
A Non-Standard Semantics for Program

Slicing and Dependence Analysis

Sebastian Danicic a Mark Harman b John Howroyd c

Lahcen Ouarbya a

a Department of Mathematical and Computing Sciences Goldsmiths College,

University of London, New Cross, London SE14 6NW

b Department of Computer Science, King’s College London, Strand, London,

WC2R 2LS.

c @UK PLC, 5 Jupiter House, Calleva Park, Aldermaston, Berkshire, RG7 8NN.

Abstract

We introduce a new non-strict semantics for a simple while language. We demon-
strate the this semantics allows us to give a denotational definition of variable
dependence, neededness, which is consistent with program slicing. Unlike other se-
mantics used in variable dependence, our semantics is substitutive. We prove that
our semantics is preserved by traditional slicing algorithms.

Key words: Program Slicing, Non-Standard Semantics

1 Introduction

Program slicing [1] produces simpler programs from complicated ones and so
can be thought of as a form of program transformation. Traditional program
slicing [1–4] is a technique for isolating the components of a program which
are concerned with the computation of a single variable or a set of variables
at some point in the program. Slices are constructed with respect to a slicing
criterion, 〈V, n〉, for some set of variables V and a program point n. Weiser’s
definition of program slicing is based on statement deletion. A slice of a pro-
gram P consists of any subset of statements of P preserving the behaviour of
the original program with respect to slicing criterion in all states where the
original program terminates. Program slicing has many applications including
reverse engineering [5,6], program comprehension [7,8], software maintenance
[9–12], debugging [13–15,3], testing [16–20], component re-use [21,22], program

Preprint submitted to Elsevier Preprint 26 November 2006

integration [23,24], and software metrics [25–27]. There are several surveys of
slicing techniques, applications and variations [28–31].

x:=1;

while (x>0) {y:=y+1;}

x:=5;

Fig. 1. A simple program P

According to Weiser [4], a program and its (end) slice must agree with respect
to the set of variables in the slicing criterion. In other words, if we run the
original program and the slice, then, in all states where the original terminates,
the slice must also terminate with the same final values for the variables in the
slicing criterion. This is the correctness criterion that needs to be proved for
any slicing algorithm. The behaviour of the slice in states where the original
does not terminate is left undefined. In fact, traditional slicing algorithms
sometimes introduce termination: the standard semantics of a program is thus,
less defined than the semantics of some of its slices. For example, consider the
program P in Figure 1. Clearly, P does not terminate, the final state after
executing P is always ⊥. However, the slice of P with respect to x is just x:=5,
which terminates in all states.

The standard semantics loses all semantic information beyond infinite loops.
Therefore, it loses all information about control and data dependencies, which
is essential for program slicing. Because of this it is very hard to prove cor-
rectness of slicing algorithm without the use some intermediate graph rep-
resentation to track variable dependencies. Weiser [1] in his thesis used the
control flow graph as intermediate representation to prove correctness of his
slicing algorithm. Horwitz et al. [32] have shown that program dependence
graphs [33,34], captures both control and data dependencies which are essen-
tial for program slicing. They show that two programs with the same program
dependence graph have the same semantics. Since then much research has
been carried out to define a semantics of program dependence graphs [35].
Cartwright and Felleisen in [35] were first to observe and discuss that if a
semantics is to be useful to investigate semantic properties of program slicing,
it has to be preserved by slicing algorithms. In [35], they defined a non-strict
semantics, called lazy semantics, for program dependence graphs of a simple
while language, and claimed that their semantics is preserved by slicing algo-
rithms. For example, using the lazy semantics of Cartwright and Felleisen [35]
the lazy value of the variable x after executing the program in Figure 1 is 5.
Other efforts give a construction definition of the program dependence graph
by transforming the denotational semantics of imperative languages. The fact
that these semantics are defined for some intermediate graphs representations

2

instead of the programming language itself makes it difficult to model (prove
correctness) program manipulation techniques such as slicing. Before we can
start, a semantics of the intermediate structure is required as well as mappings
between programs and these intermediate structures in both directions.

Giacobazzi and Mastroeni [36] argued that it is unnatural to try to prove cor-
rectness of slicing properties using the standard semantics. They also argued
that if a semantics is to be useful for modelling kinds of program manipu-
lation such as slicing it should be able to capture semantic information ‘be-
yond infinite loops’ and be compositional. They do not consider the standard
definition of compositionality of the semantics, where the semantics of the
program is defined in terms of the semantics of its sub-program. Their defi-
nition of compositionality is restricted to a sequence of statements only. We
call this property sequentiality of the semantics instead of compositionality,
to avoid any confusion with the standard definition of compositionality. They
use transfinite states traces of programs [37] and show the existence of such
semantics using domain equations. They introduce a non-standard semantics,
called transfinite semantics using a metric structure on their value domains.
Transfinite semantics of a program is defined in terms of the set of all possibly
transfinite computations: computations whose length can be any ordinal, finite
or infinite.

The aim of this paper is to investigate slicing without intermediate structures.
We regard the intermediate structures as mere ‘implementation details’. Ev-
erything, the slicing algorithm and the semantics of the program language
and the ‘correctness criteria’ of slicing are now expressed denotationally. This
allows the possibility of using the full power and elegance of denotational
semantics in definitions and correctness proofs.

1.1 Variable Dependence — Neededness

Central to slicing is the concept of variable dependence (or neededness as we
call it): the set of variables needed by a set of variables V in program P , noted
as N(P, V). Intuitively, this is the set of variables whose initial value ‘may
affect’ the final value of at least one variable v in V after executing P . Our
aim is to make the phrase ‘may affect’ semantically precise.

Neededness should be partial standard semantically discriminating (PSSD).
This corresponds to our intuitive understanding of neededness. i.e. if x and
y are variables such that there exists two initial states σ1 and σ2, differing
only on y, such that the meaning of P gives rise to final terminating states
with different values of x. Then y should be needed by x with respect to P

(y ∈ N(P, {x})).

3

x:=1;

y:=1;

while (x>0) {y:=y + 1;}

if (y>0) then x:=x;

Program P1.

x:=1;

y:=1;

while (x>0) {y:=y + 1;}

if (y>0) then skip;

Program P2.

Fig. 2. P1 and P2 do not have to same lazy semantics of Cartwright and Felleisen
w.r.t. x.

Finally we require neededness to be sub-sequential, in the sense that:

N(P ; Q, V) ⊆ N(P, N(Q, V)).

If this was not the case, then it would mean that there was a variable z which
affects the value of x in P ; Q but for no variable, k, which affects the value of
x in Q, does z affect the value of k in P .

Standard semantics loses precision in the presence of infinite loops. Due to
issues regarding non–termination, it turns out to be hard, if it is not impos-
sible, to define neededness in terms of the standard semantics. Much of our
research was trying to find a semantics which allowed us to define neededness
satisfactorily that was consistent with standard semantics.

1.2 Substitutivity

Definition 1 (Substitutivity) A semantic analysis is described as substitu-
tive if, a sub-program Q of a program P can be replaced with another semanti-
cally equivalent sub-program, Q′, and guarantee that the resulting program P ′

is semantically equivalent to our original program P .

Substitutivity of the semantics simplifies correctness proofs for the sorts of
transformations described in this paper and others, such as those used in
amorphous slicing [38–40] where the program has to preserve only the seman-
tics but not necessarily the syntax.

Although the lazy semantics of Cartwright and Felleisen [35] is able to look
beyond an infinite loop, it loses precision for all variables defined in the body
of an if or while statement in states where their corresponding predicate is
evaluated to ⊥. This is due to the fact that the evaluation of any expression
demands its controlled predicate to be evaluated first. As a result of this the
lazy semantics of Cartwright and Felleisen [35] is not substitutive.

4

x:=1;

y:=1;

while (x>0) {y:=-y;}

if (y>0) then x:=x;

Program P1.

x:=1;

y:=1;

while (x>0) {y:=-y;}

if (y>0) then skip;

Program P2.

Fig. 3. P1 and P2 do not have the same transfinite semantics w.r.t. x.

For example, in the program P1 defined in Figure 2, the value of the variable
y “after” executing the infinite loop is undefined, and thus, so is the value
of the if predicate. Therefore, the final value of the variable x demands the
evaluation of an undefined predicate and hence, using the lazy semantics by
Cartwright and Felleisen [35], the final value of the variable x after executing

the program P1 is ⊥. The assignment, x:=x; and skip have the

same lazy semantics, then if this semantics is substitutive, then, the program
P1 and P2 should be equivalent with respect to it. This however, is not the
case as the final value when executing the program P2 is 1, which is different
from ⊥ in the case of P1.

Giacobazzi and Mastroeni [36] have illustrated the importance of sequential-
ity 1 of semantics. Nothing is said about substitutivity. Unsurprisingly their
transfinite semantics is not substitutive. If an assignment to a variable x is con-
trolled by an undefined predicate 2 , then the transfinite semantics will map
x to ⊥. This implies that the transfinite semantics of Giacobazzi and Mas-
troeni [36] is not substitutive 3 : we can not replace a part of program with an
equivalent program and preserve the semantics of the original program.

Unlike the lazy semantics of Cartwright and Felleisen [35], the two programs
P1 and P2 in Figure 2 have the same transfinite semantics as the value of the
variable y after executing the first infinite loop is ω which is always greater
than 0.

Now consider the two programs P1 and P2 in Figure 3. P1 and P2 do not
have the same transfinite semantics as the assignment x:=x is controlled by
an undefined predicate.

The main contribution of this paper is to give a denotational definition of a

1 Compositional with regards to sequences only.
2 The predicate is evaluated to ⊥.
3 Private communication

5

non-strict semantics, which is substitutive, preserved by slicing algorithms and
which is consistent with the standard semantics for terminating programs. We
first remind the reader of some results of the standard denotational semantics.

2 Standard Denotational Semantics

Denotational semantics [41], enables mathematical meaning to be given to
programming languages. It combines mathematic rigour and notational ele-
gance [42].

In denotational semantics [41], a state, σ ∈ Σ, is a mapping from program
variables in Variables to values in a set V.

Σ⊥ = Σ ∪ ⊥ = [V ariables 7→ V] ∪ ⊥.

For example, the function σ = {x 7→ 1, y 7→ 2, z 7→ 3} is the state where the
value of x is 1, the value of y is 2 and the value of z is 3. The meaning of a
program is given by a function from states to states:

M : P −→ Σ⊥ 7−→ Σ⊥.

Where P is the set of all programs. M[[p]]σ represent the final state after
executing the program p in the initial state σ. If the program p does not
terminate in initial state σ, then M[[p]]σ has the special value ⊥, known as
bottom. In standard semantics, in the bottom state all variables are deemed
to have the value ⊥. The bottom state is the state that maps every variable
name to ⊥. The final value of variable x after executing p in initial state σ is
thus written (M[[p]]σ)x.

2.0.1 Ordering on States

In the standard denotational semantics [41], the ordering on states is such
that two distinct non-terminating states are incomparable and ⊥ is less than
every state. The reason an ordering is required is that the meaning of loop is
defined in terms of the least fixed point.

2.0.2 Evaluating Expressions

The meaning of an expression e is given by the function E . It evaluates an
expression in state to give a value.

E : E → Σ⊥ 7−→ V⊥

6

where
V⊥ = V ∪ {⊥}.

2.0.3 Strictness of E in standard semantics

A function is strict if it gives ⊥ when applied to ⊥. In standard semantics E
is strict. In other words, evaluating every expression in the ⊥ state will give
the ⊥ value. Figure 4 shows the meaning of each construct of the language
considered using the standard semantics.

Using Kleene’s Theorem [43] the least fixed point of a monotonic functional
is the limit of an ascending chain of functions. From this it follows that:

Lemma 2 M[[while (B) S]] =
∞
⊔

i=o

Fi

Where: F0 = λσ. ⊥, Fi+1 = λσ.E [[B]]σ → Fi(M[[S]]σ), σ.
and, Fi v Fi+1 ∀i ≥ 0.

2.1 Unfolding of while Loops

In [44,45], unfoldings of a while loop were defined. The nth unfolding of the
loop , Wn, ‘agreed’ with the loop in all states where the loop terminates in
n or fewer iterations. The meaning of the nth unfolding when applied to any
other state is ⊥. The (n + 1)th unfolding is defined recursively in terms of the
nth unfolding below:

Definition 3 (Unfoldings)
W0(B, S) = abort
Wn+1(B, S) = if (B) then S;Wn(B, S) else skip

for example the unfoldings of while(x > 0) x:=x + y; statement are defined as
follows:

W0 = abort,

W1 = if (x > 0) then x:=x + y; abort else skip

W2 = if (x > 0) then x:=x + y;W1 else skip
...

Wn = if (x > 0) then x:=x + y;Wn−1 else skip

We now show that the meaning of the while loop is the limit of the meanings
of its unfoldings.

7

M : P → Σ⊥ → Σ⊥

skip statement

M[[skip]] = λσ · σ

abort statement

M[[abort]] = λσ · ⊥

Assignment statements

M[[x:=e]] = λσ · σ[x ← E [[e]]σ]

(where the notation σ[x ← e] represents the function which is the

same as σ except that x gets mapped to e.)

Sequences of statements

M[[S1; S2]] = λσ · M[[S2]](M[[S1]]σ)

if statements

M[[if(B) then S1 else S2]] = λσ · E [[B]]σ →M[[S1]]σ,M[[S2]]σ

(where the notation e→ b, c is the expression which yields

b if e is True and c if e is False).

while loops

M[[while(B) S]] = fix (λf · λσ · E [[B]]σ → f(M[[S]]σ), σ))

Fig. 4. Standard denotational semantics.

Lemma 4 M[[while (B) S]] =
∞
⊔

i=0

M[[Wi(B, S)]]

Proof.
From Lemma 2, we only need to prove that the lazy meaning of the ith un-
folding is the same as Fi. We prove this lemma by induction on i. The base
case is trivial as M[[W0(B, S)]]σ = M[[abort]]σ = ⊥σ = F0(σ) for all σ ∈ Σ.
Induction hypothesis: Assume for all σ ∈ Σ, M[[Wi(B, S)]]σ = Fi(σ) and

8

show thatM[[Wi+1(B, S)]]σ = Fi+1(σ), for all σ ∈ Σ.

M[[Wi+1(B, S)]]σ

= M[[if (B) S;Wi(B, S) else skip]]σ (By definition)

= E [[B]]σ →M[[S;Wi(B, S)]]σ, σ (By if statement rule)

= E [[B]]σ →M[[Wi(B, S)]](M[[S]]σ), σ (By sequence rule)

= E [[B]]σ → Fi(M[[S]]σ), σ (By Induction hypothesis)

= Fi+1(σ).

Hence, for all i ≥ 0, M[[Wi(B, S)]] = Fi. From which it follows immedi-
ately that the meaning of a while loop is the limit of the meanings of its
unfoldings.

3 A Lazy Denotational Semantics

In our semantics, same as in lazy semantics [35], variables are allowed to have
a ⊥ value, i.e. some variables are mapped to ⊥ and others to well defined
values. Therefore we can have partially defined states. The set of such states
is denoted as Σ⊥.

Σ⊥ : V ariables→ V⊥.

Where
V⊥ = V ∪ ⊥.

V⊥ is the union of the set of defined values, V , and the bottom value, ⊥.

The ordering on Σ⊥ is now a richer ordering than on Σ⊥ as used in the stan-
dard semantics where all non ⊥ states were incomparable. For these partially
defined states,

σ1 v σ2 ⇐⇒ σ2(x) = ⊥ =⇒ σ1(x) = ⊥ ∀x ∈ V ariables.

Since variables can be mapped to⊥ we now have the possibility that evaluating
an expression in a partially defined state can yield ⊥. A variable x referenced
by an expression e does not necessarily mean it contributes to the evaluation
of e, for example, the value of the expression x−x is independent of the value
of x. We define a function, det, which takes an expression e and returns the
set of variables referenced by e which contribute to the evaluation of e.

Definition 5 (det) The function det : E → P (V ariables) is defined to reflect
the variables determining the value of expressions. Given an expression e, we

9

say that a variable x is in det(e) if and only if there exists two states, σ1 and
σ2 in Σ⊥, differing only on the value of x with Elazy[[e]]σ1 6= Elazy[[e]]σ2, where
Elazy[[e]]σ is the lazy value of the expression e in a state σ defined below.

If det(e) contains a variable which has ⊥ as a value in σ, then the whole
expression is evaluated to ⊥ in σ. Otherwise the lazy value, Elazy, of an ex-
pression is the same as its strict value, E . The meaning of an expression in our
lazy semantics is, thus, the function:

Elazy : E → Σ⊥ 7−→ V⊥.

given by Elazy[[e]]σ =

⊥ if ∃v ∈ det(e) with σv = ⊥.

E [[e]]σ otherwise.

In Figure 5 we show the difference between det(e) and the set of variables
referenced by some expression, Ref(e). Clearly det(e) ⊆ Ref(e).

Expression Ref(e) det(e)

e:=x-x+y-z {x, y, z} {y, z}

e:=x+x+y-z {x, y, z} {x, y, z}

Fig. 5. Ref and det of an expression.

The lazy meaning of a program is given by the function Mlazy, which, as in
the case of standard semantics, is a state to state function:

Mlazy : P −→ Σ⊥ −→ Σ⊥.

The lazy semantics of each construct of our simple while language defined in
Figure 6. The lazy semantics of while loops and if statements is given in terms
of

d
operator, called meet operator. The meet operator is defined as follows:

Definition 6 (Meet -
d

) Let σ1, σ2, ...σn, be n states in Σ⊥. Then the meet
of these states is defined as follows:

nl

i=1

σi =

λv · σ1(v) if σ1(v) = σi(v) ∀ 1 ≤ i ≤ n

⊥ otherwise.

As it is shown in Figure 6, the lazy meaning of skip statement is the identity
function on states (the same as in standard semantics). The lazy meaning of
the abort statement is the same as lazy meaning of the skip statement. This
is a fundamental difference between lazy and standard semantics. Because of

10

Mlazy : P → Σ⊥ → Σ⊥

Lazy semantics of the skip statement

Mlazy[[skip]] = λσ · σ

Lazy semantics of the abort statement

Mlazy[[abort]] = λσ · σ

Lazy semantics of assignment statements

Mlazy[[x:=e]] = λσ · σ[x ← Elazy[[e]]σ]

(where the notation σ[x ← e] represents the function which is the

same as σ except that x gets mapped to e.)

Lazy semantics of the sequences of statements

Mlazy[[S1;S2]] =Mlazy[[S2]] ◦Mlazy[[S1]]

Lazy semantics of if statements

Mlazy[[if (B) then S1 else S2]]

= λσ · Elazy[[B]]σ →Mlazy[[S1]]σ,Mlazy[[S2]]σ,Mlazy[[S1]]σ uMlazy[[S2]]σ

(where the notation e→ a, b, c is the expression which yields a if e is

True, b if e is False and c if e is ⊥).

Lazy semantics of while loops

Mlazy[[while (B) S]] = λσ ·
∞
⊔

i=0

(Giσ)

where Giσ =
∞l

n=i

Mlazy[[Wn(B, S)]]σ.

Gi is just the meet of the lazy meaning of the nth unfoldings, Wn,

for all n ≥ i. The unfolding is given in Definition 3, where the meet

is defined in Definition 6.

Fig. 6. Lazy denotational semantics.

11

this, successive unfoldings of loops may not be monotonic. As in standard
semantics, the meaning of an assignment is obtained by updating the state
with the new value of the variable assigned to it. In the case of lazy semantics,
this value is the lazy value of the corresponding expression. Since in lazy
semantics, there are states which map some variables to proper values and
other variables to ⊥, the assignment rule implies that a variable can ‘recover’
from being undefined as shown in Figure 7, where after the loop x has the
value ⊥ but it recovers to 5 after the assignment x:=5.

x:=1;

while (x>0)x:=x+1;

x:=5;

Fig. 7. Recovering the value of x.

For a sequence of statements, the lazy meaning is simply the composition of
the meanings of the individual statements. For if statements, if the predicate
of an if statement is evaluated to True or False the lazy meaning rules are
the same as those of the standard semantics. The only difference is when the
guard evaluates to bottom. In this case if a variable x is assigned different
values in the then and else parts its value is ⊥. On the other hand, the value
of x is the same in the then and else parts then this should be its final value
even if the guard is ⊥,

if (z>0)

then {x:=1; y:=2;}

Fig. 8. With initial state{x 7→ 1, y 7→ 1, z 7→ ⊥}, x has 1 as its final value, whereas
y has ⊥.

For example given an initial state σ{x 7→ 1, y 7→ 1, z 7→ ⊥} in Σ⊥, the value
of the if predicate in the program in Figure 8 in σ is equal to ⊥. However, the
value of the variable x after executing the then branch is the same as when
executing the else branch and is equal to 1. In this case the lazy value of the
variable x after executing the program in Figure 8 in state σ is equal to 1.
Unlike the variable x, the value of the variable y is different when executing
the then branch from when executing else branch, and hence, the final value
of the variable y is ⊥.

For while loops, Given a state σ and a variable x the final lazy value of x

after executing a while loop starting in state σ is the limit of all the values of
x after executing each of the unfoldings. If the limit does not exist, then we

12

define the final lazy value to be ⊥. Here we mean the limit with respect to a
discrete metric i.e. for the limit to exist, there must exist an N ∈ N such that
all unfoldings greater than N give the same value for x in σ. If this is the case
we say the value of x stabilises after N unfoldings. The lazy meaning of while
loop is thus the limit of the meet of the lazy meaning of all its corresponding
unfoldings:

Although theMlazy[[Wn(B, S)]] is not monotonic, i.e.Mlazy[[Wn(B, S)]] is not
necessarily less defined thanMlazy[[Wn+1(B, S)]], clearly Gi is less defined than
Gi+1 (Gi v Gi+1), hence the least upper bound of the Gi exists.

In states where the while loop does not terminate, if the value of the variable
stabilises after i unfoldings for some i ≥ 0, then its meaning will be the
stabilised value. Otherwise, its value is just ⊥. For example, given the infinite
loop in the program in Figure 9 the value of the variable x stabilises to 1 after
the first unfolding whereas the value of the variable y never stabilises. In this
case, the lazy values of x and y are 1 and ⊥ respectively.

while (True) { x:=1; y:=y+1;}

Fig. 9. The lazy value of x is 1 and of y is ⊥.

In states where the predicate of the while loop evaluates to ⊥, if the value of
a variable is the same and equal to v for all the unfoldings, after executing
zero or more unfoldings, then its value is just v. And if otherwise the variable
is evaluated to ⊥.

For example, after executing the first infinite loop in the program in Figure 10,
the value of the variable y is undefined and therefore, the condition of the

z:=1;

x:=1;

while (True)

{ if(y>0) then y:=-1;

else y:=1;

}

while (y>0) { x:=1; z:=2;}

Fig. 10. x is evaluated to 1 where the final value of z is ⊥.

13

second while loop is undefined. However, the value of the variable x does not
change and is equal to 1 after executing the body of the loop zero, a finite
or infinite number of times. In this case the value of the variable x after
executing the second loop is equal to 1. Unlike, the variable x, the variable z

has a different value when the body of the while is not executed at all, which
is 1, from its value when the body is executed, which is equal to 2. In this case
the final value of the variable z is equal to ⊥.

The example in Figure 10 illustrates the difference of our semantics with both
the lazy semantics of Cartwright and Felleisen [35] and the transfinite seman-
tics by Giacobazzi and Mastroeni [36]. The final value of the variable x, in
both these semantics, when executing the program in Figure 10 is ⊥.

An important property of our lazy semantics is that for terminating programs,
it agrees with the standard semantics.

Theorem 7 Let P be a program and σ be a state in Σ, then,

M[[P]]σ 6= ⊥ =⇒ Mlazy[[P]]σ = M[[P]]σ.

Proof.
This is proved by structural induction over the language being considered, as
follows.
skip Statement
Trivial asMlazy[[skip]]σ = σ =M[[skip]]σ for all σ in Σ.

abort Statement
The result is vacuously true as,M[[abort]]σ = ⊥ for all σ in Σ.

Assignment Statements
Trivial, as Elazy[[e]]σ = E [[e]]σ, for all σ ∈ Σ.

Conditional Statements
Induction hypothesis: Assume that the result holds for two given programs S1

and S2.
Let B be a boolean expression, we need to show that the result holds for
if (B) then S1 else S2.
Let σ be a state in Σ with M[[if (B) then S1 else S2]]σ 6= ⊥. As σ is a state
in Σ,then Elazy[[B]]σ = E [[B]]σ 6= ⊥.
If E [[B]]σ = True, thenM[[if (B) then S1 else S2]]σ is reduced to justM[[S1]]σ
and Mlazy[[if (B) then S1 else S2]]σ is reduced to just Mlazy[[S1]]σ. Thus, the
result follows immediately from the induction hypothesis. Similarly, if E [[B]]σ =
False asM[[if (B) then S1 else S2]]σ is reduced to justM[[S2]]σ and
Mlazy[[if (B) then S1 else S2]]σ is reduced to justMlazy[[S2]]σ.

14

Sequences
Induction hypothesis: Assume that the result holds for two given programs S1

and S2.
We must show that the result holds for S1; S2 We must show that:

M[[S1; S2]]σ 6= ⊥ =⇒ Mlazy[[S1; S2]]σ =M[[S1; S2]]σ.

holds for all σ in Σ.

Let σ be a state in Σ withM[[S1; S2]]σ 6= ⊥. Hence,M[[S2]](M[[S1]]σ) 6= ⊥ and
M[[S1]]σ 6= ⊥. The result follows immediately by application of the semantics
rule for sequences and the induction hypothesis:

Mlazy[[S1; S2]]σ =Mlazy[[S2]](Mlazy[[S1]]σ) (by definition)

=M[[S2]](M[[S1]]σ) (induction hypothesis)

=M[[S1; S2]]σ.

while Loops
Induction hypothesis: Let S be a program and assume that for all σ in Σ, if
M[[S]]σ 6= ⊥ thenMlazy[[S]]σ =M[[S]]σ.
Show that:

M[[while (B) S]]σ 6= ⊥ =⇒ Mlazy[[while (B) S]]σ =M[[while (B) S]]σ

holds for all σ in Σ.
Let σ be a state in Σ, such that while (B) S terminates on σ. Let’s say it
terminates after n iterations, thenM[[while (B) S]]σ =M[[Wi(B, S)]]σ for all
i ≥ n. Thus using the definition of the lazy meaning of while loops, it suffices
to show that for all i ≥ 0,

M[[Wi(B, S)]] σ 6= ⊥ =⇒ Mlazy[[Wi(B, S)]] σ = M[[Wi(B, S)]] σ.

We show this by induction on i. M[[W0(B, S)]]σ = ⊥, then the base case is
vacuously true. We now assume that the result holds for ith unfolding: for all
σ ∈ Σ, if M[[Wi(B, S)]]σ 6= ⊥ then Mlazy[[Wi(B, S)]]σ = M[[Wi(B, S)]]σ.
Let σ be a state in Σ, with M[[Wi+1(B, S)]]σ 6= ⊥. We must show that
Mlazy[[Wi+1(B, S)]]σ =M[[Wi+1(B, S)]]σ.
If E [[B]]σ = False, thenMlazy[[Wi+1(B, S)]]σ =M[[Wi+1(B, S)]]σ = σ.
If otherwise, E [[B]]σ = True, thenM[[Wi+1(B, S)]]σ is reduced to just the stan-
dard meaning of S;Wi(B, S), M[[Wi(B, S)]](M[[S]]σ), and in the same way
Mlazy[[Wi+1(B, S)]]σ is reduced to justMlazy[[Wi(B, S)]](Mlazy[[S]]σ). And the
result follows immediately by application of the induction hypothesis on S and
i. Thus completing the proof.

15

3.1 Lazy Semantics is Substitutive

Program transformation is a form of program analysis or manipulation. Pro-
gram transformation alters the syntax of a program while preserving its se-
mantics: We can substitute some parts of a program by their corresponding
equivalent and still preserve the semantics of the original program. Therefore,
substitutivity (see definition 1) is an important property a semantics should
have if it is to be useful to prove correctness of program transformation algo-
rithms slicing [39,38,40]. Unlike the semantics of Cartwright and Felleisen [35]
and the transfinite semantics of Giacobazzi and Mastroeni [36], the following
theorem shows that our lazy semantics is substitutive.

Theorem 8 (Our lazy semantics is substitutive)
Let P be a program and P ′ be a program obtained by replacing a sub-program,
Q, of P by a Q′. Then

Mlazy[[Q]] =Mlazy[[Q
′]] =⇒ Mlazy[[P]] =Mlazy[[P

′]].

Proof.
This is proved by structural induction over the language being considered.
The result for base case is trivial as abort , skip and assignment statements
are atomic statements.

Conditional Statements
Induction hypothesis: Assume that the result holds for two given programs S1

and S2.
Let S ′

1 be a program obtained by replacing a sub-program, Q1, of S1 by an
equivalent program Q′

1 and let S ′
2 be a program obtained by replacing a sub-

program, Q2, of S2 by an equivalent program Q′
2. We need to Show that:

Mlazy[[if (B) then S1 else S2]] =Mlazy[[if (B) then S ′
1 else S ′

2]].

Let σ be a state in Σ⊥, then

Mlazy[[if (B) then S ′
1 else S ′

2]]σ

= λσ · Elazy[[B]]σ →Mlazy[[S
′
1]]σ,Mlazy[[S

′
2]]σ,Mlazy[[S

′
1]]σ uMlazy[[S

′
2]]σ

(by definition)

= λσ · Elazy[[B]]σ →Mlazy[[S1]]σ,Mlazy[[S2]]σ,Mlazy[[S1]]σ uMlazy[[S2]]σ

(Induction hypothesis)

=Mlazy[[if (B) then S1 else S2]]σ.

Sequences

16

Induction hypothesis: Assume that the result holds for two given programs S1

and S2.
Let S ′

1 be a program obtained by replacing a sub-program, Q1, of S1 by an
equivalent program Q′

1 and let S ′
2 be a program obtained by replacing a sub-

program, Q2, of S2 by an equivalent program Q′
2. We need to Show that:

Mlazy[[S
′
1;S

′
2]] =Mlazy[[S1;S2]].

Let σ be a state in Σ⊥, then

Mlazy[[S
′
1; S

′
2]]σ =Mlazy[[S

′
2]](Mlazy[[S

′
1]]σ) (by definition)

=Mlazy[[S2]](Mlazy[[S1]]σ) (by induction hypothesis)

=Mlazy[[S1; S2]]σ.

while Loops
Induction hypothesis: Assume that the result holds for a program S.
Let S ′ be a program obtained by replacing a sub-program, Q, of S by an
equivalent program Q′. We need show that:

Mlazy[[while (B) S ′]] =Mlazy[[while (B) S]].

by applying the induction hypothesis and the result for if statements, we have

Mlazy[[Wi(B, S ′)]] =Mlazy[[Wi(B, S)]] ∀ i ≥ 0.

Hence, by applying the definition of the lazy semantics of while loops, the
result for while loops follows immediately. Thus completes the proof.

In the following section we will define the semantics of slicing using lazy se-
mantics.

4 Defining Slices using Lazy Semantics

We define P and Q to be V-lazy equivalent if and only if they have the same
lazy semantics with respect to the set of variables V .

Definition 9 (V-lazy equivalence)
Let V be a set of variables and P and Q be two programs. We say P and
Q are V-lazy equivalent if and only if for all σ in Σ⊥ and for all x in V ,
Mlazy[[P]]σx =Mlazy[[Q]]σx. This is clearly an equivalence relation.

We write P
V
∼ Q to denote that P and Q are V –lazy equivalent.

Figure 11 shows two programs, P1 and P2, with the same lazy semantics with

respect to x. i.e. P1

{x}
∼ P2.

17

x:=1;

y:=0;

while (y ≥ 0) {x:=0;}

Program P1.

x:=0;

Program P2.

Fig. 11. P1 and P2 have the same lazy semantics w.r.t. the variable x.

x:=1;

y:=0;

while (y=0) {y:=y+1;}

x:=0;

A program P .

x:=0;

End-slice of P w.r.t. x.

Fig. 12. P and its end-slice have the same lazy semantics w.r.t.x.

Definition 10 (Weiser’s semantic definition of a slice)
Let V be a set of variables and P and Q be two programs. We say that Q is a
slice of P with respect to V if and only if, for all σ in Σ,

M[[P]]σ 6= ⊥ =⇒ M[[P]]σx = M[[Q]]σx ∀ x ∈ V.

The program P in Figure 12 does not terminate. Using Weiser’s semantic
definition, the slice of the program P can be anything. This is a result of the
fact that Weiser’s definition does not take into account non-termination.

Unlike Weiser’s standard semantic definition of a slice, Definition 10, we re-
quire a slice to preserve the semantics of the original in all states, not just
for ones where the program terminates. We do not wish to allow arbitrary se-
mantics for slices of non-terminating programs since Weisers’s algorithm does
not behave in an arbitrary way in these cases. We now give a new semantic
definition of a slice, called a lazy V-slice, which we prove to be consistent with
Weiser’s one.

Definition 11 (Lazy V-Slice)
Let P and P1 be two programs, and V be a set of variables. We say P1 is a
lazy V-slice of a program P if and only if

P
V
∼ P1, and (M[[P]]σ 6= ⊥ =⇒ M[[P1]]σ 6= ⊥ ∀σ ∈ Σ).

18

Using our new lazy semantic definition of a slice, it is clear that x:=0; is a
semantically valid slice of the program P in Figure 12 on page 18.

Our definition of a lazy V-slice is one that preserves termination and lazy
semantics of the original program projected onto all variables in V . Weiser’s
semantics definition of a slice is one that preserves termination and the pro-
jected standard semantics onto V only for terminating programs. Our lazy
semantics agrees with the standard semantics in all states where the program
terminates, (see Theorem 7, page 14). From this it follows immediately that
any slice which satisfies our new definition also satisfies Weiser’s semantic
definition of slicing.

5 Lazy Neededness

Program slicing can introduce termination [4]. Because of this it is hard to
give a denotational definition of variable dependence which is consistent with
program slicing in terms of the standard semantics. In this section we define
neededness in terms of our lazy semantics, called lazy neededness, and show
that it satisfies the neededness criterion; i.e. it is standard semantically dis-
criminating (PSSD) and it is sub-sequential (for PSSD and sub-sequentiality
see Section 1.1, Page 3).

Definition 12 (Lazy Needed: Nlazy)

Nlazy : S× P(V ariables) −→ P(V ariables)

where S is the set of programs and V ariables is the set of program variables.

A variable y is in Nlazy(P, V) if and only if there is a variable x in V , and
two states, σ1 and σ2 in Σ⊥, differing only on the value of the variable y, such
that:

Mlazy[[p]]σ1x 6=Mlazy[[p]]σ2x.

From the definition of lazy neededness and Theorem 7 which states that the
standard semantics and lazy semantics agree for terminating programs, it
follows that lazy neededness is standard semantically discriminating (PSSD).

We now show that lazy neededness, Nlazy, defined in Definition 12 is both
sub-sequential Some intermediate results, exploring some properties of lazy
neededness, are now given.

19

We begin by showing that lazy neededness of a program with respect to a set
of variables V is just the union of its lazy neededness with respect to each one
of the variables in V .

Lemma 13 Given a set of variables V and program P then,

Nlazy(P, V) =
⋃

x∈V

Nlazy(P, {x}).

Proof.
This follows immediately from Definition 12.

By definition, the lazy needed set of variables of a program P with respect to a
set of variables V is the set of variables for which the initial value might affect
the lazy final value of some of the variables in V after executing P . Therefore,
if two states, σ1 and σ2 in Σ⊥ agree on all elements in Nlazy(P, V) then the
meaning of P in σ1 and in σ2 agree on all elements in V . The following lemma
shows that our lazy semantics satisfies this property.

Lemma 14 Given a set of variables V , a program P and two states, σ1 and
σ2, differing only on a set V0 of elements not in Nlazy(P, V), then

Mlazy[[P]]σ1x =Mlazy[[P]]σ2x, ∀ x ∈ V.

Proof.
We show this by contradiction. By Lemma 13, it suffices to show the result
for V = {x}. Suppose there exists two states, σ1 and σ2, differing only on
elements in V0, with Mlazy[[P]]σ1x 6= Mlazy[[P]]σ2x. And choose σ1 and σ2

to be the states differing on a minimal set, W ⊆ V0, with Mlazy[[P]]σ1x 6=
Mlazy[[P]]σ2x. Clearly W 6= ∅, so choose y ∈ W and let σ′

1 = σ1[y ← σ2(y)]. By
the minimality follows Mlazy[[P]]σ′

1x = Mlazy[[P]]σ2x. Thus, Mlazy[[P]]σ′
1x 6=

Mlazy[[P]]σ1x. This contradicts the minimality of W unless W = {y}. In this
case, by definition, y ∈ Nlazy(P, {x}) which contradicts the hypothesis.

The example in Figure 13 illustrates this property. Nlazy(P, {x}) = {y}. The
value of the variable x after executing P is always equal to 0 in all states where
the value of y is 0. In all other states the value of x is equal to 1.

Given an expression e, if a variable x is not in det(e) then the initial value of
x does not affect the value of the expression e. Therefore, the value of e in all
states which agree in all elements in det(e) is the same. The following lemma
illustrates this.

Lemma 15 Let e be an expression, and σ1, σ2 be two states in Σ⊥, differing

20

if(y=0)

then x:=0;

else x:=1;

Fig. 13. A simple program P .

only on a set V of variables not in det(e), then Elazy[[e]]σ1 = Elazy[[e]]σ2.

Proof.
This is entirely similar to the proof of Lemma 14.

5.1 Lazy Neededness is Sub-sequential

In the introduction we have explained our intuitive reasons why neededness
has to satisfy the sub-sequentiality property. The objective of this section is to
show that our definition of neededness, lazy neededness, satisfies this property.

Theorem 16 Let P1 and P2 be two programs and V a set of variables, then

Nlazy(P1; P2, V) ⊆ Nlazy(P1, Nlazy(P2, V)).

Proof.
By Lemma 13, it suffices to show the theorem holds when V = {x}. Let
σ1 and σ2 be two states differing only on the value of y, which is not in
Nlazy(P1, Nlazy(P2, {x})). Hence, by Lemma 14, it follows that Mlazy[[P1]]σ1

andMlazy[[P1]]σ1 agree in all elements in Nlazy(P2, {x}). Thus, by Lemma 14,
if follows that

Mlazy[[P2]](Mlazy[[P1]]σ1)x =Mlazy[[P2]](Mlazy[[P1]]σ2)x

Mlazy[[P1; P2]]σ1x =Mlazy[[P1; P2]]σ2x.

Hence, the variable y is not in Nlazy(P1; P2, {x}) Thus, the result follows.

Theorem 16 shows that lazy neededness satisfies the sub-sequentiality prop-
erty.

21

6 Related Work

A slice of a program can halt even if the original program does not terminate.
Hence, the standard semantics is not preserved by program slicing algorithms.
The semantics of different intermediate graph representation, such as the con-
trol flow graph [1] or the program dependence graph [33,34] has been used to
investigate the semantics properties of program slicing [32,46,35]. Horwitz et
al. [32], have shown that behaviour of a program is captured by its correspond-
ing program dependence graph. They show that if the program dependence
graphs of two programs are isomorphic, then the programs have the same
semantics.

Cartwright and Felleisen [35] observed and discussed that if a semantic is to
be useful to investigate semantics properties of program slicing, it has to be
preserved by slicing algorithms with respect to slicing criterion. In [35], they
defined a non-strict semantics for program dependence graphs of a simple
while language and claimed that their semantics is preserved by slicing algo-
rithms. Venkatesh [47] used Cartwright and Felleisen’s lazy semantics to give
a semantic justification of program slicing.

Giacobazzi and Mastroeni [36] argued that it is unnatural to try to prove cor-
rectness of slicing properties using the standard semantics. They also argued
that if a semantics is to be useful for modelling program slicing manipulation
techniques it should be able to capture semantic information ‘beyond infinite
loops’ and be sequential. As it has been shown in Section 1, neither the se-
mantics of Cartwright and Felleisen given in [35] nor the one of Giacobazzi
and Mastroeni given in [36] is substitutive. In this paper a new denotational
semantics which is substitutive and preserved by slicing is given.

7 Conclusion and Future Work

The standard semantics is not preserved by slicing algorithms. As a result
of this, it is very hard to prove correctness of program transformation such
as program slicing using the standard denotational semantics without the
use of some intermediate graph representations. Different intermediate graph
representations such as program dependence graphs [32,35] have been used
to investigate the semantic properties of program slicing algorithms. Proving
correctness of slicing algorithms using a semantics which is not preserved by
slicing, proved to be very hard.

In this paper we introduced a new non-strict semantics for a simple while
language. Our new semantics allows us to give a denotational definition of

22

variable dependence, neededness, which is consistent with program slicing.
Finally, our semantics is proved to be preserved by slicing algorithms, which
makes it very useful to prove correctness of slicing algorithms. Furthermore,
in Theorem 8, page 16, we have shown that our new semantics is substitutive.
This property is very useful to prove correctness of the kind of transformations
discussed in this paper.

A future direction of our research is to attempt to prove correctness of exist-
ing intraprocedural slicing algorithms such as Hausler’s slicing algorithm [48],
using our new semantics. We also intend to extend our semantics to handle
real program features, such as procedures and recursion.

References

[1] M. Weiser, Program slices: Formal, psychological, and practical investigations of
an automatic program abstraction method, PhD thesis, University of Michigan,
Ann Arbor, MI (1979).

[2] M. Weiser, Program slicing, in: 5th International Conference on Software
Engineering, San Diego, CA, 1981, pp. 439–449.

[3] M. Weiser, Programmers use slicing when debugging, Communications of the
ACM 25 (7) (1982) 446–452.

[4] M. Weiser, Program slicing, IEEE Transactions on Software Engineering 10 (4)
(1984) 352–357.

[5] G. Canfora, A. Cimitile, M. Munro, RE2: Reverse engineering and reuse re-
engineering, Journal of Software Maintenance : Research and Practice 6 (2)
(1994) 53–72.

[6] D. Simpson, S. H. Valentine, R. Mitchell, L. Liu, R. Ellis, Recoup – Maintaining
Fortran, ACM Fortran forum 12 (3) (1993) 26–32.

[7] A. De Lucia, A. R. Fasolino, M. Munro, Understanding function behaviours
through program slicing, in: 4th IEEE Workshop on Program Comprehension,
IEEE Computer Society Press, Los Alamitos, California, USA, Berlin, Germany,
1996, pp. 9–18.

[8] M. Harman, R. M. Hierons, S. Danicic, J. Howroyd, C. Fox, Pre/post
conditioned slicing, in: IEEE International Conference on Software Maintenance
(ICSM’01), IEEE Computer Society Press, Los Alamitos, California, USA,
Florence, Italy, 2001, pp. 138–147.

[9] G. Canfora, A. Cimitile, A. De Lucia, G. A. D. Lucca, Software salvaging
based on conditions, in: International Conference on Software Maintenance
(ICSM’96), IEEE Computer Society Press, Los Alamitos, California, USA,
Victoria, Canada, 1994, pp. 424–433.

23

[10] A. Cimitile, A. De Lucia, M. Munro, A specification driven slicing process for
identifying reusable functions, Software maintenance: Research and Practice 8
(1996) 145–178.

[11] K. B. Gallagher, Evaluating the surgeon’s assistant: Results of a pilot study, in:
Proceedings of the International Conference on Software Maintenance, IEEE
Computer Society Press, Los Alamitos, California, USA, 1992, pp. 236–244.

[12] K. B. Gallagher, J. R. Lyle, Using program slicing in software maintenance,
IEEE Transactions on Software Engineering 17 (8) (1991) 751–761.

[13] H. Agrawal, R. A. DeMillo, E. H. Spafford, Debugging with dynamic slicing
and backtracking, Software Practice and Experience 23 (6) (1993) 589–616.

[14] M. Kamkar, Interprocedural dynamic slicing with applications to debugging and
testing, PhD Thesis, Department of Computer Science and Information Science,
Linköping University, Sweden, available as Linköping Studies in Science and
Technology, Dissertations, Number 297 (1993).

[15] J. R. Lyle, M. Weiser, Automatic program bug location by program slicing, in:
2nd International Conference on Computers and Applications, IEEE Computer
Society Press, Los Alamitos, California, USA, Peking, 1987, pp. 877–882.

[16] D. W. Binkley, The application of program slicing to regression testing, in:
M. Harman, K. Gallagher (Eds.), Information and Software Technology Special
Issue on Program Slicing, Vol. 40, Elsevier, 1998, pp. 583–594.

[17] R. Gupta, M. J. Harrold, M. L. Soffa, An approach to regression testing using
slicing, in: Proceedings of the IEEE Conference on Software Maintenance, IEEE
Computer Society Press, Los Alamitos, California, USA, Orlando, Florida,
USA, 1992, pp. 299–308.

[18] M. Harman, S. Danicic, Using program slicing to simplify testing, Software
Testing, Verification and Reliability 5 (3) (1995) 143–162.

[19] R. M. Hierons, M. Harman, S. Danicic, Using program slicing to assist in the
detection of equivalent mutants, Software Testing, Verification and Reliability
9 (4) (1999) 233–262.

[20] R. M. Hierons, M. Harman, C. Fox, L. Ouarbya, M. Daoudi, Conditioned slicing
supports partition testing, Software Testing, Verification and Reliability 12
(2002) 23–28.

[21] J. Beck, D. Eichmann, Program and interface slicing for reverse engineering,
in: IEEE/ACM 15th Conference on Software Engineering (ICSE’93), IEEE
Computer Society Press, Los Alamitos, California, USA, 1993, pp. 509–518.

[22] A. Cimitile, A. De Lucia, M. Munro, Identifying reusable functions using
specification driven program slicing: a case study, in: Proceedings of the IEEE
International Conference on Software Maintenance (ICSM’95), IEEE Computer
Society Press, Los Alamitos, California, USA, Nice, France, 1995, pp. 124–133.

24

[23] D. W. Binkley, S. Horwitz, T. Reps, Program integration for languages with
procedure calls, ACM Transactions on Software Engineering and Methodology
4 (1) (1995) 3–35.

[24] S. Horwitz, J. Prins, T. Reps, Integrating non–interfering versions of programs,
ACM Transactions on Programming Languages and Systems 11 (3) (1989) 345–
387.

[25] J. M. Bieman, L. M. Ott, Measuring functional cohesion, IEEE Transactions
on Software Engineering 20 (8) (1994) 644–657.

[26] A. Lakhotia, Rule–based approach to computing module cohesion, in:
Proceedings of the 15th Conference on Software Engineering (ICSE-15), 1993,
pp. 34–44.

[27] L. M. Ott, J. J. Thuss, Slice based metrics for estimating cohesion, in:
Proceedings of the IEEE-CS International Metrics Symposium, IEEE Computer
Society Press, Los Alamitos, California, USA, Baltimore, Maryland, USA, 1993,
pp. 71–81.

[28] D. W. Binkley, K. B. Gallagher, Program slicing, in: M. Zelkowitz (Ed.),
Advances in Computing, Volume 43, Academic Press, 1996, pp. 1–50.

[29] A. De Lucia, Program slicing: Methods and applications, in: 1st IEEE
International Workshop on Source Code Analysis and Manipulation, IEEE
Computer Society Press, Los Alamitos, California, USA, Florence, Italy, 2001,
pp. 142–149.

[30] M. Harman, R. M. Hierons, An overview of program slicing, Software Focus
2 (3) (2001) 85–92.

[31] F. Tip, A survey of program slicing techniques, Journal of Programming
Languages 3 (3) (1995) 121–189.

[32] S. Horwitz, J. Prins, T. Reps, On the adequacy of program dependence graphs
for representing programs, in: ACM (Ed.), POPL ’88. Proceedings of the
conference on Principles of programming languages, January 13–15, 1988, San
Diego, CA, ACM Press, New York, NY, USA, 1988, pp. 146–157.

[33] D. Kuck, R. Kuhn, D. Padua, B. Leasure, M. Wolfe, Dependence graphs and
compiler optimizations, In Conference Record of the 8th ACM Symposium on
Principles of Programing Languages (1981) 207–218.

[34] J. Ferrante, K. J. Ottenstein, J. D. Warren, The program dependence graph
and its use in optimization, ACM Transactions on Programming Languages
and Systems 9 (3) (1987) 319–349.

[35] R. Cartwright, M. Felleisen, The semantics of program dependence, in: ACM
SIGPLAN Conference on Programming Language Design and Implementation,
1989, pp. 13–27.

[36] R. Giacobazzi, I. Mastroeni, Non-standard semantics for program slicing,
Higher-Order and Symbolic Computation(HOSC) 16 (4) (2003) 297–339.

25

[37] J. Kennaway, J. Klop, M. Sleep, F. Vries, Transfinite reduction in orthogonal
term rewriting systems., Information and computation 119 (1) (1995) 18–38.

[38] M. Harman, S. Danicic, Amorphous program slicing, in: 5th IEEE International
Workshop on Program Comprenhesion (IWPC’97), IEEE Computer Society
Press, Los Alamitos, California, USA, Dearborn, Michigan, USA, 1997, pp. 70–
79.

[39] D. W. Binkley, Computing amorphous program slices using dependence graphs
and a data-flow model, in: ACM Symposium on Applied Computing, ACM
Press, New York, NY, USA, The Menger, San Antonio, Texas, U.S.A., 1999,
pp. 519–525.

[40] M. Harman, L. Hu, X. Zhang, M. Munro, GUSTT: An amorphous slicing system
which combines slicing and transformation, in: 1st Workshop on Analysis,
Slicing, and Transformation (AST 2001), IEEE Computer Society Press, Los
Alamitos, California, USA, Stuttgart, 2001, pp. 271–280.

[41] J. E. Stoy, Denotational semantics: The Scott–Strachey approach to
programming language theory, MIT Press, 1985, third edition.

[42] D. A. Schmidt, Denotational semantics: A Methodology for Language
Development, Allyn and Bacon, 1986.

[43] Z. Manna, Mathematical Theory of Computation, McGraw–Hill, 1974.

[44] S. Danicic, Dataflow minimal slicing, PhD thesis, University of North London,
UK, School of Informatics (Apr. 1999).

[45] K. R. Apt, E.-R. Olderog, Verification of sequential and concurrent programs
(2nd ed.), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

[46] T. W. Reps, W. Yang, The semantics of program slicing and program
integration, in: TAPSOFT ’89: Proceedings of the International Joint
Conference on Theory and Practice of Software Development, Volume 2,
Springer-Verlag, London, UK, 1989, pp. 360–374.

[47] G. A. Venkatesh, The semantic approach to program slicing, in: ACM SIGPLAN
Conference on Programming Language Design and Implementation, Toronto,
Canada, 1991, pp. 26–28, proceedings in SIGPLAN Notices, 26(6), pp.107–119,
1991.

[48] P. A. Hausler, Denotational program slicing, in: 22nd, Annual Hawaii
International Conference on System Sciences, Volume II, 1989, pp. 486–495.

26

