

Therefore acustimulation in specific frequencies can facilitate the

release of specific endogenous opioid peptides for acupuncture-

induced analgesia in the CNS. Furthermore, through increases in

the level of enkephalins and serotonin in the CNS and plasma

acupuncture could affect psychological processes, hence applica-

tions for the treatment of depression and anxiety [18–20].

Regarding the temporal effects, both short-term and long-term

impact has been examined. It has been proposed that the basic

mechanism of the former involves immediate frequency modula-

tion of neuroplasticity [7], and of the latter gene transformation

of protein synthesis in specific cortical areas as shown with neu-

roimaging [8,9]. Dhond et al. have claimed that acupuncture can

“enhance the post-stimulation spatial extent of resting brain net-

works to include anti-nociceptive, memory, and affective brain re-

gions” [11]. It follows from the neuroimaging results, summarized

in the Discussion, that there is a likely impact of acustimulation on

cognitive functions aside from therapeutic outcome.

There has been limited research showing differential effects be-

tween low- versus high-frequency stimulation on cognitive func-

tion. With the electroencephalograph (EEG), scalp maps of high-

versus low-frequency effects have been investigated in a resting

eyes-closed condition, but not in cognitive tasks [12]. In general

the relationship between acustimulation and task-evoked brain

activity is a neglected area.

As a behavioral task we utilized a continuous performance vi-

sual attention test, which has a venerable history in applications

in psychopharmacology [21–25] and neurochemistry [26–28]. For

about half a century variants of the task have been used to locate

impairments and monitor the efficacy of treatments. Applications

have ranged from aging [29,30] to sleep deprivation [31], neu-

robiological disorders including amnesia [32,33], dementia [34],

traumatic brain injury [35], and HIV infection [36], and most

widely psychopathology including attention deficit hyperactivity

disorder (ADHD) [37–39], obsessive compulsive disorder [40,41],

depression [42–44], posttraumatic stress disorder [45], and most of

all the schizophrenia spectrum [46–52]. The application of signal

detection theory [53] to extract a d′ index of sensory sensitivity

has been long established in studies of psychopathology [54,55].

This study also uses methods of EEG and event-related poten-

tial (ERP) topographic mapping, independent component analysis

(ICA), and standardized low-resolution electromagnetic tomogra-

phy (sLORETA) to study acustimulation and sustained attention.

Our main goals were to investigate the impact of elec-

troacupuncture stimulation on attention and to compare alternat-

ing versus low frequencies on behavioral performance, the per-

ceptual sensitivity in attention, topographic EEG, and ERPs for

both immediate and poststimulation effects. According to previ-

ous research we expected to find that the alternating frequency

electroacupuncture was superior to low-frequency stimulation

[13,56]. In addition, due to a repeated task design, we hypothe-

sized that habituation would be found in the control group, but

not in the two acustimulation groups who would be resistant to

habituation because of the activational effects of stimulation. In

order to examine if specific cortical areas were affected by elec-

troacupuncture and habituation, we used topographical EEG ex-

amination with the ICA method, and applied spatial filtration from

a normal database.

Materials and Methods

Subjects

Data were recorded from 30 individuals, but because of techni-

cal problems or excessive artifacts, three data sets were excluded

from further analysis. Twenty-seven healthy volunteers (20 fe-

male, 7 male), mean age = 22.5 (SD = 1.56, range 18–30 years)

from Goldsmiths, University of London, participated in the study.

Subjects were excluded if they had any history of epilepsy, drug

abuse, head injury, or psychiatric disorders. Those participants

currently having any sore, pain, cut, skin problems on the hands

or receiving psychoactive medication were also screened out. All

subjects had not experienced acustimulation before our testing.

All had normal hearing and normal (or corrected-to-normal) eye-

sight. Written consent was obtained prior to the start of the experi-

ment in accordance with the Helsinki Declaration, and the current

investigation received the ethical approval from the College Re-

search Ethics Committee.

Participants were randomly assigned to one of three experimen-

tal groups of equal size (N = 9) with the method of randomly per-

muted blocks http://www.randomization.com. Group 1 (alternat-

ing frequency, AE) who received stimulation with alternating low

(5 Hz) and high (100 Hz) frequencies; Group 2 (low frequency, LE)

received stimulation with the low frequency (5 Hz) only; Group 3

(sham electrostimulation, SE) received a control condition with

the minimal intensity for electroacupuncture.

Experimental Design

Each subject was asked to perform a continuous performance vi-

sual attention task and sat in a comfortable armchair through-

out the duration of the experiment in a quiet room. They were

seated facing a computer screen, 100 cm in front of them, and

were instructed to press a response button whenever a visual tar-

get stimulus picture occurred and to withhold responses to other

stimuli. Detection accuracy and response time were recorded dur-

ing the repetitive tasks. All subjects were blind to the stimula-

tion mode and effect. They were told that the machine could

stimulate acupuncture points through high-frequency or low-

frequency stimulation, and this may or may not give a sensation.

Transcutaneous electric acupoint stimulation (Han’s acupoint
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Figure 1 The location of two acupoints. (A) HeGu, (B) NeiGuan, and (C) the application of the stimulator device on both acupoints.

nerve stimulator [HANS], Wearnes Technology, Singapore) was

applied. The selected acupoints were LI-4 (HeGu point) and P-6

(NeiGuan point) of both hands. The HeGu point is located at the

first inter-interosseous muscle of the hand. The NeiGuan point is

located on the anterior surface of the wrist between the tendons of

the flexor carpi radialis and the palmaris longus, next to the me-

dian nerve, and on average 3–5 cm proximal to the flexor crease.

The two acupoints of each hand were stimulated at the same time

as a circuit in one output channel of HANS (Figure 1) in order to

prevent unusual current overflowing across the body inducing ar-

rhythmia. Subjects received stimulation via four adhesive surface

electrodes (size: 4 cm × 5 cm) at the aforementioned bilateral acu-

points. The stimulation intensity for the real acustimulation was

adjusted to a maximal but comfortable level, slightly below the

pain or discomfort threshold, ranging from 7 to 15 mA. For the

sham acustimulation the intensity was set at less than 5 mA [57].

Based on the literature review [57–64], we selected sham acus-

timulation applied to the same points with minimal intensity as

our control placebo model, and only the intensity parameter of

stimulation was different from the real stimulation groups.

Each subject was instructed to pay no attention to the sensation

induced at the stimulated site, and to focus on the attention task.

All 27 subjects were assessed by evaluating their behavioral results

from the attention task and the event-related EEG measures in

the three study stages (before stimulation, during stimulation, and

5 min poststimulation). Each study stage consisted of 5 min eyes

closed baseline EEG, 5 min eyes open baseline EEG, and 20 min of

the attention task.

Attention Paradigm

The two-stimuli go and nogo task is a subtype of the general go

and nogo paradigm. When the “go” stimulus is presented a man-

ual response is required whereas when a “nogo” stimulus is pre-

sented the response is to be withheld. The purpose of this design

is to examine two types of errors, namely those representing inat-

tentiveness and impulsivity. The task presents stimuli in pairs so

that the subject would implicitly be ready to make a decision af-

ter the first stimulus in the pair and to respond as fast as possible

after the second stimulus is shown on the screen. Here the im-

ages were flashed on the screen in pairs within 3 seconds with

the instruction to press a button when the target pair occurred.

The stimuli were nonlanguage based and consisted of a total of

20 different images of animals (A), plants (P), or humans (H). In

addition, each human picture was presented together with a pure

tone of 500 Hz of 20 ms duration. Four different categories of tri-

als were shown: “Animal-Animal (A-A),” “Animal-Plant (A-P),”

“Plant-Plant (P-P),” and “Plant-Human (P-H).” The duration of

the stimuli was 100 ms, and trials were presented in a random

order with equal probability. Interstimulus intervals were 1400

ms, and long enough for subjects to prepare their responses; the

total interval between trials was 3100 ms. The task consisted of

400 trials, divided into four sessions with 100 trails each, and took

around 20 min. The subject had to press a button as fast as possible

when the A-A pairs were presented on a screen and ignore other

pairs of stimuli (A-P, P-P, P-H, Figure 2) (Psytask user manual,

http://www.mitsar-medical.com) [65].

Electroencephalographic (EEG) Recordings
and Pretreatment of EEG

Topographical EEG and ERP data of all participants were recorded

during the attention task. All neuroelectric data were recorded

using the Mitsar 21-channel EEG system, the “Mitsar-201”

(CE 0537) manufactured by Mitsar, Ltd. (http://www.mitsar-

medical.com), with a 19-channel electrode cap with silver-

chloride electrodes that included Fz, Cz, Pz, Fp1/2, F3/4, F7/8,

T3/4, T5/6, C3/4, P3/4, O1/2. The cap was placed on the scalp ac-

cording to the standard 10–20 system (Electro-cap International,

Inc. http://www.electro-cap.com/caps.htm). Electrodes were ref-

erenced to linked earlobes (off-line) and the input signals were

sampled at a rate of 250 Hz (bandpass 0.5–30 Hz). The ground

electrode was placed on the forehead. Impedance was kept below

5 k�. Electro-oculogram (EOG) data were recorded from elec-

trodes (Fp1/2) placed above the frontal muscles to monitor eye

blinking or movements. An EOG correction procedure to remove

artifacts was performed and nonspecific artifacts were rejected of-

fline. ERP waveforms were averaged and computed off line and

trials with omission and commission errors were automatically
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Figure 2 Stimulus presentation in the visual attention task: (1) prestimulus

interval, (2) first stimulus, (3) interstimulus interval, (4) second stimulus, (5)

poststimulus interval, (6) subject response. Two arrows and lines represent

the continuous time axis during the task with four pairs of pictures ran-

domly shown. The first pair, the Animal-Animal (A-A) pair, represents the

“go” cue, to which the subject should press the button. The second pair, the

Animal-Plant (A-P) pair, represents a “nogo” cue, and the subject should not

respond. The remaining two Plant-Plant (P-P) and Plant-Human (P-H) pairs

are control condition trials, and the subject should ignore them.

excluded from analysis. All participants performed the attention

task three times: before, during, and 5 min poststimulation.

Data management and Statistical Analysis

EEG data analysis was performed using WinEEG 2.83, the

commercial software from the Mitsar, Ltd. (http://www.mitsar-

medical.com). First, data were digitally filtered using a linear filter

to minimize drifts and line noise. ERP data epochs were extracted

(0 to 3000 ms) and baseline corrected (−100 to 0 ms). Epochs

containing unique, nonstereotyped artifacts (e.g., swallowing, ex-

treme muscle activities with amplitudes over 35 uV, electrode ca-

ble movements) were automatically rejected from further analy-

sis, whereas epochs containing repeatedly occurring artifacts (e.g.,

eye blinks, heart beat artifacts) were corrected using ICA [66,67].

The ICA method [68] (http://sccn.ucsd.edu/eeglab) was imple-

mented in the software, WinEEG, and written by Ponomarev

[65]. sLORETA imaging for locating cortical generators provided

source computations for the independent components (ICs) using

freeware provided by the Key Institute for Brain-Mind Research

in Zurich, Switzerland (http://www.uzh.ch/keyinst/loreta.htm)

[69].

The behavioral parameters included errors of omission (indica-

tive of inattentiveness), errors of commission (indicative of impul-

sivity), reaction time (RT) and reaction time variability (RTV). We

also introduced the parameter “d-prime” (d′) derived from signal

detection theory [53,70]. This takes into account both the ratio

of hit rate (H) and the false alarm rate (F) and is used as mea-

sure of perceptual sensitivity. Conventionally in calculating d′, H

is defined as (“H” = 1-[number of omission errors/number of tar-

gets]), and F as (“F” = number of commission errors/number of

non-targets). From these formulas, however, the d′ is not simply

[H–F], rather, it is the difference between the z-transforms of these

two rates and were calculated as [d′ = z(H)- z(F)]. In other words,

d′ measures both of these two error types as an index of perceptual

sensitivity [71,72].

To evaluate the effectiveness of acustimulation relative to the

sham procedure, a mixed-design ANOVA was used to examine

the effects of Group (AE, LE, SE) and Time (before, during, after

acustimulation) on behavioral measures. Separate ANOVAs were

performed on each of the five measures: omission errors, commis-

sion errors, RT and RTV, and d′ with the Bonferroni correction for

post hoc comparisons. Given the exploratory nature of the study, an

uncorrected significance threshold of P = 0.05 was used for each

of the five ANOVAs in order to preserve a reasonable sensitivity

for detecting real effects (i.e., to maintain a reasonable type I error

rate). Given this, caution must be used in interpreting each effect,

with greater credence given to those effects specifically predicted

a priori, as outlined in the Introduction. So that the reader can

judge which effects would survive a harsher significance criterion,

an adjusted alpha of 0.01 was also calculated using a Bonferroni

adjustment based on the number of tests (i.e., 0.05/5). The nature

of any significant interactions that emerged were explored using
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Table 1 Scores (mean ± standard deviations) for attention test measures before, during, and after electrostimulation (3 groups)

Group go/nogo Variables Before During After

AE Omission errors 1.22 ± 0.83 1.67 ± 1.66 1.33 ± 1.87

Commission errors 1.22 ± 0.67 0.11 ± 0.33 0.22 ± 0.67

d′ (d-prime) 5.09 ± 1.01 6.63 ± 1.36 6.88 ± 1.47

RT (ms) 401.00 ± 62.92 372.56 ± 65.28 358.22 ± 52.94

RTV (ms) 8.68 ± 2.23 8.23 ± 2.30 8.64 ± 2.65

LE Omission errors 4.33 ± 3.94 1.89 ± 1.69 4.11 ± 3.95

Commission errors 1.44 ± 1.33 0.56 ± 0.88 1.00 ± 0.71

d′ (d-prime) 4.47 ± 1.03 6.27 ± 1.13 4.79 ± 1.12

RT (ms) 379.00 ± 53.70 379.67 ± 54.35 378.89 ± 56.37

RTV (ms) 9.51 ± 3.22 10.67 ± 3.16 9.90 ± 3.15

SE Omission errors 5.67 ± 5.05 4.78 ± 3.96 5.67 ± 4.36

Commission errors 0.33 ± 0.71 0.67 ± 0.71 0.89 ± 1.17

d′ (d-prime) 5.79 ± 1.41 5.15 ± 1.23 5.23 ± 1.27

RT (ms) 349.22 ± 70.76 345.78 ± 44.53 353.67 ± 56.49

RTV (ms) 8.58 ± 4.46 9.56 ± 2.94 9.97 ± 4.18

AE, alternating frequency; LE, low frequency; SE, sham electrostimulation; RT, response time; RTV, response time variability.

contrast tests comparing mean scores across time periods (i.e., be-

fore vs. after, before vs. during, after vs. during) for each of the

three groups, in line with the primary goals of the study, includ-

ing parameters of ERP and ICs (latencies and amplitudes) in both

conditions (go and nogo cues).

Results

Behavioral Performance

Table 1 shows the means and standard deviations of the d′, com-

mission errors, omission errors, RT, and RTV scores of the atten-

tion task for the three groups, and in Table 2 the results of ANOVA

with repeated measures.

The results for d′ are shown in Figure 3 and Table 2. There were

significant main effects for Group (F [2,27] = 7.394, P = 0.003)

and Time (F[2,27] = 3.487, P = 0.048), and importantly there

was a Group × Time interaction (F[4,27] = 3.554, P = 0.013)

whereby relative to the control group stimulation in both AE and

LE groups resulted in higher d′, which indicates increased percep-

tual sensitivity (contrast tests, t[24] = 2.538, P = 0.018 and t[24] =
1.926, P = 0.066, respectively). Furthermore with AE the increase

in d′ with stimulation (t[24] = 2.532, P = 0.018; in Figure 3,

t1) was sustained poststimulation (t[24] = 2.932, P = 0.007; in

Figure 3, t2), whereas with LE the increase with stimulation

(t[24] = 3.494, P = 0.002; in Figure 3, t3) was not sustained post-

stimulation (t[24] = –2.884, P = 0.008; in Figure3, t4; nonsignifi-

cant before vs. after stimulation, t[24] = 0.611, P = 0.547; in Fig-

ure 3, t5). Moreover, the consequent difference between the AE

and SE groups poststimulation showed higher d′ scores following

AE stimulation (t[24] = 2.695, P = 0.013, contrast test).

For omission errors there was only a Group effect (F[2,27] =
4.347, P < 0.024), without significant effects of Time (F[2,27] =
1.727, P = 0.189) or a Group × Time interaction (F[4,27] = 1.210,

Table 2 The effects of Group and Time (before, during, after electrostimu-

lation) on the attention task with two-way repeated measures ANOVA

Source df F P

d′ (d-prime) Group 2 7.394 0.003∗∗

Time 2 3.487 0.048∗

Group × Time 4 3.554 0.013∗

Commission errors Group 2 2.090 0.146

Time 2 3.166 0.051

Group × Time 4 2.857 0.033∗

Omission errors Group 2 4.347 0.024∗

Time 2 1.727 0.189

Group × Time 4 1.210 0.319

RT (ms) Group 2 0.809 0.457

Time 2 2.013 0.157

Group × Time 4 2.347 0.068

RTV (ms) Group 2 0.605 0.554

Time 2 1.034 0.364

Group × Time 4 0.928 0.456

Group × Time indicates the interaction between group and time period.
∗significance level: P < 0.05; ∗∗significance level: P < 0.01; according to

Bonferroni correction.

AE, alternating frequency; LE, low frequency; SE, sham electrostimulation.

P = 0.319). The Group effect was attributable to the higher omis-

sion errors overall in the control group, as shown in Table 1, which

were also higher at baseline (P = 0.055, Bonferroni). On the other

hand, the commission errors, shown in Figure 4, disclosed both a

tendency toward an effect of Time (F[2,27] = 3.166, P = 0.051)

and importantly a significant Group × Time interaction (F[4,27] =
2.857, P = 0.033), which was due to a reduction in errors

with repetition in both electroacupuncture groups. The effects of
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Figure 3 Electrostimulation changes on mean d′ scores (± SEM) in the

attention task for both AE and LE groups relative to the SE control group (�

denotes P < 0.05; AE, alternating frequency; LE, low frequency; SE, sham

electrostimulation; t1, the contrast test during vs. before stimulation in the

AE group; t2, the contrast test after vs. before stimulation in the AE group;

ns, not significantduringvs. after stimulation in theAEgroup; t3, thecontrast

test during vs. before LE stimulation; t4, after vs. during LE stimulation; t5,

before vs. after LE stimulation, ns, not significant).

Figure 4 Electrostimulation changes on mean commission errors (± SEM)

in the attention task for both AE and LE groups relative to the SE control

group (� denotes P< 0.05; t1, the contrast test during vs. before stimulation

in the AE group; t2, the contrast test after vs. before stimulation in the AE

group; t3, the contrast test during vs. before LE stimulation; t4, after vs.

before LE stimulation; t5, after vs. before SE stimulation).

stimulation on d′ were found largely attributable to reductions in

commission errors (in Figure 4 and Table 1). Then underscoring

the pattern of results with d′, whereas with AE stimulation there

was a decrease in commission errors (contrast test, t[24] = –4.082,

P = 0.0004, in Figure 4, t1) which was sustained poststimulation

(contrast test, t[24] = -3.674, P = 0.001, in Figure 4, t2), with LE

there was a tendency toward a decrease in errors with stimulation

(contrast test, t[24] = –1.868, P = 0.074, in Figure 4, t3) which

was not sustained poststimulation (contrast test, t[24] = –0.934,

P = 0.360, in Figure 4, t4).

Figure 5 Postelectrostimulation changes onmean response times (± SEM)

in the attention task for the AE, LE, and SE control groups (� denotes P <

0.05; RT, response time).

Turning to the RT measures there were no significant effects of

Group (Table 2, F[2,27] = 0.809, P = 0.457), Time (F[2,27] =
2.013, P = 0.157) nor was there a Group × Time interaction

(F[4,27] = 2.347, P = 0.068). However, as can be seen in Table 1

and Figure 5, there was a mean reduction in RTs poststimulation

in the AE group compared with the SE group. Exploratory post hoc

analyses with the Bonferroni correction indicated that the reduc-

tion in RT differed significantly between the SE and AE groups

poststimulation (P = 0.023). Regarding response time variability

(RTV), there were no significant effects of Group (F[2,27] = 0.605,

P = 0.554), Time (F[2,27] = 1.034, P = 0.364) nor was there a

Group × Time interaction (F[4,27] = 0.928, P = 0.456).

ERP Data

The group grand averages of the two conditions (go and nogo)

in the attention task for the midline electrodes for each time

period (before, during, and after stimulation) are illustrated in

Figure 6. All three groups showed no statistically reliable changes

in the early ERP components (with latencies of 80–180 ms), or

in the late positive components (180–420 ms), and all groups dis-

played a trend of decreasing amplitude, but with no statistically

significant findings (see also Table 3).

Extracting Late ERP Components by Means
of the ICA Method and Spatial Filters

Motor Inhibition Component

Analysis of the grand mean ERPs in response to the difference

between go and nogo cues revealed a relatively large frontocentral

positive deflection in all groups, especially in the AE group (left

columns of Figures 7A and 8A). Interestingly, for the AE group at

Fz, Cz, and Pz, the motor inhibition component extracted by the

ICA method and spatial filters had a significantly decreased peak
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Figure 6 Grand average ERPs for each group and time block for themidline

electrodes in the attention paradigm. A frontally distributed negative ERP

component had greater amplitude for nogo in comparison to go stimuli and

wasassociatedwith response inhibition ingo-nogoparadigms (upperpanel).

No significant changes in amplitudes and latencies among three groups and

three time periods (before, during, and after stimulation) were found. (See

also Table 3.)

Table 3 Means and standard deviations for the visual attention ERP measures in each group before, during, and after electrostimulation

Group go/nogo Before variables During After

AE Pz go amplitude 6.07 ± 2.20 4.96 ± 2.28 4.77 ± 2.12

Pz go latency 323.78 ± 10.60 321.56 ± 13.33 322.44 ± 8.82

Cz nogo amplitude 9.22 ± 3.59 7.23 ± 2.49 7.21 ± 2.19

Cz nogo latency 348.67 ± 17.89 348.22 ± 16.38 344.67 ± 24.49

LE Pz go amplitude 7.10 ± 3.23 6.39 ± 2.78 6.24 ± 2.95

Pz go latency 321.56 ± 21.49 320.22 ± 24.13 317.56 ± 24.29

Cz nogo amplitude 8.39 ± 5.35 6.37 ± 4.33 6.76 ± 3.81

Cz nogo latency 362.44 ± 31.52 363.78 ± 31.31 355.33 ± 33.97

SE Pz go amplitude 5.20 ± 2.95 5.40 ± 2.28 4.36 ± 1.80

Pz go latency 324.44 ± 16.49 328.67 ± 19.34 326.22 ± 24.05

Cz nogo amplitude 7.01 ± 4.52 6.71 ± 3.88 5.37 ± 4.27

Cz nogo latency 354.00 ± 15.17 351.33 ± 22.05 342.44 ± 15.61

AE, alternating frequency; LE, low frequency; SE, sham electrostimulation.

from 372 ms to 396 ms, compared with the prestimulation stage

(during vs. before stimulation, P = 0.0156 in Figure 7; after vs.

before stimulation, P = 0.0143 in Figure 8) [73–75].

Analysis of ICs Related to Habituation/Inattention

To evaluate if a putative habituation effect in controls would be

inhibited by the stimulation with task repetition, we used the ICA

method to reveal the fundamental components in the ERPs. The

related ICs of ERPs were compared for the first and last task in

each group. Of 11 components that were identified by the spa-

tial filters based on the ICA from the Human Brain Indices (HBI)

reference database. (http://www.mitsar-medical.com) [65], seven

components responding to the “go and nogo” cues were meaning-

fully related to the visual attention task as follows: visual compar-

ison component at the left temporal area, visual comparison com-

ponent at right temporal area, P400 working memory component

at the frontal area, P300b component at the parietal area, slow

wave component at the hippocampus, P300 suppression com-

ponent at the frontal area, and P400 action monitoring compo-

nent at the anterior cingulate cortex (ACC) [65]. However, only
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Figure 7 (A) Grand mean extracted motor inhibition ICs at midline scalp

sites and correlated ERP of nogo-go cues, during stimulation (blue lines)

compared with prestimulation (red lines) in the three groups. Red lines

showed the prestimulation baseline of grand mean ERPs and grand mean

motor inhibition components in the three groups. The animal pairs were the

targets of the manual responses (GO cues), and nogo-gomeans the compo-

nent difference between go and nogo cues. Superimposed blue lines gave

the grand mean ERPs and grand mean motor inhibition components during

electrostimulation in the three groups. (B) Horizontal bars below each trace

represent t-test results from 0–1500 ms after the second stimulus onset,

with values P < 0.05 represented in gray between 372 and 396 ms, to il-

lustrate the time course of significant differences from the baseline in the

2D scalp maps. (C) The perspective views (top, sagittal, and coronal views)

showed the highest density of the motor inhibition component, according

to sLORETA images for cortical generators.
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Figure 8 (A) Grand mean extracted motor inhibition ICs at midline scalp sites and correlated ERP of nogo-go cues, after stimulation (blue lines) compared

with prestimulation (red lines) in the three groups. Layout as for Figure 7(A)–(C).

significantly changed ICs were considered further, as the goal of

this report was to describe and investigate the ICA features that

significantly changed by applying electroacupuncture and/or at-

tention task repetition (details in the next paragraphs).

The ICA decomposition of the attention task revealed similar

components in the three conditions. Between-group differences

in mean IC topographies in the prestimulation stage were barely

visible, suggesting a good reproducibility of the component char-

acteristics [76]. However, only with the control group did the dif-

ferences between the first and the third repetition in mean IC to-

pographies show fatigue according to time-on-task effects showing

significantly decreased amplitudes of the components [77–79,80].

Four components showed obvious differences, including the

left visual comparison component, the P400 action-monitoring
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Figure 9 The independent components difference between the first and

third task repetition in the sham stimulation group. (A) The visual compari-

son component difference between go and nogo cues. (B) The P400 action
monitoring component in the nogo condition. The upper row of the panel

for each component shows the grand mean component in amplitude-time

plot at Cz (upper left), the scalp topographic map (upper middle), and the

single equivalent current dipole locations for each component (upper right).

The lower row shows the highest density of each component, according to

sLORETA images, fromthreedifferentperspectives (top, sagittal andcoronal

views). Each red line shows the grand mean component of the first atten-

tion task. Each superimposed blue line gives the grand mean component of

the repeated third task. Horizontal bars below each trace represent t-test

results from 0–1500 ms post second stimulus onset, with values P < 0.05

represented in gray, to illustrate the time course of significant differences

between the first and the third repeated tasks.

component, the P400 working memory component, and the pas-

sive auditory P300 component. The average characteristics of the

components as identified in the control group from the beginning

to the end of the three tasks are shown in Figures 9 and 10, with

details in the next paragraphs.

Visual Comparison Component, Left: The normalized grand-mean

component in Figure 9, (Figure 9A, upper row), revealed a large

negative deflection between 100 and 400 ms post second stimu-

lus onset, peaking around 236 ms (P < 0.05), with a left tempo-

ral topography. The significant change of this component in left

temporal topography was also projected on to a mean- magnetic

resonance imaging (MRI) brain image (Montreal Neurological In-

stitute, Canada), according to the sLORETA images of the compo-

nents (Figure 9A, bottom row) [65,81].

P400 Action Monitoring Component: As illustrated in Figure 9(B), the

second component of interest was labeled the P400 action mon-

itoring component in the ACC area due to its time course and

topography, which was characterized by a later and slower ERP

positivity from 260 to 520 ms with a peak latency around 400 ms

(Figure 9B, upper row). The P400 action monitoring component

location was in deep brain frontocentral regions through the ACC

area (Figure 9B, bottom row) [65,82]. The characteristics of the

significantly decreased amplitude of the P400 action monitoring

component (P < 0.05, around the peak) outlined in Figure 9(B)
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Figure 10 The independent components difference between the first and

third task repetition in the sham stimulation group. (A) The P400 working

memory component in both the go and nogo conditions. (B) The passive

auditory P300 component in the control condition. Same layout as for the

panels in Figure 9(A) and (B) with values P < 0.05 and P < 0.01 represented

in gray and black, to illustrate the time course of significant differences

between the first and the third repeated tasks.

strongly suggested a relation between fatigue with task repetition,

a time-on-task effect [76,80].

P400 Working Memory Component: The P400 working memory com-

ponent presented with a positive double-peak morphology be-

tween 148 and 540 ms post second stimulus onset (peak latency

around 360 ms; Figure 10A, upper row). This projected com-

ponent on sLORETA images appeared to be more accurate than

the 2D scalp map for assessing the spatial distributions of current

density in deep sources. The P400 working memory component

location was in the deep inferior prefrontal region, around the

hippocampal area (Figure 10A, bottom row) [65,83]. The charac-

teristics of the P400 working memory component mostly demon-

strated a relation between fatigue with task repetition with a de-

cline in amplitude (P < 0.05, around the peak).

Passive Auditory P300 Component: As illustrated in Figure 10(B), the

passive auditory P300 component includes auditory N1/P2 peaks

[84], thus serving as a good indicator of the functioning of the

auditory system in the visual attention task [85]. The peak of the

passive auditory P300 component is around 348 ms and lasting

roughly 900 ms. The passive auditory P300 responding to deviant

auditory stimuli can be elicited without active attention. The 2D

topography and the sLORETA images showed the highest den-

sity over the central scalp electrodes (Figure 10B, bottom row)

[65,84,85]. The characteristics of the passive auditory P300 com-

ponent possibly showed a significant relation between fatigue with

task repetition with a declined amplitude of the passive auditory

P300 component (P < 0.01, around the peak) in the present study,

also as a function of time-on-task [76,80].

Discussion

The primary purpose was to explore the effects of electroacupunc-

ture stimulation on a repetitive visual continuous performance
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attention test and accompanying attention-related ERPs using be-

havioral performance indexes and ERP components extracted by

the ICA method. Whereas a number of EEG studies have ex-

plored acupuncture effects without the popular ERP methodology

[12,86–89], our current investigation was designed to complement

these through the neglected field of topographical EEG, and also

to learn more about the recent development of electrical stimu-

lation. It was of particular interest to determine whether putative

benefits would outlast stimulation, and whether stimulation with

alternating high and low frequencies would be superior to low-

frequency stimulation. It was hypothesized that stimulation would

result in a significant behavioral change with increased sensory

sensitivity (d′), largely due to a decrease in errors of commission,

as found previously with university students performing the visual

continuous performance task [71,90]. Students tend to be highly

motivated to attend, producing few errors of omission, whereas

the motivation to achieve may lead to over eagerness, resulting in

impulsive errors of commission. It was further hypothesized that

their performance would be reflected in ERP components with dif-

ferent types of ERPs generated on ‘go’ versus ‘nogo’ trials. Another

purpose of this study was to examine if a putative habituation ef-

fect in controls would be inhibited by stimulation with task rep-

etition. For this purpose response synchronized ICs of ERPs were

compared for the first and last task in each group.

Behavioral Results

There was some suggestion of differences in commission errors,

but given that the P-value was not significant with the conserva-

tive Bonferroni adjustment, caution must be applied and further

research is warranted. However, d′ was significantly changed dif-

ferentially by parameters of stimulation (Table 2), particularly in

relation to attention during and after stimulation with alternating

frequencies (Figure 3).

The findings overall indicated that stimulation with alternating

frequencies was superior to low-frequency stimulation in hav-

ing sustained effects during the task, benefits which continued

poststimulation. In contrast, low-frequency stimulation while ef-

fective during stimulation did not produce sustained benefits.

These effects on the visual sustained attention task were disclosed

through higher d′ scores [53,91]. As anticipated, the improved

d′ score was largely due to a reduction in commission errors. RT

was less definitively influenced, though exploratory post hoc tests

confirmed shorter RTs following alternating frequency stimula-

tion in the poststimulation condition when compared with sham

stimulation.

ERPs to the Go and Nogo Stimuli

Compared to the prestimulation stage, the grand average ERPs

showed a trend of decreasing peak amplitudes of the late com-

ponents because of task repetition, but no changes in those early

components having latencies between 80 to 180 ms. Previous

studies using nonaffective targets have reported decreased P300

amplitudes at fronto-central sites both as a function of time-on-

task and with sequence repetition, [77–79,80]. Another study em-

ploying unpleasant, neutral, and pleasant stimuli has reported that

P300 amplitude decreased with repetitive picture processing [92].

In the current study the stimuli were mainly nonemotional and

hence the results were in line with previous studies, notwithstand-

ing the novel introduction of acustimulation

Application of ICA, Spatial Filter, and sLORETA

Applying ICA with spatial filtration disclosed a variety of interest-

ing results, which confirm and extend efforts to decompose ERP

components recorded during the visual attention task [93]. Math-

ematically, ICs are often characterized by scalp maps fitting the

projection of a single equivalent current dipole, which is compat-

ible with each presumed component reflecting synchronous cor-

tical local field activity of a connected network. However, only

a few components can be approximately calculated by a single

dipole because some components are most likely to be generated

by distributed neuronal circuits. Therefore standardized sLORETA

images were used instead of dipole approximations. Overall the

present findings strongly suggest that the main features of av-

eraged ERP components can be successfully decomposed from

ERP data via ICA decomposition combined with spatial filters

(from HBI database) for each group and each time period, espe-

cially for the pre- versus poststimulation comparison. The com-

ponents reflected motor inhibition, visual comparison, P400 ac-

tion monitoring, working memory, and passive auditory P300

components.

Acupuncture Effect Induced by Stimulation
in the Real versus the Sham Group

The typical HeGu and NeiGuan (LI-4 and P-6) acupoints are

among the traditional points used in modulating cortical plastic-

ity, relieving pain, and treating nausea and vomiting [12,57,94].

The HeGu acupoint lies at the midpoint between the first and sec-

ond carpal bones of the first web space on the dorsal side, and the

NeiGuan acupoint is located on the anterior surface of the wrist,

approximately 3 cm proximal to the wrist between the tendons

of the flexor carpi radialis and the palmaris longus, next to the

median nerve. These junctures are full of peripheral nerve exten-

sions from the sensory nerve and muscle tendons [95], and with

lower focal transcutaneous resistance they can provide effective

electrical stimulation without much current. In contrast, the sham

(fake) electroacupuncture at the same acupoints (placebo electros-

timulation), generates insufficient sensory input to cortex. Thus

the observed changes of behavior and the motor inhibition com-

ponent in the ERP could be due to the differences in the nerve

conduction and excitability of stimulated acupoints of the two real

electroacupuncture groups and the selected minimal stimulation

in the sham group [57]. Certainly the differential stimulation ef-

fects between real versus sham stimulation on the same sites in

behavioral performance and changes in ICs encourage the use of

sham stimulation as a control for the study of brain function and

associated acupuncture effects.
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Acupuncture Effect Induced by Stimulation
in Alternating Frequency Mode versus
Low-Frequency Mode

Our study confirmed that only stimulation with alternating fre-

quencies (5/100 Hz), but not with a low frequency delivered at

5 Hz, had the sustained poststimulation effect in improving d′

scores and decreasing mean commission errors. Low stimulation

at 5 Hz had only short-lived benefits. In addition, compared to

the baseline without stimulation, alternating stimulation induced

a significantly decreased motor inhibition component during stim-

ulation and poststimulation, which theoretically was compatible

with improvements in commission errors, which reflect motor

impulsivity.

For clinical practice, the result of a prolonged effect due to al-

ternating high and low frequencies has become an important is-

sue for treatment [56]. A recent study with resting functional

magnetic resonance imaging (fMRI) data using a probabilistic ICA

method demonstrated for the first time that the poststimulation

effects of acupuncture can enhance the spatial extent of resting

brain networks [11]. Interestingly, such sustained poststimulation

effects have been hypothesized to alleviate pain by altering neu-

rotranmission in the CNS in both animals and man [1,96]. Differ-

ential release of opioid peptides in the CNS by electroacupuncture

stimulation has been noted, with a low frequency of 2–15 Hz trig-

gering the release of enkephalins and Beta endorphins, and a high

frequency of 100 Hz stimulation increasing the release of dynor-

phin at the spinal cord level [1]. A combination of both frequen-

cies with an alternating current of 2 and 100 Hz may allow syn-

ergistic interaction among the neurotransmitters and so provide

a more powerful effect than sham stimulation [57,94]. Napadow

et al. with fMRI have claimed that the limbic system is central to

acupuncture effects regardless of the specific acupuncture modal-

ity, although some differences do exist in the underlying neurobi-

ologic mechanisms for different modalities. The findings may also

provide hints for optimizing acupuncture in clinical applications

[97].

Further Potential Clinical Applications

Although most of the studies of electroacupuncture stimulation

have explored the role of acupuncture in analgesia, neuroimag-

ing research has also revealed possible brain networks and regions

for potential influence on attention and memory [11,12,63,64,97].

Manual stimulation showed increased regional cerebral blood flow

(rCBF) mainly in the parahippocampal gyrus, premotor area,

frontal and temporal areas bilaterally, and the ipsilateral globus

pallidus [98]. In a recent report of electroacupuncture-induced

analgesia examined by fMRI, several areas with positive correla-

tion of analgesic effects for low-frequency stimulation included

the contralateral motor area, the supplementary motor area, and

the ipsilateral superior temporal gyrus. In contrast with high-

frequency stimulation the response occurred in the contralateral

inferior parietal lobule, ipsilateral ACC, nucleus accumbens, and

pons [64,99]. Functional MRI has demonstrated the CNS path-

ways involved in acupuncture stimulation. Even the subcortical

gray structures, hypothalamus-limbic system, and hypothalamus-

pituitary-adrenal (HPA) axis have been related to electroacupunc-

ture stimulation [63,100,101]. In the case of low-frequency stim-

ulation, high activation has been elicited over the hypothalamus

and primary somatosensory-motor cortex, with deactivation over

the rostral segment of ACC [63].

The findings of our study also support the assumption that

electroacupuncture stimulation has an effect on specific brain ar-

eas, and the improved performance in cognition is possibly re-

lated to enhanced cortical activity. While previous studies have

demonstrated a sustained poststimulation effect for pain relief,

gastric mobility, and heart rate variability (HRV) [102–104], to

our knowledge no prior published research has examined sus-

tained attention during stimulation and poststimulation periods in

healthy young adults. This conclusion followed a search of nine

bibliographic databases for the effects of TENS on nonpain re-

lated cognitive and behavior which found only reports on patients

[105].

The Guidelines for Electroacupuncture Safe
Practice in Dual-Site Electroacupuncture
Stimulation of the Experimental Design

In clinical practice, the more distal acupoint location of the elec-

trodes on hands and wrists seems much more practical than the

proximal location of the limbs, paraspinal muscles, and neck or

head regions. Our design with a pair of acupoints on each hand

followed the guidelines for safe practice recommended by the

British Medical Acupuncture Society (BMAS) to avoid adverse

events. Especially, electroacupuncture should not be applied such

that the current is likely to traverse the heart. If the application of

electrostimulation is likely to cross the heart (e.g., from one shoul-

der to the other shoulder [106]), this placement is prohibited. A

study has also reported that electrical fields generated by pairs of

needles below the knee or elbow do not create a detectable spread

of the currents along the limb or into the chest [106]. The safety

guidelines are rarely mentioned in scientific reports.

Limitations and Recommendations
for Future Research

Notwithstanding the beneficial outcome on sustained attention

that we have demonstrated, our study has potential limitations

or at least issues warranting further examination. First, an optimal

washout period of the neurobiological effects generated by stimu-

lation remains unknown. The effective poststimulation period was

for a minimum of 30 min in our study, similar to the report of

Claydon et al. using pressure pain threshold [102]. Second, the op-

timal sites for influencing cognition have not been systematically

examined. HeGu (Li4) and NeiGuan (P6) are the well-studied acu-

points, but other acupoints such as Zusanli (St36) and Taichong

(Liv3) might be helpful adjuncts for improving cognitive function.

Third, the relative contribution of the mechanism for the synergis-

tic action produced by different combinations of neuropeptides is

still not well understood, and therefore, the effectiveness of alter-

nating frequency stimulation must be verified with neuroimaging.

Meanwhile, various stimulation frequencies may involve differ-

ent mechanisms. Several neurotransmitters such as serotonin and
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dopamine are also believed to contribute to attention and memory

systems [107–109]. It is not clear, however, to what extent these

neurotransmitters are involved and how they are affected during

and after electrical stimulation. Further research should be con-

ducted to combine the behavioral, electrophysiological, and neu-

rochemical modulation data.

Regarding the blinding of participants, first, we asked them to

perform and focus on the repetitive visual attention task, and not

pay attention to the sensation induced at the stimulated site. Sec-

ond, the requirement of recruiting subjects was that all subjects

had no experience about electroacupuncture prior to our testing.

Complying with ethical considerations, although all subjects were

blind to the stimulation mode and effect, they were told that the

machine could generate transcutaneous stimulation on the acu-

points of the hands with various frequencies, which may or may

not give a sensation. However, because subjects had no experi-

ence of electrostimulation, they were blinded to the relationship

of stimulation modes and effects. Importantly, only the intensity

parameter of stimulation in the sham group was different from the

real electroacupuncture groups, and possibly any emotional reac-

tion to the thought of minimal tactile sensation was unlikely to

influence responding; as mentioned earlier the sham stimulation

itself has been shown not to affect sensory cortex [57,63].

Finally, electroacupuncture stimulation presented in this study

is one method for modulating neuronal processing in order to im-

prove cognitive performance. This may be useful in the range of

neurological and psychopathological conditions mentioned above

where the continuous performance paradigm has disclosed deficits

[37,39,105]. Two studies related to the effects of TENS on cogni-

tion and behavior showed a moderate beneficial influence on cog-

nitive functions in children with ADHD [110] and in aging [111].

EEG-neurofeedback is another approach [37,90,112]. In addi-

tion, recent emerging approaches combine feedback techniques

and stimulation strategies for exploring more effective training

protocols than either alone [113,114]. A just completed unpub-

lished study has disclosed evidence for electroacupuncture stim-

ulation assisting EEG-biofeedback training in the improvement

of attention and memory performance and fundamental cortical

electrophysiological activities as shown previously [71,72,115].

Conclusions

This single-blind randomized placebo-controlled study showed

that electroacupuncture stimulation with alternating frequencies

on pairs of acupoints of both hands resulted in significantly better

sustained behavioral performance and sustained cortical activation

in a repeated visual continuous attentional performance task than

low-frequency stimulation, which in turn was superior to placebo.

No obvious adverse effect in healthy subjects was noted. Evidence

was provided that ICA with spatial filtration, applied to ERP data,

successfully decomposed the spatiotemporally overlapping ERPs

into a range of underlying EEG processes whose localization was

congruent with a range of behavioral functions: visual compari-

son, P400 action monitoring, working memory, and passive au-

ditory P300. The alternating frequency stimulation could be an

adjunct for helping adults successfully enhance their sustained at-

tention and inhibit competing motor responses both during and

poststimulation, indicating its potential therapeutic benefit for

psychiatric disorders with compromised attention and cognition.

When the baseline was compared with the prestimulation and

poststimulation period in the control group with the placebo stim-

ulation, the IC-derived ICs disclosed evidence of habituation. The

absence of habituation in the experimental groups suggests a po-

tentially successful activation for preventing fatigue. Further ran-

domized trials with a larger sample size will be conducted to com-

pare and combine electroacupuncture stimulation with a more es-

tablished modality, such as EEG-biofeedback. Interestingly, these

further trials will clarify the role of applied acustimulation on self-

regulation, cognitive function, and cortical activation.
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Abstract: An emerging issue in neuroscience is how to identify baseline state(s) and accompanying
networks termed ‘‘resting state networks’’ (RSNs). Although independent component analysis
(ICA) in fMRI studies has elucidated synchronous spatiotemporal patterns during cognitive tasks,
less is known about the changes in EEG functional connectivity between eyes closed (EC) and eyes
open (EO) states, two traditionally used baseline indices. Here we investigated healthy subjects (n
¼ 27) in EC and EO employing a four-step analytic approach to the EEG: (1) group ICA to extract
independent components (ICs), (2) standardized low-resolution tomography analysis (sLORETA)
for cortical source localization of IC network nodes, followed by (3) graph theory for functional
connectivity estimation of epochwise IC band-power, and (4) circumscribing IC similarity measures
via hierarchical cluster analysis and multidimensional scaling (MDS). Our proof-of-concept results
on alpha-band power demonstrate five statistically clustered groups with frontal, central, parietal,
occipitotemporal, and occipital sources. Importantly, during EO compared with EC, graph analyses
revealed two salient functional networks with frontoparietal connectivity: a more medial network
with nodes in the mPFC/precuneus which overlaps with the ‘‘default-mode network’’ (DMN), and
a more lateralized network comprising the middle frontal gyrus and inferior parietal lobule, coin-
ciding with the ‘‘dorsal attention network’’ (DAN). Furthermore, a separate MDS analysis of ICs
supported the emergence of a pattern of increased proximity (shared information) between frontal
and parietal clusters specifically for the EO state. We propose that the disclosed component groups
and their source-derived EEG functional connectivity maps may be a valuable method for elucidat-
ing direct neuronal (electrophysiological) RSNs in healthy people and those suffering from brain
disorders. Hum Brain Mapp 00:000–000, 2012. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

The identification of a resting baseline state is an essen-
tial issue in neuroscience in order to interpret brain activa-
tion and to disentangle the mechanisms behind neuronal
cooperative activity, which form the core of all cognitive,
perceptive and motor-driven activities. Since its discovery
by Hans Berger in the 1930s, electroencephalography
(EEG) has been a reliable method for monitoring brain
dynamics, witnessing an early focus on the electrophysio-
logical changes from the eyes-closed (EC) to the eyes-open
(EO) resting states. This transition has traditionally been
characterized by a suppression of occipital alpha activity
via visual stimulation in the EO state, classically termed
‘‘alpha blocking’’ [Pollen and Trachtenberg, 1972], or more
recently ‘‘alpha desynchronization’’ [Klimesch et al., 2000;
Neuper and Pfurtscheller, 1992]. Both EC and EO resting
conditions, either alone or in combination, have commonly
served as a standard baseline estimate in cognitive tasks as
well as resting (or ‘‘spontaneous’’) conditions.

Modern advances in neuroimaging technology have pro-
vided new insights about the spontaneous activity of the
resting awake brain. With the use of blood oxygen level-
dependent (BOLD) functional MRI (fMRI), several resting
state networks (RSNs) and a default-mode network (DMN)
have been discovered [Gusnard and Raichle, 2001; Gusnard
et al., 2001; Raichle and Snyder, 2007; Raichle et al., 2001].
RSNs comprise clusters of brain regions involving mainly
cortical interconnection across widely distributed brain areas
[Honey et al., 2009], reflecting intrinsic functional cross-talk.
The DMN is one of the RSNs described as a task-negative
network given that it is most active during ‘‘task-free’’ condi-
tions [Biswal et al., 1995; Broyd et al., 2009; De Luca et al.,
2006; Fransson, 2006; Lowe et al., 1998; Mantini et al., 2007].
These fMRI investigations are supported by studies with
Positron Emission Tomography (PET) comparing tasks
against resting conditions with eyes closed [Fox et al., 2005;
Fransson, 2006].

Recently however, the study of RSNs has shifted its
focus from the localization of specialized brain activations
to the interpretation of interrelationships in brain dynam-
ics. In parallel, a host of EEG rhythms have been docu-
mented in the network operations of corticothalamic
systems [Steriade, 2006], where several rhythms have been
found to coexist in the same area or interact among differ-
ent structures [Steriade, 2001]. These discoveries have led
to the suggestion that the EEG could be combined with
fMRI to study baseline functions and oscillations within a
more dynamic architecture of the human brain [Gusnard
et al., 2001; Laufs, 2008; Mantini et al., 2007], by spatiotem-
porally decomposing the complex dynamics associated
with multiple EEG frequencies simultaneously [Laufs
et al., 2003a; Mantini et al., 2007].

The main advantage of EC and EO conditions is that
they may be carried out without requiring subjects to per-
form a specific task, and therefore be easily deployed in
EEG clinical settings. Barry et al. examined the possible

arousal and topography differences during the transition
from EC to EO conditions in adults [Barry et al., 2007] and
children [Barry et al., 2009]. These were associated with sig-
nificant reductions in mean activity in the delta, theta, and
alpha bands whilst accompanied by increased beta activity
in frontal hemispheric regions. Others such as Chen et al.
[2008] have used scalp EEG spectral regional field power to
study the distribution of RSN activity at rest. The possibility
still exists that the frequent disparities between EEG and
fMRI studies may be due to the well-known inadequacy of
conventional scalp recordings to resolve EEG source loca-
tions, for scalp voltage is a mixture of underlying source ac-
tivity and volume conduction [Congedo et al., 2008; Nunez,
1987; Nunez et al., 1997; Winter et al., 2007].

As a potential solution, an approach termed Blind
Source Separation (BSS) has been developed, originating
from the engineering field of signal processing [Bell and
Sejnowski, 1995; Comon, 1994; Hyvarinen, 2000]. Inde-
pendent component analysis (ICA) is a special case of BSS
methods that has been applied to EEG and fMRI data
[Calhoun et al., 2001, 2004; Makeig, 1996; Makeig et al.,
2002] as a tool to remove artifacts [e.g. Jung et al., 2000]
and to separate physiological sources [e.g. Makeig et al.,
2004]. One of the advantages of ICA is that individual-sub-
ject EEG epochs (or fMRI voxels) can be concatenated
across subjects along the time axis to apply the ICA algo-
rithm to group data [e.g. Calhoun et al., 2001, 2004].

Therefore, we propose here to utilize group-ICA as a
valid approach to decompose resting EEG signals into a
number of independent components (ICs). Then, using an
inverse localization tool such as sLORETA, the cortical loca-
tion of these ICs may be resolved into spatially well-defined
nodes or ‘‘sources’’ [Pascual-Marqui et al. 2002]. Finally,
through estimation of the cross-correlation of spectral power
between different ICs within subjects, a functional relation-
ship between such EEG source ‘‘nodes’’ can be established,
analogous to approaches that have been adopted to calculate
functional connectivity from BOLD signal strength in fMRI
data [e.g. Buckner et al. 2009].

In summary, our results on dynamic changes in alpha-
band connectivity between EC and EO demonstrate the
feasibility of studying neuronal resting-state networks
according to the existence of functional relationships
between ICA components in EEG data. We also replicate
the previously reported spectral power changes in alpha
band power from the EC to the EO state.

MATERIALS AND METHODS

Participants

Participants were 27 healthy volunteers from Goldsmiths,
University of London (20 females and 7 males) with ages
ranging from 18 to 30 years, mean ¼ 22.5. All subjects had
normal hearing and normal or corrected-to-normal vision
and were not receiving psychoactive medication. Subjects
were excluded if they had any history of epilepsy, drug
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abuse, or head injury. They were recruited by advertise-
ment and signed an informed consent form before the start
of the experiment in accordance with the Helsinki Declara-
tion. The current investigation received ethical approval
from the College Research Ethics Committee.

Experimental Design

Each subject was asked to sit in an armchair in a quiet
room with stable temperature and shaded daylight. The
experiment began with a 3-min EC condition, followed by
3 min with EO. Each subject was given instructions to stay
fully relaxed without eye movements to avoid motion arti-
facts in the eyes-closed condition. During the EO condi-
tion, participants were instructed to visually fixate on a
small cross presented on a table below eye level in front of
them, in order to reduce blinking and lateral eye move-
ment artifacts.

Independent Component (ICA) and Spectral

Power Analysis

The general scheme of this approach is illustrated in Fig-
ure 1. Artifact-free EEG epochs from all subjects in the EC
and EO conditions were concatenated into one file, which
was then decomposed into independent sources by the
group ICA procedure [Jung, 2001; Makeig, 1996] using
WinEEG 2.83 software (Mitsar, Ltd.; available at: http://
www.mitsar-medical.com), which uses the Infomax ICA
algorithm [Bell and Sejnowski, 1995]. Here, a temporal
concatenation approach allows for unique time-courses for
each subject, but assumes common group maps across
conditions [Calhoun et al., 2001]. Theoretically, ICA is able
to separate N source components from N channels of EEG
signals in each subject. This is represented by the rows of
an inverse unmixing matrix, W in u ¼ Wx, where u is the
source matrix and x is the scalp-recorded EEG. The time-
courses of the sources are assumed to be statistically inde-
pendent. Then, for each subject, epochwise spectral power
of the back-reconstructed ICs was computed by short-time

Figure 1.

Schematic representation of the different pipeline steps from

(A) raw EEG to epoched-EEG recordings, from a single subject’s

EEG, (B) EEG concatenation and decomposition using Infomax

ICA and artefact rejection, which excludes large amplitudes

from muscular activity and eye-blinking, (C) the construction of

mean power spectra of each valid independent component (IC)

and its topography. (D) General schema of deriving the alpha

power correlation matrices from back-reconstructed Fourier

spectra of all ICs to estimate functional connectivity in both EC

and EO states. Then, three-dimensional cortical images are pre-

sented for visualizing related ICs within the cortical source-level

map.
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Figure 2.
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Fourier Transform (STFT) across the EO and EC conditions
(4-s epochs with a 50% overlapping Hanning time win-
dow). As may be seen in Figure 1C, the predominant fre-
quency of ICs is alpha (8–12 Hz) in almost 70% or 9 ICs/
13 ICs. Subsequently, for each resting condition and within
each subject, we specifically cross-correlated the alpha-
band (8–12 Hz) epochwise powers between all 13 ICs,
yielding a square 13 � 13 connectivity matrix. Individual
connectivity matrix r2 values were then averaged across
subjects to give a group-wise matrix for each resting condi-
tion. Through this time-frequency analysis we were able to
show that several grouped components exhibit strong cou-
pling with alpha-frequency dynamics in the resting state.

EEG Recording and Preprocessing of EEG

Scalp voltages were recorded using a 19 Ag/AgCl elec-
trode cap according to the 10 to 20 international system:
Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,
P4, T6, O1, O2 (Electro-cap International, Inc.; available at:
http://www.electro-cap.com). The ground electrode was
placed on the scalp, at a site equidistant between Fpz and
Fz. Electrodes were referenced to linked earlobes, and
then the common average reference was calculated offline
before further analysis. Electro-oculogram (EOG) data
were recorded from electrodes (Fp1/2) placed to monitor
eye movements and eye blinking. Electrical signals were
amplified with the Mitsar 21-channel EEG system (Mitsar-
201, CE0537, Mitsar, Ltd.; available at: http://www.
mitsar-medical.com) and electrode impedance was kept
under 5 KX. The EEG was recorded continuously, digi-
tized at a sampling rate of 250 Hz, and stored on hard
disk for offline analyses. EEG data were filtered with a 0.5
to 60 Hz bandpass filter offline [e.g. Mantini et al., 2007].
Artifact rejection methods consisted of the exclusion of
epochs with large amplitudes (over �80 lV), eye-blinking,
DC bias, physiologically unresolveable noise [Onton et al.,
2006], muscular activity of frontal muscles defined by fast
activity over 20 Hz [Shackman et al., 2009], and slow eye
movements coincident with the EOG [c.f. Viola et al., 2009].
Moreover, it has been shown that ICA itself is capable of
reliably separating blinking, such as blinking and lateral
eye movement [e.g. Jung et al., 2000]. In general, each 3 mi-
nute resting-state period of EEG was analyzed in 4-s epochs
(50% overlapping with Hanning time window), resulting in
89 epochs. On average around 60 to 70 valid epochs with-
out artifacts from each of the 27 subjects were analyzed.

ICA decomposition yielded a total of 19 ICs, from which
epochwise spectral power analysis was applied to 13 physi-
ologically-relevant ICs (recognised as non-artifactual and
with high single-dipole fit) to examine the dynamics of
EEG-alpha power from the EC to EO state. This evaluation
allowed a more direct comparison of the present results
with previous literature [for a review see Klimesch, 1999].

Source Localization Analysis

sLORETA (standardized low-resolution brain electro-
magnetic tomography) analysis was performed on scalp
maps of selected ICA components to find the maximal
densities of their cortical sources [Pascual-Marqui et al.,
2002]. sLORETA imaging provided source computations
for the ICs using software provided from the Key Institute
for Brain-Mind Research in Zurich, Switzerland (available
at: http://www.uzh.ch/keyinst/loreta.htm). sLORETA is
an inverse solution technique that estimates the distribu-
tion of the electrical neuronal activity in three-dimensional
space. Specifically, sLORETA computes three-dimensional
linear solutions for the EEG inverse problem within a head
model co-registered to the Talairach probability brain atlas
[Talairach, 1988] and viewed within MNI (Montreal Neuro-
logical Institute) 152 coordinates at 5 mm resolution. Valid
ICA components were defined by their single dipole fitting
having satisfactory relative residual energy below 10% [e.g.
Grin-Yatsenko et al., 2010], meaning that over 90% of the
component’s power may be represented by a single dipole
and indicating each was clearly generated by a strong
locally circumscribed cortical source (Fig. 2).

Computation of Mean Regional Correlation

Matrix and Graph Analysis

According to graph theory, and within any chosen fre-
quency information exchange may be measured by the
(nonrandom) cross-correlation coefficients in the band-
power spectrum, reflecting functional connectivity. Graph
theory defines a graph as a set of nodes (in this study,
ICs) and edges (connections between nodes) [Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010]. Within each
subject, ICs were cross-correlated region by region according
to their alpha-power across epochs during the full length of
two resting time series (more than 60 epochs in each), thus
creating two square correlation matrices in the EC and
EO states, respectively. The individual within-subject

Figure 2.

The topographies, power spectra, and source localization of 13

independent components (ICs) in the EO and EC states. For

cortical localization of generators the sLORETA equivalent

source current density (5 mm resolution) for each extracted IC

was estimated using component topographies as input data

[Pascual-Marqui, 2002]. For each IC, its spectral power (left

panel, EC vs. EO state, same scale for all ICs), scalp topography

(middle panel), and three-dimensional spatial maps (right panel)

are illustrated.
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connectivity matrix r2 values were then averaged across sub-
jects to give a group-wise matrix for each resting state. We
then performed one-sample t-tests (two-tailed) on the Fish-
er’s r to Z-transformed (normally distributed) correlation
coefficients to test whether they were significantly differ-
ent from zero [Salvador et al., 2005]. To account for multi-
ple comparisons, Bonferroni’s correction was applied to
eliminate false-positive errors (P ¼ 0.01/78 connections ¼
0.000128), and statistically significant results with P values
<0.000128 were accepted as significant. All graph analysis
calculations were performed in Matlab 7.04 (Mathworks,
MA). This allowed the computation of weighted undir-
ected graphs (Fig. 3).

Clustering of ICA Components

The goal of IC clustering is in order to group together
highly similar activity from multiple subjects in order to
express their characteristic activities. Alpha desynchronisa-

tion upon visual input from EC to EO is generally consid-
ered to reflect activation of the entire cortex [Schurmann
and Basar, 1999]. Therefore, in order to extend the ICA
analysis from single to multicomponent dynamics, the esti-
mated components were clustered according to mutual

similarities in their EEG alpha-power correlation coeffi-
cients. A variety of frameworks has been used to summa-
rize relevant components at the group level in fMRI

Figure 3.

Resting-state functional connections revealed by EEG-alpha

power spectra, compared between EC and EO states. (A) Signifi-

cantly enhanced connections of DAN between frontal and parietal

regions (anterior to posterior) are demonstrated during the EO

state, compared to the EC state. The significantly enhanced con-

nections in the EO state (75%) are depicted, more than those

connections in the EC state (50%). (B) Statistically significant con-

nections of DMN, DAN, and visual networks are depicted by top

15%, 10%, 8% pairs of z scores, compared EO with EC state

(two-tailed t-tests, Bonferroni corrected). Visual networks are

enhanced in the parietal, occipital, and occipitotemporal regions

in the EO state. Increased connection strength between medial

prefrontal cortex and precuneus regions, strong DMN in the EO

state, is still noted in line with Yan et al. [2009]. The significantly

decreased functional connectivity among left precentral, right pre-

central, and cuneus from EC to EO state ensures that the

improvement of intrinsic networks’ activity does not come from

the general improved signal-to-noise ratio between states.
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studies [Esposito et al., 2005; Jann et al., 2009; Mantini et al.,

2007]. In this study, in order to circumscribe the alpha
power-associated components, agglomerative hierarchical
cluster analysis was performed on the components’ alpha
power correlation coefficients with the statistical software
package, SPSS (SPSS Inc, Chicago). Each component measure

was normalized by Z-transformation prior to cluster analysis.
Then, to assess mutual similarity, all pairs of components
were compared by calculating the Pearson correlation of their
alpha power, and classified into a hierarchical cluster tree

according to their proximity (dendrogram). A dendrogram
consists of mirrored C-shape lines, where the length of the
mirrored C indicates the distance between objects (compo-
nents). To calculate the distance between clusters, the
Average Linkage method (Pearson correlation) was used.

Here a ‘‘distance’’ matrix was calculated, namely the-
Euclidean distances in the original space of the components
using multidimensional scaling (MDS) in order to fit an opti-
mal configuration of groups of components in a two-dimen-
sional space by minimizing the mismatch of the distances

between the components in the MDS plot [Esposito et al.,
2005; Torgerson, 1952]. From these components five groups
were qualitatively selected by the similarity matrix, the den-
drogram, the MDS plot, and visual inspection, as anatomi-
cally relevant areas across subjects, potentially depicting

functionally related groups in the EC and EO resting states.

RESULTS

Alpha-Band Power Cortical Sources (ICA)

As illustrated in Figure 1, Infomax ICA was applied to
extract ICs from the concatenated EEG data of the 27 partic-
ipants in both EC and EO states. The EEG data was decom-
posed into 13 spatially fixed and maximally-ICs. Only six
artifact ICs were excluded (horizontal and vertical eye

movements � 2, temporal muscle artifacts � 2, and ICs
with unspecific muscle artifacts � 2). Our results in each
resting state were calculated using more than 60 epochs in
each condition for each subject. All components in EC/EO
states (Fig. 2) exhibited a high repeatability across subjects
with strong cortical source locations. Moreover, we suggest
that the consistency in the cortical localization of compo-
nents in healthy individuals in both EC and EO states is
due to the absence of experimental stimuli [for review see
Onton et al., 2006], although some unsuccessfully repre-
sented artifact components may always be caused by partic-
ipant confounds such as drowsiness, muscle activity, or eye
movements. The cortical location and Brodmann area num-
ber of source locations of each IC are illustrated in Figure 2.
The Talairach coordinates are further listed in Table I.

Functional Connectivity (Graph Analysis)

In accordance with the traditional graph theoretical
approach, the square correlation matrix was used, to create
weighted undirected binary graph such that nodes (ICs)
were either connected or not connected. The distribution
of r-values suggested significantly enhanced connections
in the EO state (75%) compared with those in the EC state
(50%, in Fig. 3A). For the EO to EC state contrast (two-
tailed t-tests, Bonferroni corrected) the top 8% of all possi-
ble connections, were defined by Fisher’s z > 6.24, P <
0.01 [e.g. Dosenbach et al., 2007].

By lowering the graph definition threshold more poten-
tial connection patterns to other parts of the brain were
revealed, indicating that the findings were robust to small
changes in the graph-definition threshold. Hence for visu-
alization purposes, we made the z-score threshold vary
from the top 8% to 15% of all interregional correlations (top
15% of all possible compared connections, z > 4.35, P <
0.01). Figure 3A,B illustrate the top 15% z-score pairs for
the functional connections between cortical nodes.

TABLE I. Coordinates of the main ICs of the circumscribed groups in the resting state, as shown in Fig. 2, the

stereotactic space of Talairach and Tournoux [1988]

Group x y z Brodmann area Anatomical region

Group F 5 63 �7 BA10 Superior frontal gyrus
�40 45 25 BA10 Middle frontal gyrus
40 45 25 BA10 Middle frontal gyrus
�5 51 39 BA8 Medial frontal gyrus

Group C �59 �3 32 BA6 Precentral gyrus
50 �8 37 BA6 Precentral gyrus

Group P �40 �47 39 BA40 Inferior parietal lobule
�5 �60 63 BA7 Precuneus, parietal lobe
40 �51 49 BA40 Inferior parietal lobule

Group OT 54 �62 22 BA39 Superior temporal gyrus
�54 �62 22 BA39 Superior temporal gyrus

Group O 5 �87 14 BA18 Cuneus, occipital lobe
�20 �96 14 BA19 Middle occipital gyrus

Brain regions are identified by putative Brodmann area (BA). Group F, C, P, OT, O, and mean the circumscribed frontal, central, parie-
tal, occipitotemporal, and occipital components.
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Significant correlations occurred (1) intrahemispherically in
the EO state superior to the EC state (right BA40-BA8, z >
5.31, P < 0.01; right BA4-BA8, z > 6.24, P < 0.01); (2) interhe-
mispherically between homologous region pairs (precentral
BA4, z < �6.05, P < 0.01, in the EO state inferior to the EC
state); and (3) interhemispherically between nonhomologous
regions (left frontal BA8-right parietal BA40, z > 4.35, P <
0.01; left precentral BA4-right parietal BA40, z > 5.31, P <
0.01) in the EO state superior to the EC state. In other words,
within-DAN correlations were generally greater than other
cross-network correlations in the EO condition. Thus, DAN
is always at least partially engaged and intrahemispheric
connectivities become as strong as interhemispheric ones
when the eyes are open. Furthermore, comparing functional
connectivity value pairs revealed a significant between-con-
dition difference within the midline connectivity of the
DMN, specifically between medial prefrontal cortex (mPFC)
and precuneus (medial frontal BA 8-precuneus BA7, z > 4.35,
P < 0.01, Fig. 3B).

Figure 4 depicts these nodes within RSNs related in
recent fMRI studies, including the primary sensorimotor
network, the primary visual and extra-striate visual net-
work, left and right lateralized networks consisting of
superior parietal and superior frontal regions (DAN,
reported as one single inset) as well as the so-called
default mode network (DMN) consisting of precuneus,
medial frontal, and inferior parietal cortical regions.

Resting-State Clusters With Well-Defined

Functional-Anatomical Regions

(Dendrogram Analysis)

Hierarchical cluster analysis of cross-correlations
between alpha power ICs identified a consistent set of five

spatiotemporally distinct groups from 27 subjects in each
resting condition, in line with resting state networks dis-
closed by fMRI studies [van den Heuvel and Hulshoff
Pol, 2010; Toro et al., 2008]. Importantly, the five
grouped-ICs were explained by the correlation coefficient
in each clustered group (P < 0.0005, corrected), and
may be considered as a good signature of the resting
EEG in both EC and EO states. This is represented by
the dendrogram plots in Figure 5, revealing distinct
grouping patterns for components in both EC and EO
states. Five groups were thus classified on the basis of
coordinates in Talairach space and by regional anatomy
(see also Table I):

1. Frontal group (F): a network involving predominantly
lateral and middle prefrontal cortices, as well as the
anterior pole of the prefrontal lobe.

2. Central group (C): a lateral network involving the pre-
central gyri.

3. Parietal group (P): a posterior-lateral and midline net-
work involving primarily the parietal regions.

4. Occipitotemporal group (OT): a lateral network domi-
nated by the bilateral middle temporal cortices in the
occipitotemporal regions.

5. Occipital group (O): a posterior network involving
predominantly the occipital cortex.

All of the group spatial maps were found in both EC
and EO states. As illustrated in Figure 4, our results are
consistent with fMRI resting-state network (RSN) reports
of regions showing functional connectivity patterns across
resting states [Fox et al., 2005; Fransson, 2005; Yan et al.,
2009] as well as strong anatomical connectivities [Honey
et al., 2007, 2009].

Figure 4.

Resting-state functional connections revealed by EEG-alpha power spectra, compared with other

fMRI-RSN reports. The illustrated cortical node locations and their membership(s) within previ-

ously identified resting-state networks with fMRI are presented together with the results of the

current study [Beckmann et al., 2005; Biswal et al., 1995; Damoiseaux et al., 2006; De Luca

et al., 2006; Salvador et al., 2005; Van den Heuvel et al., 2008].
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In addition, the dorsal attention network (DAN) most
evident in the frontal and parietal groups in the EO state,
rather than the EC state, depicted by the dendrogram
(Fig. 5). This effect is reinforced by the observation of
enhanced correlation between nodes belonging to Groups
F, C and P in the functional connectivity correlation matrix
for the EO compared to EC condition (Fig. 6).

Functional Clustering Changes Between EC and

EO States (Multidimensional Scaling Analysis)

Here, the functional distances between IC groups within the

two conditions were represented by graphical distances in

two-dimensional space, as depicted in Figure 7. Multidi-

mensional-scaling (MDS) provides an interpretable map of

Figure 5.

The Dendrogram was performed to illustrate the grouping of

the 13 ICs, suggested by Pearson correlations (r values) of alpha

power spectra (from 1581 epoches) among all ICs; (A) in the EO

condition and (B) in the EC condition (EC, eyes-closed; EO, eyes-

open; BA, brain regions are identified by putative Brodmann area;

vertical blue-dot lines, instruction lines to help illustrate five groups

according to the dendrogram and similarity; horizontal blue-dot

lines, lines to help differentiate the dorsal attention network from

the visual system in both states; red lines, indicating the distance

(relationship) between the frontal and parietal groups).
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the relations between all ICs whose similarity has been

determined by Pearson correlations (r values) and whose IC

group membership was revealed by dendrogram cluster

analysis (Fig. 5). Hence, corepresentation of the clustered

ICs’ group membership may aid in highlighting differences

in functional associations from EC to EO states on a network

level. Here, functionally similar IC components, represented

by topographical icons, are plotted in closer proximity

within the MDS plot (Fig. 7). This analysis confirms many of

the organizational features already highlighted in Figure 5

with symmetrically paired regions in cortical space, reflect-

ing anatomical relations and functional similarity among

the five principal IC groups (Table I). In accordance with

some prior studies reporting stronger alpha-band similar-

ities posteriorly rather than anteriorly in the EC condition

[Barry et al., 2007; Chorlian et al., 2009], the components

within Group F were more segregated than those in Group

P and Group OT (Fig. 7). Moreover, comparing the relation-

ship between Groups F and P in the EC versus EO condi-

tions, the closer distance between the two groups in the

MDS plot in the EO state suggests tighter coupling within

the DAN [e.g. Mantini et al., 2007].

DISCUSSION

To our knowledge, this is the first study to combine
EEG-ICA and graph theory to investigate spectral power
functional connectivity of cortically localized sources from
the eyes-closed to the eyes-open state. Although blind

source separation (BSS) methods have been exploited to
analyze resting-state EEG activity in healthy subjects
[Chen et al., 2008; Congedo et al., 2010; Gomez-Herrero
et al., 2008; Scheeringa et al., 2008], and in those with clini-
cal disorders [Chen et al., 2009; De Vico Fallani et al.,

Figure 6.

Illustrative functional connectivity correlation matrices from the

EC to EO state. Functional connectivity correlation matrix

(unweighted undirected network) represents the cross-correla-

tion of the independent component (IC) pairs for alpha-band

spectral power, significant threshold, and arranged by the similar-

ity among components. Green boxes depict circumscribed IC

groups according to their significant functional connectivity (r >

0.50, P < 0.01 corrected), please refer to the dendrogram and

MDS plots (Figs. 5 and 7). The yellow box indicates enhanced

correlation of the Group F, C, and P in the dorsal attention net-

work (DAN) during the EO condition (F: frontal, C: central, P:

parietal, OT: occipitotemporal, O: occipital; r: Pearson’s correla-

tion coefficient).

Figure 7.

The Euclidean distances matrix of the 13 ICs in the resting state

was visualized in a two-dimensional space using multidimensional

scaling (MDS). Five groups (frontal, central, parietal, occipital,

and occipitotemporal groups) were presented by five different

color according to the dendrogram and Pearson correlations of

13 ICs (please see Fig. 5). The distance between groups shows

their relationship, and the connectivity of frontal and parietal

groups is increased from EC to EO state, and the same as the

visual system (occipital and occipitotemporal groups).
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2007; Grin-Yatsenko et al., 2010], the present study demon-
strates the feasibility and potential of using spectral analy-
sis of ICA components to estimate EEG resting-state
connectivity by representing the spatially-segregated,
unmixed EEG sources as functional nodes within electro-
cortical networks, in accordance with graph theory [Bull-
more and Sporns, 2009]. Compared with previous source-
space attempts to provide a global pattern of electrocorti-
cal connectivity, our multistep approach effectively inte-
grates information about functional interactions and
provides a parsimonious procedure to describe dynamic
state-changes in EEG resting-state networks (RSNs). Our
principal findings indicate there is an increase in func-
tional connectivity from EC to EO states, particularly
between posterior and anterior regions, and that the
electrophysiological network of the resting brain (without
stimulation or task) is composed of five well-defined
clusters of EEG activity: frontal, central, parietal, occipito-
temporal, and occipital. Moreover, the alpha-band topo-
graphical maps and connectivity patterns are consistent
with the estimated resting patterns from previous fMRI-
RSN studies, such as the default-mode network (DMN)
and dorsal attention network (DAN) [for a review see
Toro et al., 2008; van den Heuvel and Hulshoff Pol, 2010].
In addition, the occipital group (O) and the occipitotempo-
ral group (OT) appear similar to the reported primary vis-
ual and extra-striate visual networks. Given that cortical
localization of ICA components and connectivity maps ex-
hibit a high degree of consistency in spatial and frequency
parameters within and between subjects during rest [e.g.
van de Ven et al., 2004], it may be beneficial to implement
this EEG-ICA functional connectivity approach to clinical
populations during resting-state baseline recordings.

Functional Connectivity Changes From EC to EO

Interhemispheric connectivity varied both as a function
of the resting state (from EC to EO) and cortical areas.
During the EC state, we observed that alpha power-
associated correlations of spatially localized sources con-
veyed a preferred interhemispheric direction (Fig. 3A, the
EC state). Moreover, these alpha power-related associa-
tions showed a more distinct posterior than anterior focus
[e.g. Chorlian et al., 2009]. Given that prior published
fMRI–RSN studies revealed significant patterns of corre-
lated spontaneous activity between homologous regions in
opposite hemispheres [e.g. Fair et al., 2008; Salvador et al.,
2005], the corpus callosum could act as the major conduit
for information transfer between the cerebral hemispheres
[Innocenti, 1994; Rosas et al., 2010]. In addition, connectiv-
ity strength emerged more significantly between posterior
regions within the left hemisphere (left temporoparietal
junction (TPJ), BAs 39/40) than between regions in the
right hemisphere (Fig. 3A). In line with traditional find-
ings, increased communication within the left TPJ may be
reflective of a lateralized language processing network

[Hutsler and Galuske, 2003]. This feature has also been
reported in spontaneous MEG activity of brain networks,
indicating that coupling of spontaneous oscillations occurs
predominantly within the left intrahemispheric parietal
pathway [de Pasquale et al., 2010]. While most cortical sour-
ces manifested interhemispheric connections in the EC state
between bilateral homologous regions, in the EO state signif-
icant correlations emerged most frequently intrahemispheri-
cally, demonstrated by the increased dynamic linkage
between ipsilateral frontal and parietal regions (Fig. 3A, the
EO state). Here, the frontal sources (F) were localized to
Brodmann areas (BA) 8 and 10 (medial, right, and left mid-
dle frontal gyri), while the parietal sources (P) consisted of
BA 7 and BA 40 (precuneus, right, and left inferior parietal
lobules).

Importantly, the dorsal attention network (DAN) and
default-mode network (DMN) appeared to become more
prominent in the EO state (Fig. 3B, EO > EC). This obser-
vation is directly in line with reports of increased fMRI
coupling between medial prefrontal cortex and precuneus
(BA7) in the EO versus EC condition [Yan et al., 2009],
and multimodal associations between alpha-power fluctua-
tions and DMN activity [Ben-Simon et al., 2008, Jann et al.,
2010; Mantini et al., 2007]. Amongst others, these RSNs
have been reported in the work by Biswal et al. [1995],
Beckmann et al. [2005], De Luca et al. [2006], Damoiseaux
et al. [2006], and Salvador et al. [2005] (Fig. 4). Although
the aforementioned studies made use of different groups
of subjects, methods (e.g. seed, ICA, or clustering) and
MRI acquisition protocols, they coincide with the EEG-
based results of the present study, suggesting the robust
formation of functionally and consistently linked networks
in the brain during resting conditions.

Neurophysiological Implications of the Five

Functionally Clustered Groups

Although the RSN and DMN concepts have come from
important fMRI-BOLD evidence demonstrating consistent
activation patterns across distinct brain regions [Greicius
et al., 2003; Raichle et al., 2001], it is as yet unclear how
these relate to the concurrent coupling and degree of neu-
ronal activity [Debener et al., 2006]. In contrast, EEG has
excellent temporal resolution and is a direct electrophysio-
logical correlate of spontaneous and task-related neuronal
activity. ICA has been extensively used for the analysis of
electromagnetic brain signals [James and Hesse, 2005; Vig-
ario and Oja, 2000], and provides a statistical estimation of
maximally independent EEG sources. Several earlier studies
have demonstrated the application of ICA to multichannel
EEG data for distinguishing artifacts and functional brain
sources [e.g. Jung et al., 2000; Makeig et al., 2004; Marco-
Pallares et al., 2005]. Interestingly, about 20% of all grey
matter neurons, nonpyramidal type, express metabolic ac-
tivity well reflected in the BOLD signal, but not in the EEG
[Broyd et al., 2009]. To solve the problem originating from a
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degree of incongruence between hemodynamic and electro-
physiological signals, more recent research has tried com-
bining different modalities, such as EEG-fMRI, to better
understand which portions of BOLD activity are reflected
in the EEG [Jann et al., 2009; Mantini et al., 2007]. Here we
examined directly the spatial characteristics of the five hier-
archically clustered groups based on the EEG alpha-band
spectral power of each IC, with the aim of validating this
approach in relation to previous reports of EEG and fMRI
default patterns.

An important question is whether these groups directly
reflect anatomical connectivity. We selected the alpha
rhythm, the most prominent EEG rhythm during the con-
scious resting state, as the basis of the ICA-based EEG cluster
groups. In previous reports [Barry et al., 2005, 2007; Chen
et al., 2008] the distribution of scalp EEG power in relation to
anatomical sources within the RSN was unresolved due to
the masking of underlying source activity through volume
conduction [Nunez and Srinivasan, 2006]. Compared with
blood-oxygenation level fMRI recordings, our combined ICA
and sLORETA based results suggest an electrophysiological,
and therefore neuronal, functional connectivity amongst
well-specified anatomical regions.

Visual versus parietal system

A good example is the separation of the dorsal parietal
cluster (Group P, parietal clustered group in both EC and
EO) from the rest of the visual system (Group O and
Group OT, in Table I and Fig. 5) [De Luca et al., 2006;
Gusnard et al., 2001; Mantini et al., 2007]. The visual sys-
tem is organized into two parallel anatomical pathways—
the dorsal (occipitoparietal) pathway related to spatial
vision and visually guided actions, and the ventral (occipi-
totemporal) pathway associated with identification of vis-
ual objects [Corbetta and Shulman, 2002; Sereno et al.,
2001]. Interestingly these three groups are shown to be
separated by alpha power-associated IC clustering, com-
pared to similar results of correlations between EEG
rhythms and fMRI RSNs reported by Mantini et al. in
2007, and a weak interaction between two EEG-alpha gen-
erators (precuneus and cuneus) found by Gomez-Herrero
et al. [2008].

Frontal and parietal subdivisions

Previous work has shown that the DMN can be divided
into at least two subnetworks, with anterior and posterior
(frontal and parietal) subdivisions [Damoiseaux et al.,
2006; Kiviniemi et al., 2009]. Similarly, based on cluster
analyses of alpha power-associated ICs, we were also able
to demonstrate a parietal sub-network (Group P in Table I
and Fig. 5) and a frontal sub-network (Group F in Table I
and Fig. 5). Crucially, during EEG-fMRI coregistration,
Mantini et al. [2007] observed that both the DMN and the
dorsal attention network (DAN) were coupled to changes
in EEG power. The DMN and DAN are two of the most

robust and well-studied RSNs, and are associated with
task-negative and task-positive functions, respectively
[Shulman et al., 1997]. Earlier reports have suggested that
default and attention networks show considerable correla-
tion with EEG-alpha band power [Laufs et al., 2003a,b). In
particular, a study of the temporal dynamics of spontane-
ous MEG activity has also demonstrated strong correla-
tions in the alpha-band in both the DAN and the DMN
[de Pasquale et al., 2010]. The results of the present study
underline the prominence of the DMN and DAN particu-
larly in the EO state, and our findings of relevant circum-
scribed regions are consistent with the idea that the DAN
as well as the DMN appear to exhibit more functional cou-
pling during the EO versus EC condition; the DMN being
characterized by increased connection strength between
medial prefrontal cortex (MPFC) and precuneus (PCu)
regions (Figs. 3B and 4), in line with Yan et al. [2009].

Group Interactions Visualized With

Multidimensional Scaling (MDS)

By way of a two-dimensional plot, the MDS method
facilitates visualizing the similarity matrices of the alpha
power-associated correlation coefficients and the proximity
of the EEG components. During the shift from EC to EO,
the frontal and parietal clusters appear to become closer in
the EO state, suggesting more tightly coupled activities
among the regions of both the DAN and DMN, potentially
to increase contextual integration and evaluation of visual
information [Hamzei et al., 2002; Mason et al., 2007; Yan
et al., 2009]. Interestingly, we also discovered a number of
symmetrical interhemispheric connections that were stron-
ger than would be predicted by the anatomical distance
between bilaterally homologous regions in both EC and
EO states [Salvador et al., 2005]; for example the coupling
between left and right occipitotemporal areas (BA 39; Figs.
3A and 5). Another example is the visual system in the
MDS plot (Fig. 7). The distance from the occipital group
(Group O) to the parietal group (Group P) was approxi-
mately similar to the distance from the occipital group to
the occipitotemporal group (Group OT) in the EC state,
suggesting a similar strength of coupling of the two paral-
lel visual pathways in keeping with the relatively more
inactivated visual cortex. In contrast, in EO with fixation
(Fig. 7), the components of occipital and occipitotemporal
groups move more closely, respectively, showing
increased functional connectivity (Fig. 3B), but not with
the parietal group, suggesting a more pronounced cou-
pling of the prevalent ventral pathway, putatively acti-
vated during visual object detection (a cross presented in
the EO fixation condition), rather than the dorsal pathway
which is used during visually guided actions [e.g. e.g.
Virji-Babul et al., 2007]. Together, this is consistent with
reports that the oculomotor and attentional systems appear
to be activated upon eyes opening, showing an ‘‘exterocep-
tive mental state,’’ as indicated by Marx et al. [2003] in an
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fMRI study. On the other hand, it is evident that the sen-
sorimotor group (Group C) remained closer to the occipital
group in the EC state (Figs. 5B and 7), possibly reflecting
stronger coactivation of the visual and somatosensory sys-
tems in the ‘‘interoceptive mental state’’ with eyes closed,
and characterized by imagination and sensory activity
[Marx et al., 2003].

Methodological Limitations

The principal drawback of the present study was the
use of a limited number of electrodes. Although the results
found with the ICA-sLORETA method seem encouraging,
they could be refined with the use of a greater number of
electrodes (given that the number of resolved ICs is
numerically equal to the number of recording electrodes
used). There is a limit to this nevertheless, since owing to
volume conduction, high-density EEG channels close to
each other tend to be increasingly influenced by activity
from similar brain regions. Nevertheless, volume conduc-
tion is a widely recognized problem that pervades almost
all functional connectivity analyses of the EEG. In this
case, EEG signal changes occurring at one location may
‘‘spread’’ and be detected at another, and thus be (errone-
ously) interpreted as evidence of altered synchrony between
locations (sensors). One proposed workaround has been to
utilize strictly phase-lagged signals in connectivity analy-
ses (given that volume conduction is instantaneous) [Stam
et al., 2007]. However, this may also run the risk of
‘‘throwing the baby out with the bathwater,’’ as there is
evidence that considerable cortico-cortical coupling occurs
with zero phase-lag in the brain, independent of volume
conduction [Gollo et al., 2011; Roelfsema et al., 1997]. In
this study we have proposed an alternative approach in
the frequency-domain which, although phase-insensitive,
explicitly defines independent ‘‘sources’’ (ICs) of EEG ac-
tivity. Here, the time-course of each IC is defined individ-
ually from the source-space matrix, thereby minimizing
the source ‘‘spread’’ which manifests itself in sensor-space.
Moreover, since ICA was performed before frequency-do-
main transformation, it would be comparatively easy to
translate this processing pipeline to phase-sensitive meas-
ures (such as phase synchrony) by likewise taking advant-
age of maximal signal independence in ICA source-space.
Importantly, ICA source-space is qualitatively different
from the source-space of inverse-source localization meth-
ods (minimum-norm or dipole-fitting methods). The latter
may be envisaged as computing ‘‘virtually implanted elec-
trodes,’’ which can detect distinct but potentially spatio-
temporally overlapping activities within the same
anatomical location. ICA, in contrast, employs higher-
order statistical methods to linearly unmix the sources in
the signal a priori, which may be followed by a subse-
quent step of cortical source localization (e.g. sLORETA).
This may be additionally useful in view of the fact that
volume conduction is expressed through linear summation

of the signal. On the other hand the principal limitation of
ICA is that it is designed to separate mixtures of princi-
pally non-Gaussian activities. In this respect, we tested an
alternative approach of performing ICA on prefiltered
alpha-band data; however, this approach yielded a lower
number of valid extracted cerebral components (about 50%
less), many of which had high residual variance, indicat-
ing poor localization of electrocortical activity. We specu-
late that this may be due to the fact that the standalone
alpha rhythm has been reported to have near-Gaussian
properties [Dick and Vaughn, 1970]. Nevertheless, patches
of cortex that generate the EEG naturally oscillate at multi-
ple frequencies simultaneously (frequency nesting) and
ICA is apparently able to best estimate the maximal inde-
pendence of EEG generators according to a wider distribu-
tion of frequencies; thus our original pipeline retains the
property of being physiologically realistic. Almost all pre-
vious EEG studies have traditionally applied ICA on
broadband data before filtration to individual frequencies
of interest [Chen et al., 2009; Grin-Yatsenko et al., 2010].

Notwithstanding, the most obvious limitation may be
the cortical nature of the EEG signal itself, which reflects
widespread synchrony of pyramidal neurons in cortical
grey matter, and is more problematic for resolving activity
from deeper brain structures, as can be done with fMRI.
Therefore more EEG-fMRI studies should be encouraged,
with efforts also directed toward standardizing methods
for ICA-based EEG networks and their differentiation
between different behavioral states. For example, future
studies could be carried out to determine the functional
connectivity of theta or beta-power clustered ICs, com-
pared with networks demonstrated by previous fMRI
studies. Likewise, studies could be designed to reveal how
connectivities within/between RSNs vary with pharmaco-
logical intake or relate to brain-related pathologies, and to
clarify whether observed clustered IC patterns are equiva-
lent during altered brain states [e.g. for sleep: Tinguely
et al., 2006; for motion sickness: Chen et al., 2009].

CONCLUSIONS

In conclusion, this work demonstrates the feasibility and
addresses the potential of using a multistep, data-driven
approach for source-based EEG functional connectivity
analysis, based on the combined advantages of ICA,
source localization, graph theory, and multidimensional
scaling in order to reveal the spatiotemporal dynamics of
EEG changes from EC to EO states. Our results suggest
that cerebral processing underlying eyes-closed and eyes-
open baseline states consists of statistically clustered
groups within spatially and functionally related cortical
regions (frontal, central, parietal, occipitotemporal, and
occipital), clearly identified in two-dimensional and three-
dimensional space. From EC to EO resting states, and in
line with previous fMRI studies, graph analyses and MDS
plots indicated enhanced functional connectivity of frontal
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and parietal groups putatively subserved by the dorsal
attentional network (DAN) and default-mode network
(DMN); there was moreover a tight coupling of occipito-
temporal groups associated with processing in more ven-
tral areas, in keeping with the dichotomy of the dorsal/
ventral stream hypothesis of the visual information system
[Hilgetag et al., 2000; Salvador et al., 2005]. These results
suggest that two physiological mechanisms (ventral and
dorsal attention networks) functionally coexist during sim-
ple resting states such as EO fixation. Since resting-state
connectivity has been shown to correlate with behavioral
performance and cognitive measures in a host of pub-
lished studies [for a review, see Greicius et al., 2008], EEG
spectral-power based RSNs, resolved with ICA, may pro-
vide a useful measure with which to directly quantify neu-
ronal functional connectivity during resting state and/or
task-related conditions, in healthy subjects and those with
mental illness.
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